EP0860043B1 - Verfahen zur bescichtung und herstellung einer elektrode für zündkerzen für brennkraftmaschinen - Google Patents

Verfahen zur bescichtung und herstellung einer elektrode für zündkerzen für brennkraftmaschinen Download PDF

Info

Publication number
EP0860043B1
EP0860043B1 EP97936587A EP97936587A EP0860043B1 EP 0860043 B1 EP0860043 B1 EP 0860043B1 EP 97936587 A EP97936587 A EP 97936587A EP 97936587 A EP97936587 A EP 97936587A EP 0860043 B1 EP0860043 B1 EP 0860043B1
Authority
EP
European Patent Office
Prior art keywords
electrode
wear
resistant layer
coating
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97936587A
Other languages
English (en)
French (fr)
Other versions
EP0860043A1 (de
Inventor
Andreas Niegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0860043A1 publication Critical patent/EP0860043A1/de
Application granted granted Critical
Publication of EP0860043B1 publication Critical patent/EP0860043B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs

Definitions

  • the invention is based on a method for coating and producing an electrode for spark plugs for internal combustion engines.
  • an electrode in particular a center and / or ground electrode for igniting flammable mixtures, is already known, in which the surface acting as the spark transfer surface has an electrically conductive, particularly erosion-resistant and well-adhering first coating and a second coating, which the a low electron work function.
  • the coating takes place in the plasma spraying process.
  • Common spark plugs generally have a center electrode and a ground electrode, the tips of the two electrodes being arranged with respect to one another in such a way that a spark gap is left free. Due to the constant generation of sparks between the two electrodes, the tips are subject to considerable wear. This problem places high demands on the temperature resistance, corrosion resistance and thermal expansion characteristics of the electrode tip. Spark erosion and oxidation phenomena also lead to considerable stresses.
  • a method for coating the electrode tips with corrosion-resistant materials is known from DE 40 39 778. According to this publication, electrode base bodies or even only the electrode tips are provided with an intermetallic phase. This manufacture of intermetallic Phase can be complex for production. In addition, the intermetallic phases show a very brittle behavior. In the case of alloying intermetallic phases, the corrosion and oxidation resistance is significantly reduced.
  • the inventive method for coating and the inventive method for producing an electrode for spark plugs for internal combustion engines with the features of the independent claims has the advantage that the wear protection layer is applied by means of laser powder coating, its use in production is considerably easier and the combination of chemically different materials little mutual mixing allowed.
  • Laser powder coating also sometimes referred to as laser spraying
  • the laser coating process has the advantage that it can be used to apply strictly limited and precise coatings.
  • Partial areas of the electrodes are coated, such as electrode tips, electrode jacket areas, electrode areas with notches or conical recesses.
  • FIG. 1 shows the schematic production process for producing an electrode for spark plugs with a corrosion-resistant coating
  • FIG. 2 and FIG. 3 show two examples of coated electrode bodies.
  • the invention uses a modern coating method for the production of wear protection layers such. B. for spark plug electrodes.
  • Thermal spraying as a modern surface technology offers a wide range of applications. In this way, components made of a wide variety of basic materials made of metal, with layers of refractory metals, oxides and metal ceramics can be provided for protection against wear and corrosion. Almost all coating materials that can be produced in powder form can be processed.
  • the Spray additive is fed to a high-energy heat source and melted. The molten particles of the coating material are accelerated in the direction of a substrate and usually hit at high speed to form a layer. The substrate is usually subject to only a slight thermal load during the process.
  • the spray jet is spatially limited in all processes, but there are considerable spray losses.
  • Laser spraying in which the coating material is slowly blown into the focus area of a laser beam using a carrier gas. At the same time, the substrate is melted by the laser beam, so that a connection is created between the substrate and the coating material in the melt.
  • Laser spraying is characterized by the fact that it is a real one-step process. Previously, a workpiece surface was first coated and then treated in a second step with the help of a laser beam. This procedure combines both steps. Laser spraying is mostly used with CO 2 lasers with a net output of a few kilowatts.
  • Thermally sprayed layers are characterized by layer thicknesses in the range from 100 ⁇ m to a few mm, whereby the binding mechanism is based either on mechanical clamping, adhesion, diffusion, chemical bonding or electrostatic forces.
  • electrodes made of various basic materials can be provided with wear protection layers made of refractory metals, alloys, metal ceramics and other compounds (silicides, oxides, aluminides, borides, nitrides, carbides) against spark erosion wear and corrosion wear. This is particularly the copper, which is otherwise difficult to coat, which is the good heat conductor of the core of an electrode Composite material forms easily coatable by means of laser powder coating.
  • the alloys NiCr 31 Al 11 Y 0.5 and RuAl 11 have proven particularly suitable for the coating and particularly wear-resistant. After thermal shock testing and runtime investigations, these materials show a significantly improved stability compared to previously used wear protection layers.
  • Figure 1 shows the schematic manufacturing process for the manufacture of spark plug electrodes from a composite wire.
  • station S1 the nickel-coated copper wire, the starting material for the electrodes, is pulled off a roll and calibrated.
  • Station S2 produces the dimensionally accurate wire sections 1 which are upset in station S3 in order to produce the electrode seat 8.
  • station S4 the wear-resistant layer is applied with a laser after the basic electrode body has been assembled.
  • the electrode, which is now fully coated, is post-treated and burrs z. B. removed by grinding. The electrode is installed in the ceramic body after its completion.
  • FIG. 2 shows a center electrode 1 which was coated by the method according to the invention from FIG. 1. It can be seen that even thin layers can be applied very precisely with this method. The geometry of the workpieces is also irrelevant.
  • the coating takes place before the electrode is installed in the ceramic body. At the transition point 5 between the jacket coating 4 and the electrode body 1, there are well-separated phases between the electrode body and the coating, which for example have a thickness of 0.5 mm.
  • the electrode base body must be configured for the coating in the area of the coating.
  • the nickel-coated copper wire is reduced to a reduced or non-cutting Brought diameter. Care must be taken to ensure that the copper core is not exposed, otherwise there will be signs of corrosion.
  • a thermal process with strong beam bundling must be used, ie laser or electron beam pointed process. A plasma jet would result in a too wide thermal range.
  • the counter electrode 3, which is installed in the candle housing 2 can also be provided with a coating, which in this example is applied in a conical depression 7.
  • the coating can be carried out after the electrode is installed in the housing, if a laser spraying process is used.
  • other electrodes can also be provided with wear protection layers.
  • the coating of almost any geometric shape is possible. End or outer surface coatings of extruded middle electrodes, coatings of profile wires for ground electrodes, or coatings of electrode blanks or boards can be carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Spark Plugs (AREA)

