EP0858334A1 - Composition pharmaceutique analgesique a liberation immediate et a liberation lente - Google Patents

Composition pharmaceutique analgesique a liberation immediate et a liberation lente

Info

Publication number
EP0858334A1
EP0858334A1 EP96933279A EP96933279A EP0858334A1 EP 0858334 A1 EP0858334 A1 EP 0858334A1 EP 96933279 A EP96933279 A EP 96933279A EP 96933279 A EP96933279 A EP 96933279A EP 0858334 A1 EP0858334 A1 EP 0858334A1
Authority
EP
European Patent Office
Prior art keywords
receptor antagonist
nmda receptor
pharmaceutical composition
composition according
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96933279A
Other languages
German (de)
English (en)
Other versions
EP0858334A4 (fr
Inventor
Ian Keith Smith
Grant Wayne Heinicke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayne Pharma International Pty Ltd
Original Assignee
FH Faulding and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3790384&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0858334(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by FH Faulding and Co Ltd filed Critical FH Faulding and Co Ltd
Publication of EP0858334A1 publication Critical patent/EP0858334A1/fr
Publication of EP0858334A4 publication Critical patent/EP0858334A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5084Mixtures of one or more drugs in different galenical forms, at least one of which being granules, microcapsules or (coated) microparticles according to A61K9/16 or A61K9/50, e.g. for obtaining a specific release pattern or for combining different drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine

Definitions

  • Analgesic immediate and controlled release pharmaceutical composition is provided.
  • the present invention relates to pharmaceutical compositions and is particularly concerned with pharmaceutical compositions containing N-methyl-D-aspartate (NMDA) receptor antagonists and their use in the treatment of pain.
  • NMDA N-methyl-D-aspartate
  • the amino acid glutamate is an excitatory neurotransmitter that is an agonist at many post-synaptic terminals of the central nervous system.
  • the glutamate receptor complex is termed the NMDA receptor and is a potential target for therapeutic drugs.
  • This receptor incorporates an ion channel complex which is novel because it is gated by both dual ligand binding (glutamate and glycine) and membrane voltage. Because of the novel requirements for activation, it is believed that the NMDA receptor complex plays only a minor role in routine synaptic transmission. However, the receptor complex may be activated following repe'ated afferent stimuli as occurs during trauma such as surgery. Repeated stimuli cause a temporal summation of C-fibre-mediated responses of dorsal horn nocieeptive neurones; this phenomenon, increased output to a constant input, is known as wind-up.
  • NMDA receptor complex in the spinal dorsal horn leads to increased spontaneous neural discharge, expanded receptive fields and exaggerated responses to afferent input.
  • These neural mechanisms may be expressed physically as hyperalgesia (increased pain sensation) and allodynia (pain arising from a stimulus that is not normally painful).
  • Opioids through their ability to inhibit release of primary afferent neurotransmitters or to inhibit interneurons early in nocieeptive pathways, initially reduce or block C-fibre inputs to the deeper dorsal horn nocieeptive neurones. However, as the peripheral stimulation continues, wind-up breaks through the input inhibition and the neurones start to respond. Thus at moderate doses, opioids delay the onset of wind-up without inhibiting the process itself.
  • NMDA receptor antagonists have no effect on the initial inputs to the cells but diminish or abolish wind-up and convert the potentiated response to a normal response.
  • a particularly effective composition for the administration of an NMDA receptor antagonist to diminish or abolish wind up is one providing both immediate release of an NMDA receptor antagonist and controlled or sustained release of an NMDA receptor antagonist.
  • NMDA antagonist receptors have also been indicated to be effective in the treatment of Huntington's disease, amyotrophic lateral sclerosis (ALS), AIDS- related dementia, Alzheimer's disease, schizophrenia, motoneurone diseases and CNS and brain injuries resulting from a number of causes including stroke, trauma and neurosurgery.
  • ALS amyotrophic lateral sclerosis
  • AIDS- related dementia Alzheimer's disease
  • schizophrenia motoneurone diseases and CNS and brain injuries resulting from a number of causes including stroke, trauma and neurosurgery.
  • a pharmaceutical composition for the administration of an NMDA receptor antagonist to a human or animal subject including an NMDA receptor antagonist in an immediate release form in association with an NMDA receptor antagonist in a controlled release form.
  • the same NMDA receptor antagonist may be used in both the immediate and controlled release forms or they may be different NMDA receptor antagonists.
  • composition of the invention is suitable for the treatment of chronic or acute pain, for example to be administered pre-operatively.
  • the present invention further provides a method for the therapeutic or prophylactic treatment of pain in a human or animal subject, the method including administering to the subject, a composition in accordance with the present invention.
  • the method of the invention may be used to treat chronic or acute pain.
  • the composition of the invention may be used in the pre-emptive treatment of pain.
  • the NMDA receptor antagonist may be selected from a morphinan such as dextromethorphan and dextrorphan, ketamine, amantadine, memantine, eliprodil, ifenprodil, dizocilpine, remacemide, lamotrigine, riluzole, aptiganel, phencyclidine, flupirtine, celfotel, felbamate, spermine, spermidine, levemopamil, a pharmaceutically acceptable salt or ester thereof, or a metabolic precursor of any of the foregoing.
  • a morphinan such as dextromethorphan and dextrorphan, ketamine, amantadine, memantine, eliprodil, ifenprodil, dizocilpine, remacemide, lamotrigine, riluzole, aptiganel, phencyclidine, flupirtine, celfotel, felb
  • the formulation may include sufficient NMDA receptor antagonist to provide from about 1-5000 mg/day, typically 1-1000 mg/day and preferably about 100-800 mg/day of the active ingredient.
  • the composition includes an NMDA receptor antagonist in an immediate release form in association with a NMDA receptor antagonist in a controlled release form.
  • the composition may include an amount of NMDA receptor antagonist in the immediate release form of approximately 5% to 90% of the total NMDA receptor antagonist, preferably 10% to 60%.
  • An immediate release NMDA receptor antagonist content of about 15% to 50% is particularly preferred.
  • the controlled release form of the NMDA receptor antagonist may constitute the remainder of the active ingredients.
  • composition of the invention may be in a form suitable for oral or rectal administration or for administration by transdermal, intravenous, intramuscular, subcutaneous, intrathecal, epidural or intracerebroventricular means.
  • composition of the invention may or may not be in a single dosage form.
  • composition is in a single dose form.
  • composition may be formulated as an oral dosage form such as a tablet, capsule, a liquid, powder, granule or suspension, an injectable solution, a suppository, implant or transdermal patch.
  • the NMDA receptor antagonist is dextromethorphan (DM) or a pharmaceutically acceptable salt thereof.
  • the dextromethorphan is in the form of dextromethorphan hydrobromide.
  • the oral form of the pharmaceutical compositions of the invention may be selected from:
  • liquids for example, suspensions, reconstitutable powders, elixirs, oils, solutions, or emulsions;
  • confectionery for example, chewing gums, lozenges or candy bars
  • powders for example, drug powder, prilled material, coated actives or granulated materials
  • capsules for example, soft gelatin, hard gelatin containing, pellets, powders, tablets, granulates, liquids, or combinations of these; said capsules may or may not be coated;
  • tablets for example, disintegrating, chewable effervescent, matrix, osmotic pumps, prepared by multi-layering, contain coated powders in tablets, tablets in tablets, pellets in tablets etc, said tablets may or may not be coated.