Description

    Stand der Technik
  • Die Erfindung geht von einem Verfahren zur Beschichtung und Herstellung einer Elektrode für Zündkerzen für Brennkraftmaschinen aus. Aus der DE 36 12 135 A1 ist bereits eine Elektrode insbesondere Mittel- und/oder Masseelektrode zum Zünden brennbarer Gemische bekannt, bei welcher die als Funkenübergangsfläche wirkende Oberfläche eine elektrisch leitende, besonders abbrandfeste und gut haftende erste Beschichtung und eine zweite Beschichtung aufweist, die der ersten Beschichtung eine geringe Elektronen-Austrittsarbeit vermittelt. Die Beschichtung erfolgt im Plasmaspritzverfahren.
  • Gängige Zündkerzen besitzen in der Regel eine Mittelelektrode und eine Masseelektrode, wobei die Spitzen beider Elektroden so zueinander angeordnet sind, daß eine Funkenstrecke frei gelassen ist. Durch die dauernde Funkenerzeugung zwischen beiden Elektroden unterliegen die Spitzen einem erheblichen Verschleiß. Dieses Problem stellt hohe Anforderung an die Temperaturfestigkeit, Korrosionsbeständigkeit und Wärmeausdehnungscharakteristik der Elektrodenspitze dar. Funkenerosion und Oxidationserscheinungen führen ebenfalls zu erheblichen Beanspruchungen.
    Aus der DE 40 39 778 ist ein Verfahren zur Beschichtung der Elektrodenspitzen mit korrosionsfesten Materialien bekannt. Nach dieser Druckschrift werden Elektrodengrundkörper oder auch nur die Elektrodenspitzen mit einer intermetallischen Phase versehen. Diese Herstellung der intermetallischen Phase kann für die Produktion aufwendig sein. Darüber hinaus zeigen die intermetallischen Phasen ein sehr sprödes Verhalten. Im Falle des Legierens von intermetallischen Phasen wird die Korrosions- und Oxidationsbeständigkeit erheblich herabgesetzt.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Verfahren zur Beschichtung und das erfindungsgemäße Verfahren zur Herstellung einer Elektrode für Zündkerzen für Brennkraftmaschinen mit den Merkmalen der nebengeordneten Ansprüche hat den Vorteil, daß die Verschleißschutzschicht mittels Laserpulverbeschichtung aufgebracht wird, dessen Einsatz in der Produktion erheblich einfacher ist und den Verbund chemisch unterschiedlicher Werkstoffe mit geringer gegenseitiger Aufmischung erlaubt. Das Laserpulverbeschichten (auch gelegentlich als Laserspritzen bezeichnet) erlaubt die Aufbringung der Verschleißschutzschicht einlagig in einem einzigen Arbeitsschritt. Es wird mit diesem Verfahren eine sehr gute Haftung auf allen Materialien der Elektroden, die in der Regel aus einem Verbundmaterial (Kupferkern mit Ummantelung auf Basis einer Nickellegierung) bestehen, erreicht. Das Laser-Beschichtungsverfahren hat den Vorteil, daß damit streng begrenzte und punktgenaue Beschichtungen aufgebracht werden können.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Verfahrens möglich.
  • Besonders vorteilhaft ist es, daß unterschiedlichste Materialien als Korrosionsschutz für die Elektrodenspitze aufgebracht werden können. Dabei sind mit Materialien wie Metalle, Legierungen von Metallen, Metallkeramiken, oder Oxide usw. denkbar.
  • Dabei werden Teilbereiche der Elektroden beschichtet, wie Elektrodenspitzen, Elektrodenmantelbereiche, Elektrodenflächen mit Einkerbungen oder kegelförmigen Aussparungen.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt Figur 1 den schematischen Produktionsablauf zur Herstellung einer Elektrode für Zündkerzen mit einer korrosionsfesten Beschichtung, Figur 2 und Figur 3 zwei Beispiele für beschichtete Elektrodenkörper.
  • Beschreibung des Ausführungsbeispiels
  • Die Erfindung verwendet ein modernes Beschichtungsverfahren zur Herstellung von Verschleißschutzschichten z. B. für Zündkerzenelektroden. Das thermische Spritzen als moderne Oberflächentechnologie bietet dabei vielfältige Anwendungsmöglichkeiten. Damit lassen sich Bauteile aus verschiedensten Grundstoffen im erfindungsgemäßen Fall aus Metall, mit Schichten aus hochschmelzenden Metallen, Oxiden und Metallkeramiken zum Schutz vor Verschleiß und Korrosion versehen. Es können nahezu alle Beschichtungswerkstoffe, die in Pulverform herstellbar sind, verarbeitet werden. Der Spritzzusatz wird einer energiereichen Wärmequelle zugeführt und aufgeschmolzen. Die schmelzflüssigen Partikel des Beschichtungsstoffes werden in Richtung eines Substrats beschleunigt und treffen mit meist hoher Geschwindigkeit auf, um eine Schicht zu bilden. Das Substrat unterliegt während des Prozesses in der Regel einer nur geringen thermischen Belastung. Der Spritzstrahl ist bei allen Verfahren räumlich stark begrenzt, dennoch liegen erhebliche Spritzverluste vor. Eine Ausnahme bildet da das Laserspritzen, bei welchem der Beschichtungswerkstoff mit Hilfe eines Trägergases langsam in den Fokusbereich eines Laserstrahls geblasen wird. Gleichzeitig wird durch den Laserstrahl das Substrat aufgeschmolzen, so daß in der Schmelze eine Verbindung zwischen Substrat und Beschichtungswerkstoff entsteht. Das Laserspritzen zeichnet sich dadurch aus, daß es sich um ein echtes Einstufenverfahren handelt. Bisher wurde eine Werkstückoberfläche zunächst beschichtet und anschließend in einem zweiten Arbeitsgang mit Hilfe eines Laserstrahls nachbehandelt. Bei diesem Verfahren werden beide Schritte kombiniert. Das Laserspritzen wird zumeist mit CO2-Laser mit Nettoleistungen von einigen Kilowatt eingesetzt. Thermisch gespritzte Schichten zeichnen sich durch Schichtdicken im Bereich von 100 µm bis zu einigen mm aus, wobei der Bindungsmechanismus entweder auf mechanischer Verklammerung, Adhäsion, Diffusion, chemischer Bindung oder elektrostatischen Kräften beruht. Mit dem Laserpulverbeschichten können Elektroden aus verschiedenen Grundwerkstoffen mit Verschleißschutzschichten aus hochschmelzenden Metallen, Legierungen, Metallkeramiken und anderen Verbindungen (Silizide, Oxide, Aluminide, Boride, Nitride, Carbide) gegen Funkenerrosionsverschleiß und Korrosionsverschleiß versehen werden. Hierbei ist besonders das sonst nur unter schwer zu beschichtende Kupfer, welches als guter Wärmeleiter den Kern einer Elektrode aus Verbundmaterial bildet, mittels Laserpulverbeschichten gut beschichtbar. Besonders geeignet für die Beschichtung und besonders verschleißfest haben sich die Legierungen NiCr31Al11Y0,5 und RuAl11 erwiesen. Diese Materialien weisen nach Thermoschockprüfung und Laufzeituntersuchungen eine deutlich verbesserte Standfestigkeit im Vergleich zu bisher verwendeten Verschleißschutzschichten auf.