  • the oral pharmaceutical composition of the invention may be in the form of a "taste-masked” or "taste-neutral” form.
  • a suitable immediate release (IR) form of the NMDA receptor antagonist may simply be particles of the antagonist or particles of the antagonist admixed with soluble components for example, sugars (eg sucrose, lactose, fructose, mannitol etc), polymers (eg polyethylene glycol, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, etc), surfactants (sodium lauryl sulphate, chremophor, tweens, spans, pluronics, and the like), insoluble components (microcrystalline cellulose, Ca 3 (PO 4 ) 2l talc, aerosol and the like), coating material (examples of suitable coating materials are polyethylene glycol, hydroxypropyl methyl cellulose, wax, fatty acids, etc.), dispersions in suitable material (examples are wax, polymers, pharmaceutically acceptable oils, soluble agents etc) or combinations of the above.
  • soluble components for example, sugars (eg sucrose, lactose, fructo
  • mixtures may be prepared by blending, mixing, dissolution and evaporation, or by using suspensions etc. These mixtures may be deposited on inert cores, wet massed and extruded, granulated, spray dried, etc. These mixtures or processed mixtures may be used in suspensions, filled into capsules, tabletted, filled into sachets, used in confectionery and so on.
  • the controlled release may be a sustained release or delayed/modified release.
  • a controlled-release dosage form as defined in US Pharmacopeia XXII includes extended release dosage forms which allow at least a twofold reduction in dosing frequency as compared to the drug presented as a conventional dosage form and delayed release dosage forms which release the drug at a time other than promptly after administration.
  • a core used herein the description contains the active ingredient and other carriers and excipients, fillers, stablising agents, binders, core seeds or colourants.
  • the active may be present in amounts of approximately 0.1 to 95% by weight based on the weight of the total core element. Preferably the active is present in amounts of 10 to 80% by weight based on the weight of the total core element.
  • the core may be 200 to 1700 ⁇ in diameter.
  • a pellet is a coated core, the coating being any suitable coating.
  • the controlled release component is a sustained (or extended) release form.
  • a suitable sustained release (SR) form of the NMDA receptor antagonist may be a matrix tablet composition.
  • suitable matrix forming materials are waxes (eg. carnauba, bees wax, paraffin wax, ceresine, shellac wax, fatty acids, fatty alcohols), oils, hardened oils or fats (eg. hardened rapeseed oil, castor oil, beef tallow, palm oil, soya bean oil), polymers (eg. hydroxypropyl cellulose, polyvinylpyrrolidone, hydroxypropyl methyl cellulose, polyethylene glycol) and other excipients known to those familiar with the art.
  • waxes eg. carnauba, bees wax, paraffin wax, ceresine, shellac wax, fatty acids, fatty alcohols
  • oils hardened oils or fats (eg. hardened rapeseed oil, castor oil, beef tallow, palm oil, so
  • Suitable matrix tabletting materials are microcrystalline cellulose, powdered cellulose, hydroxypropyl cellulose, ethyl cellulose, with other carriers, fillers, and excipients known to those familiar with the art.
  • SR tablets may contain granulates, coated powders, pellets, or be multi-layered and the finished tablet may be coated or uncoated.
  • Suitable coating materials to prepare SR products are any pharmaceutically acceptable polymer such as ethyl cellulose, cellulose acetate butyrate, cellulose acetates, polymethacrylates containing quaternary ammonium groups or other pharmaceutically acceptable polymers, polyethylene glycol, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, and monomeric materials such as sugars including lactose, sucrose, fructose and mannitol, salts including sodium chloride, potassium chloride and derivatives, organic acids including fumaric acid, succinic acid, lactic acid and tartaric acid and mixtures thereof, enteric polymers including hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyvinyl acetate phthalate, cellulose acetate phthalate, cellulose acetate trimellitate, shellac, zein, and polymethacrylates containing carboxyl groups. These polymers may be applied as solutions or
  • the coating composition may or may not be plasticised according to the properties of the coating blend such as the glass transition temperature of the main component or mixture of components or the solvent used for applying the coating compositions.
  • Suitable plasticises can be added from 0 to 50% by weight of the coating composition and at least one may be selected from diethyl phthalate, citrate esters, polyethylene glycol, glycerol, acetylated glycerides, castor oil and the like.
  • Cores containing active may be coated directly to produce a SR dose, or tablets or capsules containing active may be coated.
  • a suitable SR form of NMDA receptor antagonist may be an osmotic pump, or combinations of the above.
  • IR or SR forms may be made by prilling, spray drying, pan coating, melt granulation, granulation, wurster coating, tangential coating, top spray, tabletting, extruding, coacervation and the like.
  • the particle sizes of the IR and SR components in the dosage form depends on the * technology used.
  • the particle sizes could range from submicron to 500 ⁇ m for powder technologies (mixtures, spray drying, dispersions etc), 5-1700 ⁇ m for coating technologies (wurster, top spray, bottom spray, spray drying, extrusion, layering etc), to 1-40mm for tabletting technologies.
  • the IR and SR forms of the NMDA receptor antagonist are then combined into a single dosage such that the amount of NMDA receptor antagonist in the composition of the invention is in the range of about 1 - 5000 mg typically, 1 mg to 1000 mg, and preferably 100 mg to 800 mg.
  • the composition including an NMDA receptor antagonist in an immediate release form in association with a NMDA receptor antagonist in a controlled release form may include an amount of NMDA receptor antagonist in the immediate release form of approximately 5% to 90% of the composition of the invention, preferably 10% to 60%.
  • An immediate release NMDA receptor antagonist content of about 15% to 50% is particularly preferred.
  • the controlled release form of the NMDA receptor antagonist may constitute the remainder of the active ingredient.
  • the SR component is preferably aimed at reducing the dosage interval from 3 to 6 times daily to 1 or 2 times daily.
  • composition of the invention may exhibit more than one peak in the plasma concentration/time curve in any one dosing interval depending on the particular NMDA receptor antagonist(s) used, the relative amounts of the IR and SR components, and the dissolution properties of the SR component.
  • composition of the invention is in the form of a pellet product
  • the peltets may be presented in a sachet, capsule or tablet.
  • the non limiting example below describes pellets (particle sizes 200 - 1 700 ⁇ m) in a capsule. All the quoted ranges are %w/w.
  • a plurality of elements containing the active ingredients are prepared by extrusion/marumerisation, or layering the active (or blend of active with other excipients) onto inert carriers by various processes.
  • the cores themselves could be IR or SR depending on the materials and method of manufacture.
  • the cores may contain the drug at the required potency according to the particular NMDA dose (mg), required size and presentation, and subsequent processes (coating etc.)
  • the cores may contain drugs in the range 0.1-100% depending on the required dose, potency, manufacturing method, and properties.
  • An extruded core would typically include a carrier such as microcrystalline cellulose in the range 5-99.9%, a binder such as hydroxypropyl cellulose in the range 0-50%, a filler such as lactose in the range 0-50% and other excipients.
  • An ext r i ⁇ d core may only contain drug and binder.
  • An extruded core with SR properties would typically contain a swelling/gelling polymer such as hydroxypropyl cellulose in the range 0-50% or a hydrophobic material such as cetylalcohol in the range 10-90% with the drug.
  • a layered core would contain an inert carrier such as a sugar sphere in the range 10-90% with a binder in the range 0.1-50 % with the drug.