  • Figur 1 zeigt den schematischen Fertigungsablauf zur Fertigung von Zündkerzenelektroden aus einem Verbunddraht. In der Station S1 wird der nickelummantelte Kupferdraht, das Ausgangsmaterial für die Elektroden, von einer Rolle abgezogen und kalibriert. Station S2 stellt die maßgenauen Drahtabschnitte 1 her, die in Station S3 angestaucht werden, um den Elektrodensitz 8 herzustellen. In Station S4 wird mit einem Laser die verschleißfeste Schicht aufgebracht, nachdem der Elektrodengrundkörper konfektioniert wurde. In einer letzten Station S5 wird die Elektrode, die nun fertig beschichtet vorliegt, nachbehandelt, und Grate z. B. durch Abschleifen entfernt. Die Elektrode wird nach ihrer Fertigstellung in den Keramikkörper verbaut.
  • Figur 2 zeigt eine Mittelelektrode 1, die nach dem erfindungsgemäßen Verfahren aus Fig. 1 beschichtet wurde. Man erkennt, daß mit diesem Verfahren sehr präzise auch dünne Schichten aufgebracht werden können. Dabei spielt auch die Geometrie der Werkstücke keine Rolle. Die Beschichtung erfolgt vor dem Einbau der Elektrode in den Keramikkörper. An der Übergangsstelle 5 zwischen Mantelbeschichtung 4 und Elektrodenkörper 1 gibt es gut getrennte Phasen zwischen Elektrodenkörper und Beschichtung, die beispielsweise einen Dicke von 0,5 mm aufweist. Der Elektrodengrundkörper muß im Bereich der Beschichtung für die Beschichtung konfiguriert werden. Im Beispiel der Fig. 2 wird der nickelummantelte Kupferdraht spanend oder nichtspanend auf einen reduzierten Durchmesser gebracht. Dabei muß darauf geachtet werden, daß der Kupferkern nicht bloßgelegt wird, da es sonst zu Korrosionserscheinungen kommt. Soll, wie in Fig. 2, die Stirnfläche nicht beschichtet werden, muß ein thermisches Verfahren mit einer starken Bündelung des Strahles eingesetzt werden, d. h. Laser- oder Elektronenstrahlspitzverfahren. Ein Plasmastrahl ergäbe einen zu breiten thermischen Bereich.
  • Wie in Figur 3 zu sehen, kann auch die Gegenelektrode 3, die im Kerzengehäuse 2 installiert ist, mit einer Beschichtung, die in diesem Beispiel in einer kegelförmigen Vertiefung 7 aufgebracht wird, versehen werden. Hier kann die Beschichtung vorgenommen werden, nachdem die Elektrode im Gehäuse verbaut ist, wenn man ein Laserspritzverfahren einsetzt.
  • Über die Beschichtungsverfahren für Mittelelektroden hinaus, können auch andere Elektroden mit Verschleißschutzschichten versehen werden. Hierbei ist die Beschichtung fast jeder geometrischen Form möglich. Es können Stirn- oder Mantelflächenbeschichtungen von fließgepreßten Mittelelektroden, Beschichtungen von Profildrähten für Masseelektroden, oder Beschichtungen von Elektrodenronden oder -platinen vorgenommen werden.