  • the core may or may not contain fillers, solubilisers and other additives.
  • the binder may be chosen to achieve IR (hydroxypropyl cellulose, hydroxypropyl methyl cellulose etc), or SR (ethyl cellulose, cellulose acetate butyrate etc), or delayed/modified release (ie enteric binding materials such as hydroxypropyl methyl cellulose phthalate, polyvinyl acetate phthalate etc).
  • a portion of the final dosage form may be IR cores made by the above described processes.
  • the IR cores may be coated with a rapidly disintegrating or dissolving coat for aesthetic, handling, or stability purposes.
  • Suitable materials are * polyvinylpyrrolidone, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyethylene glycol, polymethacrylates containing free amino groups, each may be with or without plasticisers, and with or without an antitack agent or filler.
  • An addition of about 3% of the weight of the core as coating material is generally regarded as providing a continuous coat for this size range.
  • the SR portion of the dose may be provided by a SR core as described above, a SR core which is further modified by overcoating, or an IR core which is modified by overcoating.
  • the IR and SR NMDA receptor antagonist need not be the same active, nor are the IR or SR components of a dose themselves Iimited to just one active.
  • a typical coating composition for making the SR component would contain an insoluble matrix polymer in amounts approximately 15 - 85% by weight of the coating composition and a water soluble material in an amount of approximately 15 - 85% by weight of the coating composition .
  • an enteric polymer in amounts from 0 to 100% by weight of the coating composition may be used or included.
  • Suitable insoluble matrix polymers include ethyl cellulose, cellulose acetate butyrate, cellulose acetates, polymethacrylates containing quaternary ammonium groups or other pharmaceutically acceptable polymers.
  • Suitable water soluble materials include polymers such as polyethylene glycol, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, and monomeric materials such as sugars (eg lactose, sucrose, fructose, mannitol and the like), salts (eg. sodium chloride, potassium chloride and the like), organic acids (eg. fumaric acid, succinic acid, lactic acid, tartaric acid and the like) and mixtures thereof.
  • polymers such as polyethylene glycol, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, and monomeric materials such as sugars (eg lactose, sucrose, fructose, mannitol and the like), salts (eg. sodium chloride, potassium chloride and the like), organic acids (eg. fumaric acid, succinic acid, lactic acid, tartaric acid and the
  • Suitable enteric polymers include hydroxypropyl methyl cellulose, acetate succinate, hydroxypropyl methyl cellulose, phthalate, polyvinyl acetate phthalate, cellulose acetate phthalate, cellulose acetate trimellitate, shellac, zein, polymethacrylates containing carboxyl groups, and the like.
  • the coating composition may or may not be plasticised according to the properties of the coating blend such as the glass transition temperature of the main component or mixture of components or the solvent used for applying the coating compositions.
  • Suitable plasticisers can be added from 0 to 50% by weight of the coating composition and at least one may be selected from diethyl phthalate, citrate esters, polyethylene glycol, glycerol, acetylated glycerides, acetylated citrate esters, dibutylsebacate, castor oil and the like.
  • the coating composition may or may not include a filler.
  • the filler may comprise 0 to approximately 200% by weight based on the total weight of the coating composition and may be an insoluble material such as silicon dioxide, titanium dioxide, talc, kaolin, alumina, starch, powdered cellulose, MCC, polacrilin potassium, and the like.
  • the coating composition may be applied as a solution or latex in organic solvents or aqueous solvents or mixtures thereof.
  • the solvent is present in amounts from approximate by 25-99% by weight preferably 85-97% by weight based on the total weight of dissolved solids.
  • Suitable solvents are water, lower alcohol, lower chlorinated hydrocarbons, ketones or mixtures thereof.
  • latexes are applied, the solvent is present in amounts from approximately 25 - 97% by weight, preferably 60-97% based on the quantity of polymeric material in the latex.
  • the solvent may be predominantly water.
  • a suitable tablet formulation may be of a swelling/gelling polymer such as L- hydroxypropyl cellulose admixed with a filler such as MCC and the drug.
  • the tablet excipients may or may not be processed ie. spray dried together, prior to use in tabletting.
  • the mixture may be compressed directly, or granulated prior to compression.
  • Matrix tablets of this type often exhibit a rapid initial release until the polymers swell and gel, which induces SR for the remainder of the drug.
  • the quantity of IR and duration of SR can be varied by altering the quantities of the excipients used. If the IR component is not large enough, a quantity of drug can be included in a rapidly dissolving outer coat of polymers such as PEG or hydroxypropyl methyl cellulose.
  • a typical matrix tablet would contain the swelling/gelling polymer in amounts from approximately 15 to 70% by weight based on the total weight of the tablet and filler in amounts from approximately 15 to 70% by weight based on the total weight of the tablet. Additional fillers may be included in amounts from approximately 0 - 60% by weight based on the total weight of the tablet.
  • the tablets may contain a lubricant in an amount from 0-8% by weight based on the total weight of the tablet.
  • Lubricants may be selected from metal stearates, stearic acid, hydrogenated oils, such as soya bean oil or castor oil, sodium stearyl fumarate, polytetrafluoroethylene, talc and the like.
  • the tablets may be coated for aesthetic, handling or stability purposes, or to increase the quantity of the IR portion of the drug.
  • Suitable coating materials include polyethylene glycol, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyvinylpyrrolidone, sugar, waxes, or mixtures of these.
  • the material may be added to any desired thickness but weight gains in the range 1-20% are typical, preferably 2-10%, more preferably 2-5%.
  • the coat may or may not be plasticised.
  • a plasticiser may be present in amounts from about 0-50% by weight based on the total weight of the tablet of the coating material.
  • plasticisers are diethyl phthalate, citrate esters, acetylated citrate esters, polyethylene glycol, glycerol, dibutylsebacate, acetylated monoglycerides, castor oil and the like).
  • the coating composition may include an antitack agent such as talc, kaolin, titanium dioxide, silicon dioxide, alumina, starch, polacrilin potassium, microcrystalline cellulose or the like).
  • an antitack agent such as talc, kaolin, titanium dioxide, silicon dioxide, alumina, starch, polacrilin potassium, microcrystalline cellulose or the like.
  • the coating materials may be applied to the drug particles, processed drug particles (ie. cores, granules), finished tablets, or finished capsules.
  • the coating composition may or may not include a filler.
  • the filler may comprise 0 to 'approximately 200% by weight based on the total weight of the coating composition and may be an insoluble material such as silicon dioxide, titanium dioxide, talc, kaolin, alumina, starch, powdered cellulose, microcrystalline cellulose, polacrilin potassium.
  • the coat may contain other ingredients such as dyes and waxes.
  • the coat may be applied as a solution or suspension from aqueous or organic solvents solution concentration in equipment familiar to these skilled in the art.
  • the coating composition may be applied as a solution or latex in organic solvents or aqueous solvents or mixtures thereof.
  • the solvent is present in amounts from approximate by 25-99% by weight preferably 85-97% by weight based on the total weight of dissolved solids. Suitable solvents are water, go lower alcohols, lower chlorinated hydrocarbons, ketones, or mixtures thereof.
  • latexes are applied, the solvent is present in amounts from approximately 25 - 97% by weight, preferably 60-97% based on the quantity of polymeric material in the latex.
  • the solvent may be predominantly water.
  • the SR component of a tablet may be provided in the form of SR pellets and the IR component may be included in the body of the tablet.
  • a tablet disintegrates to release the IR drug and the SR pellets.