Claims (8)

  1. Verfahren zur Beschichtung einer Elektrode (1, 3) für Zündkerzen für Brennkraftmaschinen, wobei eine Verschleißschutzschicht (4) auf die Elektrode (1, 3) aufgebracht wird, dadurch gekennzeichnet, daß für das Beschichten der Elektrode (1, 3) ein Laser als thermische Quelle dient und die Verschleißschutzschicht (4) unter Verwendung pulverförmigen Bechichtungsmaterials mittels Laserpulverbeschichten in einem Arbeitsschritt aufgetragen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verschleißschutzschicht (4) aus Metallen oder aus Legierungen von Metallen, vorzugsweise aus Nickellegierungen oder Edelmetallverbindungen gebildet wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verschleißschutzschicht (4) aus Metallkeramiken gebildet wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verschleißschutzschicht (4) aus Metall Verbindungen gebildet wird.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Stirnfläche (6) und/oder die Mantelfläche an der Spitze einer Mittelelektrode (1) mit einer Verschleißschutzschicht (4) versehen wird.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine angephaste Fläche (7) an der Spitze und/oder die Stirnfläche einer Massenelektrode (3) mit einer Verschleißschutzschicht (4) versehen wird.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine kegelförmig vertiefte Fläche (7) an der Spitze einer Massenelektrode (3) mit einer Verschleißschutzschicht (4) versehen wird.
  8. Verfahren zur Herstellung einer Elektrode (1, 3) für Zündkerzen für Brennkraftmaschinen mit einer auf der Elektrode (1, 3) aufgebrachten Verschleißschutzschicht (4) mit folgenden Verfahrensschritten:
    a) Kalibrieren (S1) des als Ausgangsmaterial für die Elektroden (1, 3) dienenden Grunddrahtes
    b) Abscheren (S2) maßgenauer Abschnitte
    c) Anstauchen (S3) der Elektrodenspitze und Konfektionieren der zu beschichtenden Fläche
    d) Aufbringen (S4) der Verschleißschutzschicht (4) mit Laserpulverbeschichten
    e) Nachbehandlung (S5).
EP97936587A 1996-08-08 1997-08-02 Verfahen zur bescichtung und herstellung einer elektrode für zündkerzen für brennkraftmaschinen Expired - Lifetime EP0860043B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19631985A DE19631985A1 (de) 1996-08-08 1996-08-08 Elektrode mit verschleißfester Beschichtung, Zündkerze und Verfahren zu ihrer Herstellung
DE19631985 1996-08-08
PCT/DE1997/001637 WO1998007220A1 (de) 1996-08-08 1997-08-02 Elektrode für zündkerzen für brennkraftmaschinen und verfahren zu ihrer herstellung