  • Pellets may be present in amounts from 1 - 60% by weight of the tablet, preferably 5 -50% more preferably 5 -40%.
  • Suitable matrix materials for tablets of this type are microcrystalline cellulose, starches and the like.
  • the immediate release form of the NMDA receptor antagonist may be presented in a fast dissolving dosage form.
  • the immediate release form may be in the form of a solid or molecular dispersion of the active within a polymer matrix.
  • the polymer matrix may be selected from biologically acceptable polymer such as a cellulose ether, for example ethyl cellulose, or cellulose ester, for example cellulose acetate butyrate etc.
  • the immediate release form may simply be particles of the antagonist or the antagonist deposited on a core containing the antagonist.
  • composition of the invention may include the two forms of the NMDA receptor antagonist as separate components, for example, in a multi-layer tablet, wherein one or more layer include the NMDA receptor antagonist in an immediate release form with one or more layers of the NMDA receptor antagonist in a controlled release form.
  • the composition of the invention may be in the form of a tablet wherein the immediate release forms the shell and the controlled release form constitutes the core.
  • the two forms of the NMDA receptor antagonist may be dispersed throughout the tablet.
  • the composition of the invention may be produced by providing a core containing the NMDA receptor antagonist controlled release component coated with an enteric or delayed release coating.
  • the core can be in the form of beads compressed to a tablet.
  • the coated core may then be compressed into tablets along with a powder mixture containing additional NMDA receptor antagonist or filled in combination with uncoated NMDA receptor antagonist into a capsule shell.
  • the final composition provides an amount of NMDA receptor antagonist for immediate release following administration and an additional amount of NMDA receptor antagonist for controlled release.
  • the controlled release form of the NMDA receptor antagonist is such as to provide sustained release of the antagonist.
  • the controlled or sustained release form provides a therapeutic effect over a period greater than about 6 hours. More preferably the sustained therapeutic effect is greater than about 8 hours. A sustained therapeutic effect period of 8 to 24 hours being especially preferred.
  • the SR component of the controlled release composition is aimed at reducing the dosage interval from 3 to 6 times daily to 1 to 2 times daily.
  • the controlled release form of the antagonist may be coated beads or granules of the- NMDA receptor antagonist.
  • the coated antagonist may be combined with uncoated or lightly coated antagonist to provide a composition of the present invention.
  • lightly coated as used in the description means a rapidly disintegrating coating for aesthetic, handling or stability purposes. These then may be filled into capsules or formed into tablets. Microencapsulation may also be used to produce the controlled release form of the NMDA receptor antagonist.
  • the coating or matrix material may be any suitable material.
  • the coating or matrix material may be a polymer or a wax.
  • the wax may be selected from any suitable wax or wax-like material including natural oil and fat and hardened oils such as hardened rapeseed oil, hardened castor oil, hardened beef tallow, palm oils and the like; waxes such as camauba wax, bees wax, paraffin wax, ceresine wax, shellac wax or a fatty acid.
  • the present invention also provides a kit including a plurality of unit dosage forms, in a container or the like, the container including indicia indicative of a dosage regimen, at least one of the unit dosages being in the form of a pharmaceutical composition in accordance with the present invention.
  • the kit may further include unit dosages which provide immediate and controlled release of one or more actives such as an NMDA receptor antagonist.
  • the kit may also include instructions for use of the kit.
  • Dextromethorphan is an NMDA recpetor which has been in clinical use for many years. Pharmacokinetic data suggest that after a normal 60mg dose the absorption of the drug is quite rapid, reaching maximum plasma levels in 1 to 2 hours. However, the bioavailability of the drug is quite low, probably because of extensive first-pass hepatic metabolism. Once absorbed, DM is converted in the body to a metabolite (dextrophan) which is reported to be pharmacologically active. Both the parent and the metabolite have short half-lives (2 to 4 hours).
  • a controlled release formulation will be useful to provide up to 24 hour delivery of this NMDA receptor antagonist from a single dose.
  • Dextromethorphan capsules were prepared according to the following and dissolution profiles were determined on the capsules. (i) Granulating Dextromethorphan Solution
  • Ethanol 96 PC/BP was added to a container. To this, Hydroxy Propyl Cellulose BP/NF was added while shear stirring. The solution was left to stir until all of the polymer was dissolved.
  • Ethanol 96 PC/BP and Hydroxy Propyl Methyl Cellulose BP/USP 603 were shear stirred. After the HPMC had dissolved, Ethyl Cellulose N50 was shear stirred into the solution. The solution was shear stirred until the Ethyl Cellulose had completely dissolved.
  • Methacrylic Acid Copolymer NF Type C Powder 1.05 Ethyl Cellulose N50 3.59
  • the cores containing dextrometho ⁇ han were produced in a fluid bed coater at the following conditions:
  • dextromethorphan containing cores Two sets of dextromethorphan containing cores were produced; one with dextromethorphan potency of 57.75% and one with a potency of 80%. Both cores were made in a fluid bed coater with the ingredients listed below using standard methods known to those skilled in the art.
  • the particle size range of the final cores was 710-1400 microns for the low potency cores and 1000-1700 microns for the high potency cores. In order that the desired capsule size would be used, the high potency cores were used in the next part of the process.
  • Theoretical Potency at the end of Dextromethorphan Core Part 1 is 57.75%.
  • the cores containing dextromethorphan were produced in a fluid bed coated at the following operating conditions:
  • Theoretical potency at the end of Dextromethorphan Core Part 2 is 80%.
  • the final core will have the following composition.
  • the high potency dextromethorphan cores were dispensed with one of the coating formulations and talc in a fluid bed coater to produce the pellets.
  • the process was run with the two different coating formulations and two different theoretical polymer coat weights (TPCW) were produced with Coating formulation 1.
  • the conditions in the fluid bed coater are as follows:
  • the pellets were produced by standard coating methods well known to those skilled in the art. The final pellets within the size range 1000-1700 microns were retained.
  • Aim Product for A6-048 A1 (8% Theoretical Polymer Coat Weight (TPCW)).
  • A6- 048 A1 , A6-052 A2, and A6-048 A2 are batch numbers used to identify different pellet compositions.
  • the resulting Dextromethorphan Pellets have an excipient breakdown as follows.
  • Methacrylic Acid Copolymer NF Type C Powder 1.52 Poly Ethylene Glycol (6000) NF 1.86
  • Talc Purified Micronised BP/USP 3.85 Dextro Pellet A6-048-A2 has a 10% TPCW with the same extract coating solution.
  • Capsules were filled by blending cores with pellets. Each size 0, natural / natural capsule contained 250 mg of dextromethorphan. The ratio of core ADS equivalent to pellet ADS equivalent was 25/75. This meant that 62.5 mg of dextromethorphan was contained in the immediate release cores, and 187.5 mg of dextromethorphan was contained in the controlled release pellets. The potencies of each of the cores and pellets was determined by UV assay.
  • Dissolution was measured using USPXXIII apparatus and method for dissolution ⁇ 711>, apparatus 1.
  • the analysis measures the UV absorbance of dextromethorphan at 278nm.
  • Dissolution of the dextromethorphan capsules was measured according to the parameters above.
  • the theoretical dissolution profile is compared with actual dissolution profile in Table 2 and shown in Figure 1.
  • An aim dissolution profile was established with reference to the pharmacokinetic parameters, derived from the literature of immediate release dextromethorphan. TABLE 2: AIM AND ACTUAL DISSOLUTION

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention concerne des compositions pharmaceutiques et plus particulièrement celles contenant des antagonistes du récepteur de N-méthyl-D-aspartate (NMDA) et leur utilisation dans le traitement de la douleur. L'invention concerne en conséquence une composition pharmaceutique destinée à l'administration d'un antagoniste du récepteur de NMDA à un sujet humain ou animal, cette composition comprenant un antagoniste du récepteur de NMDA sous une forme à libération immédiate en association avec un antagoniste du récepteur de NMDA sous une forme à libération lente. La présente invention concerne d'autre part un procédé pour le traitement curatif ou prophylactique de la douleur chez un sujet humain ou animal, ce procédé consistant à administrer au sujet une composition conformément à la présente invention. Ce procédé peut s'utiliser pour traiter la douleur chronique ou aiguë. La composition décrite peut s'utiliser pour le traitement préventif de la douleur. L'antagoniste du récepteur de NMDA peut être choisi parmi un morphinane tel que le dextrométhorphane et le dextrorphane, la cétamine, l'amantadine, la mémantine, l'éliprodil, l'ifenprodil, la dizocilpine, le rémacémide, la lamotrigine, le riluzole, l'aptiganel, la phencyclidine, la flupirtine, le celfotel, le felbamate, la spermine, la spermidine, le lévémopamil, son sel ou son ester pharmaceutiquement acceptable, ou bien un précurseur métabolique de l'un quelconque des composés précédents.
EP96933279A 1995-10-19 1996-10-18 Composition pharmaceutique analgesique a liberation immediate et a liberation lente Withdrawn EP0858334A4 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPN6057A AUPN605795A0 (en) 1995-10-19 1995-10-19 Analgesic pharmaceutical composition
AUPN6057/95 1995-10-19
PCT/AU1996/000658 WO1997014415A1 (fr) 1995-10-19 1996-10-18 Composition pharmaceutique analgesique a liberation immediate et a liberation lente

Publications (2)

Publication Number Publication Date
EP0858334A1 true EP0858334A1 (fr) 1998-08-19
EP0858334A4 EP0858334A4 (fr) 2000-08-09

Family

ID=3790384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96933279A Withdrawn EP0858334A4 (fr) 1995-10-19 1996-10-18 Composition pharmaceutique analgesique a liberation immediate et a liberation lente

Country Status (4)

Country Link
US (1) US6194000B1 (fr)
EP (1) EP0858334A4 (fr)
AU (1) AUPN605795A0 (fr)
WO (1) WO1997014415A1 (fr)

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572880B2 (en) * 1996-10-24 2003-06-03 Pharmaceutical Applications Associates Llc Methods and transdermal compositions for pain relief
GB9804885D0 (en) * 1998-03-06 1998-04-29 Merck Sharp & Dohme Therapeutic combination
SE9801494D0 (sv) * 1998-04-28 1998-04-28 Astra Pharma Prod Novel use
AR016212A1 (es) * 1998-04-28 2001-06-20 Astra Ab Uso de compuestos farmaceuticos que tienen una actividad antagonista de nmda para preparar un medicamento para el tratamiento del sindrome de intestino irritable (ibs), y composiciones farmaceuticas
CA2336902C (fr) * 1998-07-16 2009-04-21 Memorial Sloan-Kettering Cancer Center Compositions topiques comprenant un analgesique opioide et un antagoniste du n-methyl-d-aspartate (nmda)
US7767708B2 (en) * 1998-11-04 2010-08-03 Schering-Plough Animal Health Corp. Growth stimulant compositions
CN1161107C (zh) * 1998-11-27 2004-08-11 高田宽治 用于胃肠道药物传递的口服制剂
MXPA01009934A (es) * 1999-03-29 2002-06-21 American Home Prod Sistema de recubrimiento.
SE9901237D0 (sv) * 1999-04-06 1999-04-06 Astra Ab Novel use
FR2795962B1 (fr) * 1999-07-08 2003-05-09 Prographarm Laboratoires Procede de fabrication de granules enrobes a gout masque et liberation immediate du principe actif
MXPA02000725A (es) * 1999-07-29 2003-07-14 Roxane Lab Inc Formulacion opioide de liberacion sostenida.
US20030118641A1 (en) * 2000-07-27 2003-06-26 Roxane Laboratories, Inc. Abuse-resistant sustained-release opioid formulation
CN1292721C (zh) 1999-10-21 2007-01-03 爱尔康公司 药物释放装置
US7943162B2 (en) 1999-10-21 2011-05-17 Alcon, Inc. Drug delivery device
US6416777B1 (en) 1999-10-21 2002-07-09 Alcon Universal Ltd. Ophthalmic drug delivery device
EP2295043A1 (fr) * 1999-10-29 2011-03-16 Euro-Celtique S.A. Formulations d'hydrocodone à liberation lente
US6821995B1 (en) 1999-12-01 2004-11-23 Duke University Method of treating batten disease
US7201891B1 (en) * 2000-05-19 2007-04-10 Otsuka Pharmaceutical Co., Ltd. Pharmaceutical preparation for the diagnosis of helicobacter pylori infection
US20130338098A1 (en) * 2000-09-19 2013-12-19 Dermal Therapy (Barbados) Inc. Topical Analgesic Compositions Containing Aliphatic Polyamines and Methods of Using Same
US20040122090A1 (en) * 2001-12-07 2004-06-24 Lipton Stuart A. Methods for treating neuropsychiatric disorders with nmda receptor antagonists
US6372919B1 (en) 2001-01-11 2002-04-16 Dov Pharmaceutical, Inc. (+)-1-(3,4-dichlorophenyl)-3-azabicyclo[3.1.0]hexane, compositions thereof, and uses as an anti-depressant agent
AU2002250256B2 (en) * 2001-03-08 2008-04-03 Emory University pH-dependent NMDA receptor antagonists
AU2002248792B2 (en) * 2001-04-18 2006-09-21 Nostrum Pharmaceuticals Inc. A novel coating for a sustained release pharmaceutical composition
CA2449987C (fr) 2001-06-07 2015-11-03 Christine N. Sang Traitement de la douleur neuropathique centrale
EP1409065B1 (fr) 2001-07-23 2007-01-17 Alcon, Inc. Dispositif d'administration de medicament ophtalmique
CN100349562C (zh) 2001-07-23 2007-11-21 爱尔康公司 眼部药物输送装置
US20030068375A1 (en) 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
US6569887B2 (en) * 2001-08-24 2003-05-27 Dov Pharmaceuticals Inc. (−)-1-(3,4-Dichlorophenyl)-3-azabicyclo[3.1.0]hexane, compositions thereof, and uses as a dopamine-reuptake
US20060173064A1 (en) * 2001-08-24 2006-08-03 Lippa Arnold S (-)-1-(3,4-Dichlorophenyl)-3-azabi cyclo[3.1.0]hexane, compositions thereof, and uses for treating alcohol-related disorders
EP1429742B1 (fr) * 2001-09-28 2011-05-04 McNeil-PPC, Inc. Formes de dosage a liberation modifiee
US7838026B2 (en) 2001-09-28 2010-11-23 Mcneil-Ppc, Inc. Burst-release polymer composition and dosage forms comprising the same
US7122143B2 (en) * 2001-09-28 2006-10-17 Mcneil-Ppc, Inc. Methods for manufacturing dosage forms
US7323192B2 (en) * 2001-09-28 2008-01-29 Mcneil-Ppc, Inc. Immediate release tablet
US7211602B2 (en) * 2001-11-16 2007-05-01 Als Therapy Development Foundation, Inc. Treatment of neurodegenerative disorders through the modulation of the polyamine pathway
EP1448183A2 (fr) * 2001-11-16 2004-08-25 ALS Therapy Development Foundation, Inc. Traitement de troubles neurodegeneratifs par modulation de la voie polyamine
EP1471909A4 (fr) * 2002-01-16 2007-07-25 Endo Pharmaceuticals Inc Composition pharmaceutique et methode de traitement de troubles du systeme nerveux central
US6682759B2 (en) * 2002-02-01 2004-01-27 Depomed, Inc. Manufacture of oral dosage forms delivering both immediate-release and sustained-release drugs
PT1469833T (pt) 2002-02-01 2021-07-13 Bend Res Inc Método para produzir dispersões de fármaco amorfo sólido seco por pulverização homogéneas utilizando aparelho de secagem por pulverização modificado
GB0203296D0 (en) 2002-02-12 2002-03-27 Glaxo Group Ltd Novel composition
US6855735B2 (en) * 2002-03-20 2005-02-15 Temple University Of The Commonwealth System Of Higher Education Ketamine treatment of restless legs syndrome
EP1499309A4 (fr) * 2002-04-24 2008-05-28 Cypress Bioscience Inc Prevention et traitement de troubles somatiques fonctionnels, y-compris les troubles lies au stress
GB0210264D0 (en) * 2002-05-03 2002-06-12 Arakis Ltd The treatment of pain and migraine headache
US7939102B2 (en) * 2002-06-07 2011-05-10 Torrent Pharmaceuticals Ltd. Controlled release formulation of lamotrigine
ES2323268T3 (es) * 2002-07-29 2009-07-10 Glaxo Group Ltd Formulaciones de liberacion prolongada que contienen lamotrigina.