Publications (2)

Publication Number Publication Date
EP0860043A1 EP0860043A1 (de) 1998-08-26
EP0860043B1 true EP0860043B1 (de) 2003-01-29

Family

ID=7802101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97936587A Expired - Lifetime EP0860043B1 (de) 1996-08-08 1997-08-02 Verfahen zur bescichtung und herstellung einer elektrode für zündkerzen für brennkraftmaschinen

Country Status (7)

Country Link
EP (1) EP0860043B1 (de)
JP (1) JPH11514145A (de)
CN (1) CN1198848A (de)
BR (1) BR9706642A (de)
DE (2) DE19631985A1 (de)
HU (1) HUP9901495A3 (de)
WO (1) WO1998007220A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939319B4 (de) * 1999-07-29 2004-05-06 Robert Bosch Gmbh Zündkerze für eine Brennkraftmaschine
DE10120563A1 (de) * 2001-04-03 2002-11-07 Phoenix Contact Gmbh & Co Überspannungsschutzelement und Überspannungsschutzeinrichtung
JP4069826B2 (ja) * 2003-07-30 2008-04-02 株式会社デンソー スパークプラグおよびその製造方法
DE10348778B3 (de) * 2003-10-21 2005-07-07 Robert Bosch Gmbh Elektrode für eine Zündkerze und Verfahren zum Herstellen einer Elektrode
DE102004023459A1 (de) 2004-05-12 2005-12-15 Beru Ag Verfahren zum Herstellen einer Zündkerze
DE102005018674A1 (de) * 2005-04-21 2006-10-26 Robert Bosch Gmbh Elektrode für eine Zündkerze
CN101064414B (zh) * 2006-04-28 2010-11-03 柳孟柱 一种汽车火花塞的复合中心电极及其制备工艺
DE102010004345B4 (de) 2010-01-11 2018-02-22 Viessmann Werke Gmbh & Co Kg Elektrode zur Flammenüberwachung an einem Heizungsbrenner
EP2884604B1 (de) 2012-08-09 2019-10-09 NGK Spark Plug Co., Ltd. Zündkerze
DE102015115746B4 (de) 2015-09-17 2017-04-27 Federal-Mogul Ignition Gmbh Verfahren zum Herstellen einer Zündelektrode für Zündkerzen und damit hergestellte Zündkerze
DE212022000192U1 (de) 2021-05-04 2024-02-20 Federal-Mogul Ignition Gmbh Zündkerzenelektrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE686426C (de) * 1938-02-12 1940-01-10 Wippermann Jr Akt Ges Verfahren zur Herstellung eines abbrandfesten Schutzueberzuges auf Zuendkerzenelektroden
US3947654A (en) * 1973-10-24 1976-03-30 Sirius Corporation Method of generating laser-radio beam
DE3612135A1 (de) * 1986-04-10 1987-10-15 Kuno Dr Ing Kirner Elektrode zum zuenden brennbarer gemische von gasen und daempfen
DE4039778C1 (de) * 1990-12-13 1992-05-14 Robert Bosch Gmbh, 7000 Stuttgart, De
JPH05234662A (ja) * 1991-12-27 1993-09-10 Ngk Spark Plug Co Ltd スパークプラグ用電極およびその製造方法