US8637512B2 (en) 2002-07-29 2014-01-28 Glaxo Group Limited Formulations and method of treatment
GB0217493D0 (en) * 2002-07-29 2002-09-04 Glaxo Group Ltd Novel methods of treatment
US20080081834A1 (en) 2002-07-31 2008-04-03 Lippa Arnold S Methods and compositions employing bicifadine for treating disability or functional impairment associated with acute pain, chronic pain, or neuropathic disorders
US20060240128A1 (en) * 2002-09-09 2006-10-26 Schlagheck Thomas G Combined immediate release and extended release analgesic composition
CA2499550C (fr) * 2002-09-20 2013-10-15 Alpharma, Inc. Sous-unite de sequestration et compositions et procedes associes
JP2006504795A (ja) * 2002-10-03 2006-02-09 サイプレス バイオサイエンス, インコーポレイテッド 神経学的障害を処置するための抗うつ剤の投薬量の段階的な漸増ならびに毎日の分割した投薬
JP2006510618A (ja) 2002-11-18 2006-03-30 ヤウポン セラピューティクス,インコーポレーテッド ノルケタミンおよびケタミン/ノルケタミンプロドラッグの鎮痛的使用
US9107804B2 (en) * 2002-12-10 2015-08-18 Nortec Development Associates, Inc. Method of preparing biologically active formulations
DE10304403A1 (de) 2003-01-28 2004-08-05 Röhm GmbH & Co. KG Verfahren zur Herstellung einer oralen Arzneiform mit unmittelbarem Zerfall und Wirkstofffreisetzung
US20040185093A1 (en) * 2003-03-18 2004-09-23 Szymczak Christopher E. Compositions containing sucralose
HUP0300929A3 (en) * 2003-04-09 2005-06-28 Richter Gedeon Vegyeszet Analgetic and/or muscle relaxant pharmaceutical composition
CA2519556C (fr) 2003-04-21 2011-01-18 Benjamin Oshlack Forme posologique inviolable contenant des particules co-extrudees d'agent repulsif contraire et procede de fabrication
WO2004105690A2 (fr) * 2003-05-23 2004-12-09 Cypress Bioscience, Inc. Traitement de douleurs chroniques au moyen de chimiotherapie ou de radiotherapie
CN1805737A (zh) * 2003-06-16 2006-07-19 欧乐根公司 美金刚胺(memantine)口服剂型
CA2529429C (fr) * 2003-06-17 2009-10-20 Filtertek Inc. Dispositif de manipulation de fluide et procede de production correspondant
DE10327674A1 (de) * 2003-06-20 2005-01-05 Awd.Pharma Gmbh & Co. Kg Injizierbare Darreichungsform von Flupirtin
US20050013863A1 (en) 2003-07-18 2005-01-20 Depomed, Inc., A Corporation Of The State Of California Dual drug dosage forms with improved separation of drugs
CL2004001884A1 (es) 2003-08-04 2005-06-03 Pfizer Prod Inc Procedimiento de secado por pulverizacion para la formacion de dispersiones solidas amorfas de un farmaco y polimeros.
WO2005037276A1 (fr) * 2003-10-09 2005-04-28 Aventis Pharma S.A. Utilisation du riluzole dans le traitement des tremblements essentiels
CA2542839A1 (fr) * 2003-10-21 2005-05-12 Arakis Ltd. Utilisation de l'ifenprodril dans le traitement de la douleur
JP2007512350A (ja) * 2003-11-25 2007-05-17 エスビー・ファルムコ・プエルト・リコ・インコーポレイテッド カルベジロール組成物の治療および送達方法
US8883204B2 (en) 2003-12-09 2014-11-11 Purdue Pharma L.P. Tamper resistant co-extruded dosage form containing an active agent and an adverse agent and process of making same
WO2005055981A2 (fr) * 2003-12-09 2005-06-23 Euro-Celtique S.A. Forme posologique co-extrudee inviolable contenant un principe actif et un principe contraire, et procede de fabrication
WO2005072705A1 (fr) * 2004-01-29 2005-08-11 Neuromolecular, Inc. Combinaison d'antagoniste de recepteur nmda et d'inhibiteur mao ou gadpf pour le traitement d'affections liees au systeme nerveux central
AU2005215775B2 (en) * 2004-02-13 2011-02-03 Neuromolecular, Inc. Combination of a NMDA receptor antagonist and an anti-depressive drug MAO-inhibitor or a GADPH-inhibitor for the treatment of psychiatric conditions
JP2007529492A (ja) * 2004-03-17 2007-10-25 ソセイ・アール・アンド・ディー・リミテッド β−アミノアルコール類を用いる炎症性障害及び疼痛の治療
US8236349B2 (en) * 2004-04-12 2012-08-07 Bend Research Inc. Taste-masked drugs in rupturing multiparticulates
US20050265955A1 (en) * 2004-05-28 2005-12-01 Mallinckrodt Inc. Sustained release preparations
CN101389315A (zh) * 2004-06-17 2009-03-18 莫茨药物股份两合公司 美金刚口服剂型即释制剂
US20060002999A1 (en) * 2004-06-17 2006-01-05 Forest Laboratories, Inc. Immediate release formulations of 1-aminocyclohexane compounds, memantine and neramexane
BRPI0512177A (pt) * 2004-06-17 2008-02-12 Forest Laboratories formulação de liberação modificada de memantina
TW200616608A (en) * 2004-07-09 2006-06-01 Forest Laboratories Memantine as adjunctive treatment to atypical antipsychotics in schizophrenia patients
AU2005325213B2 (en) * 2004-08-04 2010-10-07 Evonik Corporation Methods for manufacturing delivery devices and devices thereof
US20070043100A1 (en) 2005-08-16 2007-02-22 Hagen Eric J Novel polymorphs of azabicyclohexane
US20060062811A1 (en) * 2004-09-21 2006-03-23 Szymczak Christopher E Medicinal cooling emulsions
US20060100263A1 (en) * 2004-11-05 2006-05-11 Anthony Basile Antipyretic compositions and methods
DE05852057T1 (de) * 2004-11-23 2007-11-29 Neuromolecular Pharmaceuticals Inc., Emeryville Zusammensetzung aus einer beschichtung oder matrix mit verzögerter freisetzung und einem nmda-rezeptorantagonisten sowie verfahren zur verabreichung eines solchen nmda-rezeptorantagonisten an ein subjekt
US7619007B2 (en) 2004-11-23 2009-11-17 Adamas Pharmaceuticals, Inc. Method and composition for administering an NMDA receptor antagonist to a subject
US8389578B2 (en) 2004-11-24 2013-03-05 Adamas Pharmaceuticals, Inc Composition and method for treating neurological disease
US20060280789A1 (en) * 2004-12-27 2006-12-14 Eisai Research Institute Sustained release formulations
US20060160852A1 (en) * 2004-12-27 2006-07-20 Eisai Co. Ltd. Composition containing anti-dementia drug
BRPI0518396A2 (pt) * 2004-12-27 2008-11-18 Eisai R&D Man Co Ltd mÉtodo para estabilizaÇço de droga anti-demÊncia
US20090208579A1 (en) * 2004-12-27 2009-08-20 Eisai R & D Management Co., Ltd. Matrix Type Sustained-Release Preparation Containing Basic Drug or Salt Thereof, and Method for Manufacturing the Same
US20070129402A1 (en) * 2004-12-27 2007-06-07 Eisai Research Institute Sustained release formulations
NZ556562A (en) * 2005-02-15 2010-08-27 Jazz Pharmaceuticals Inc Dosage form and method for sustained release of a substituted pyrazine compound
EP2243475B1 (fr) 2005-04-06 2016-01-13 Adamas Pharmaceuticals, Inc. Combinaison de mémantine et donépézil pour le traitement de conditions relatives au SNC
WO2006118265A1 (fr) * 2005-04-28 2006-11-09 Eisai R & D Management Co., Ltd. Composition contenant un agent anti-démence
JP2008543845A (ja) * 2005-06-16 2008-12-04 フォーレスト ラボラトリーズ, インコーポレイテッド 放出調節および即放性メマンチンビーズ製剤
US8252776B2 (en) 2007-04-02 2012-08-28 Medicis Pharmaceutical Corporation Minocycline oral dosage forms for the treatment of acne
US20080242642A1 (en) 2007-04-02 2008-10-02 Medicis Pharmaceutical Corporation Minocycline oral dosage forms for the treatment of acne
US9192615B2 (en) 2008-08-06 2015-11-24 Medicis Pharmaceutical Corporation Method for the treatment of acne and certain dosage forms thereof
US20080241235A1 (en) * 2007-04-02 2008-10-02 Medicis Pharmaceutical Corporation Minocycline oral dosage forms for the treatment of acne
US7544373B2 (en) * 2007-04-02 2009-06-09 Medicis Pharmaceutical Corporation Minocycline oral dosage forms for the treatment of acne
US7541347B2 (en) * 2007-04-02 2009-06-02 Medicis Pharmaceutical Coropration Minocycline oral dosage forms for the treatment of acne
US7919483B2 (en) * 2005-06-24 2011-04-05 Medicis Pharmaceutical Corporation Method for the treatment of acne
US8722650B1 (en) 2005-06-24 2014-05-13 Medicis Pharmaceutical Corporation Extended-release minocycline dosage forms
CN104059013B8 (zh) 2005-07-27 2016-09-21 纽若范斯有限公司 1-芳基-3-氮杂二环[3.1.0]己烷:其制备方法和用于治疗神经精神障碍的用途
DE102005054610B4 (de) * 2005-11-08 2010-06-10 Awd.Pharma Gmbh & Co. Kg Flupirtin enthaltende Arzneimittelzubereitung mit kontrollierter Wirkstofffreisetzung
US20080045725A1 (en) * 2006-04-28 2008-02-21 Murry Jerry A Process For The Synthesis of (+) And (-)-1-(3,4-Dichlorophenyl)-3-Azabicyclo[3.1.0]Hexane
PT2484346T (pt) * 2006-06-19 2017-04-26 Alpharma Pharmaceuticals Llc Composições farmacêuticas
EP2040676A2 (fr) * 2006-07-06 2009-04-01 Forest Laboratories, Inc. Formulations à dissolution orale de mémantine
US20080233156A1 (en) * 2006-10-11 2008-09-25 Alpharma, Inc. Pharmaceutical compositions
US20080269348A1 (en) * 2006-11-07 2008-10-30 Phil Skolnick Novel Arylbicyclo[3.1.0]Hexylamines And Methods And Compositions For Their Preparation And Use
US8138377B2 (en) * 2006-11-07 2012-03-20 Dov Pharmaceutical, Inc. Arylbicyclo[3.1.0]hexylamines and methods and compositions for their preparation and use
US11116728B2 (en) 2006-11-30 2021-09-14 Bend Research, Inc. Multiparticulates of spray-coated drug and polymer on a meltable core
GB0623897D0 (en) * 2006-11-30 2007-01-10 Pliva Istrazivanje I Razvoj D Pharmaceutical composition of memantine
EP2091519B1 (fr) * 2006-11-30 2015-06-24 Bend Research, Inc Médicament enduit par vaporisation et polymère multiparticulaires sur un noyau pouvant fondre
US20080241197A1 (en) * 2007-04-02 2008-10-02 Medicis Pharmaceutical Corporation Minocycline dosage forms for the treatment of acne
US7973049B2 (en) 2007-05-01 2011-07-05 Concert Pharmaceuticals Inc. Morphinan compounds
ES2951028T3 (es) 2007-05-01 2023-10-17 Sun Pharmaceutical Ind Inc Compuestos morfinanos
US20080279930A1 (en) * 2007-05-07 2008-11-13 Bernd Terhaag Controlled-Release Flupirtine Compositions, Compacts, Kits and Methods of Making and Use Thereof
WO2008153937A2 (fr) * 2007-06-06 2008-12-18 Dov Pharmaceutical, Inc. Nouveaux 1- hétéroaryl-3-azabicyclo[3.1.0]hexanes, leurs méthodes de préparation et leur utilisation comme médicaments
US9133159B2 (en) 2007-06-06 2015-09-15 Neurovance, Inc. 1-heteroaryl-3-azabicyclo[3.1.0]hexanes, methods for their preparation and their use as medicaments
MX2009014216A (es) * 2007-06-29 2010-07-05 Univ Emory Antagonistas del receptor nmda para neuroproteccion.