Also Published As

Publication number Publication date
CN1198848A (zh) 1998-11-11
DE59709228D1 (de) 2003-03-06
HUP9901495A3 (en) 2000-03-28
BR9706642A (pt) 1999-01-12
WO1998007220A1 (de) 1998-02-19
HUP9901495A2 (hu) 1999-09-28
DE19631985A1 (de) 1998-02-19
EP0860043A1 (de) 1998-08-26
JPH11514145A (ja) 1999-11-30

Similar Documents

Publication Publication Date Title
DE4321713C2 (de) Zusammengesetzter Scheibenbremsenrotor und Verfahren zu seiner Herstellung
EP0219536B1 (de) Schutzschicht
DE4321673C2 (de) Verfahren zur Herstellung eines Bauteils mittels Lichtbogenspritzens sowie Anwendungen dieses Verfahrens
EP0899354B1 (de) Beschichtung aus einer übereutektischen Aluminium/Silizium Legierung bzw. einem Aluminium/Silizium Verbundwerkstoff
EP0860043B1 (de) Verfahen zur bescichtung und herstellung einer elektrode für zündkerzen für brennkraftmaschinen
DE102011012320B4 (de) Verfahren zur Herstellung einer Bremsscheibe
DE3426201C2 (de)
EP3008317A1 (de) Verfahren zur erzeugung einer oxidationsschutzschicht für einen kolben zum einsatz in brennkraftmaschinen und kolben mit einer oxidationsschutzschicht
EP3325685B1 (de) Verfahren zur beschichtung einer zylinderlaufbahn eines zylinderkurbelgehäuses, zylinderkurbelgehäuse mit einer beschichteten zylinderlaufbahn sowie motor
DE2632739B2 (de) Verfahren zum thermischen Auf·' spritzen eines selbsthaftenden Nickel-Aluminium- oder Nickel-Titan-Überzugs auf ein Metallsubstrat
WO2007033650A1 (de) Verfahren zur herstellung einer schutzschicht, schutzschicht und bauteil mit einer schutzschicht
EP3683332B1 (de) Schneidwerkzeug mit räumlich strukturierter beschichtung
EP1260602B1 (de) Verfahren zum Erzeugen eines wärmedämmenden Schichtsystems auf einem metallischen Substrat
EP1878813A1 (de) Verfahren zum Beschichten eines Aluminium-Silizium-Guss-Gegenstands
WO2019219551A1 (de) Bremskörper und verfahren zur herstellung
EP1116308B1 (de) Zündkerze für eine brennkraftmaschine
WO1998014628A1 (de) Verschleissfeste beschichtete bauteile für verbrennungskraftmaschinen, insbesondere kolbenringe, und verfahren zu deren herstellung
DE2656203C2 (de)
EP1900708B1 (de) Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit
EP0561812B1 (de) Elektrode und verfahren zu ihrer herstellung
EP1127958A2 (de) Verfahren zum Laserbeschichten einer Oberfläche
DE2530368B2 (de) Zündkerze
DE102020104953A1 (de) Zündkerze sowie Verfahren zum Herstellen einer Zündkerze
DE102004025553B4 (de) Nockenwelle und ein Verfahren zu deren Herstellung
DE102020132346A1 (de) Zylinderlaufbahnbeschichtung für eine Verbrennungskraftmaschine sowie Spritzdraht zur Herstellung einer derartigen Zylinderlaufbahnbeschichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980819

17Q First examination report despatched

Effective date: 20001207

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS FOR DEPOSITION AND MANUFACTURING ELECTRODES FOR SPARK PLUGS OF INTERNAL COMBUSTION ENGINES

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59709228

Country of ref document: DE

Date of ref document: 20030306

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030501

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040819

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050720

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060428

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161027

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59709228

Country of ref document: DE