TWI547282B (zh) * 2007-07-02 2016-09-01 愛戴爾製藥股份有限公司 樂命達之口服分解錠劑組合物
US20090035370A1 (en) * 2007-08-02 2009-02-05 Drugtech Corporation Dosage form and method of use
US20100215740A1 (en) 2007-10-10 2010-08-26 Rubicon Research Private Limited Taste-masked orally disintegrating tablets of memantine hydrochloride
WO2009049405A1 (fr) * 2007-10-16 2009-04-23 Labopharm Inc. Composition bicouche destinée à la libération prolongée d'acétaminophène et de tramadol
EP2222284B1 (fr) * 2007-11-19 2020-07-01 Capsulated Systems Inc. Libération prolongée d'anesthésiques locaux au moyen de microparticules et applications chirurgicales
US20100266645A1 (en) * 2007-12-17 2010-10-21 Alfred Liang Pharmaceutical compositions
US8623418B2 (en) * 2007-12-17 2014-01-07 Alpharma Pharmaceuticals Llc Pharmaceutical composition
RU2010129907A (ru) 2007-12-17 2012-01-27 Лабофарм Инк. (CA) Лекарственная форма с контролируемым высвобождением, предотвращающая неправильное употребление
US8728528B2 (en) 2007-12-20 2014-05-20 Evonik Corporation Process for preparing microparticles having a low residual solvent volume
KR101752080B1 (ko) 2007-12-28 2017-06-28 임팩스 라보라토리즈, 인코포레이티드 레보도파 방출 제어형 제제 및 이의 용도
WO2009151498A2 (fr) * 2008-03-28 2009-12-17 Forest Laboratories Holdings Limited Formulations de mémantine
JP5667575B2 (ja) 2008-12-16 2015-02-12 パラディン ラブス インコーポレーテッド 誤用を防止する放出制御製剤
EP2228054A1 (fr) * 2009-03-13 2010-09-15 ITALFARMACO S.p.A. Suspensions aqueuses au riluzole
US20110052686A1 (en) * 2009-09-03 2011-03-03 Ranbaxy Laboratories Limited Modified release lamotrigine tablets
US20110091518A1 (en) * 2009-09-22 2011-04-21 Danielle Biggs Implant devices having varying bioactive agent loading configurations
US8741343B2 (en) 2009-12-02 2014-06-03 Adamas Pharmaceuticals, Inc. Method of administering amantadine prior to a sleep period
CA2828041C (fr) * 2010-03-02 2018-04-17 Fervent Pharmaceuticals, Llc Procedes et compositions pour traiter ou prevenir les symptomes de changements hormonaux
DE102010024105A1 (de) 2010-06-17 2011-12-22 Grünenthal GmbH Transdermale Verabreichung von Memantin
JP2013529604A (ja) * 2010-06-24 2013-07-22 メルツ ファーマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディト ゲゼルシャフト アウフ アクティーン ネラメキサン複数単位剤形
PL2898881T3 (pl) 2010-08-04 2019-04-30 Pierrel Pharma S R L Kompozycja obejmująca kompleksy nadcząsteczkowe polimerów polianionowych i spermidyny do zastosowania w leczeniu przyzębia i tkanek jamy ustnej
BR112013008985A2 (pt) 2010-10-12 2016-07-05 Cerecor Inc composições antitussígenas compreendendo memantina
US20140004189A1 (en) 2011-01-25 2014-01-02 Cadila Healthcare Limited Modified release pharmaceutical compositions memantine
US20130323309A1 (en) 2011-02-17 2013-12-05 Lupin Limited Sustained Release Composition of Memantine
US9561241B1 (en) 2011-06-28 2017-02-07 Medicis Pharmaceutical Corporation Gastroretentive dosage forms for minocycline
AU2013302359A1 (en) 2012-08-16 2015-03-19 Teva Pharmaceutical Industries Ltd. Pharmaceutical compositions of Memantine
WO2014204933A1 (fr) 2013-06-17 2014-12-24 Adamas Pharmaceuticals, Inc. Compositions d'amantadine et procédés d'utilisation
CA2922507C (fr) 2013-08-26 2022-07-05 Amorsa Therapeutics, Inc. Dose orale a couche unique de ketamine neuro-attenuante
EP3054929B1 (fr) 2013-10-07 2020-08-05 Impax Laboratories, LLC Formulations mucoadhésives à libération contrôlée de lévodopa et/ou d'esters de lévodopa et leurs utilisations
US10987313B2 (en) 2013-10-07 2021-04-27 Impax Laboratories, Llc Muco-adhesive, controlled release formulations of levodopa and/or esters of levodopa and uses thereof
HUE051264T2 (hu) * 2014-04-17 2021-03-01 Develco Pharma Schweiz Ag Ketamin orális dózisformája
US9616068B2 (en) 2014-10-27 2017-04-11 Pohela LLC Animal training using cognitive enhancement
RU2771275C2 (ru) 2014-11-04 2022-04-29 Аморса Терапьютикс, Инк. Нейро-аттенуирующие кетаминовые и норкетаминовые соединения, их производные и способы их получения
EP3909569A1 (fr) 2014-11-04 2021-11-17 Adamas Pharmaceuticals, Inc. Procédés d'administration de compositions d'amantadine
JP6902033B2 (ja) 2015-12-30 2021-07-14 アダマス ファーマシューティカルズ, インコーポレイテッド 発作−関連障害の処置のための方法および組成物
WO2018200885A1 (fr) 2017-04-26 2018-11-01 Neurocentria, Inc. Compositions de magnésium et méthodes d'utilisation
DE102017007385A1 (de) 2017-08-02 2019-02-07 Christoph Hoock Maleatfreie feste Arzneimittelformen
WO2019040748A1 (fr) 2017-08-24 2019-02-28 Adamas Pharma, Llc Compositions d'amantadine, leurs préparation, et procédés d'utilisation
US11471415B2 (en) 2017-10-10 2022-10-18 Douglas Pharmaceuticals, Ltd. Extended release pharmaceutical formulation and methods of treatment
US10441544B2 (en) 2017-10-10 2019-10-15 Douglas Pharmaceuticals, Ltd. Extended release pharmaceutical formulation
US10869838B2 (en) 2017-10-10 2020-12-22 Douglas Pharmaceuticals, Ltd. Extended release pharmaceutical formulation
CN107801692A (zh) * 2017-10-23 2018-03-16 昆明医科大学 一种氯胺酮诱导精神分裂症动物模型及其机制研究
US20190247331A1 (en) 2018-02-15 2019-08-15 Osmotica Kereskedelmi és Szolgáltató Korlátolt Felelõsségû Társaság Composition and method for treating neurological disease
US10213394B1 (en) 2018-02-15 2019-02-26 Osmotica Kereskedelmi és Szolgáltató Korlátolt Felelõsségû Társaság Composition and method for treating neurological disease
US10213393B1 (en) 2018-02-15 2019-02-26 Osmotica Kereskedelmi és Szolgáltató Korlátolt Feleõsségû Társaság Composition and method for treating neurological disease
US11602507B2 (en) 2019-05-27 2023-03-14 Trikona Pharmaceuticals Pvt. Ltd Extended release oral composition of memantine or its salt and its process for the preparation
US11986449B2 (en) 2020-12-22 2024-05-21 Amneal Pharmaceuticals Llc Levodopa dosing regimen
CN112741813A (zh) * 2021-02-08 2021-05-04 北京佗林医药科技有限公司 一种纳曲酮二元皮下植入剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459695A1 (fr) * 1990-05-23 1991-12-04 McNEIL-PPC, INC. Enrobages pour produits pharmaceutiques pour masquer le goût et prolonger leur libération
US5238686A (en) * 1986-03-27 1993-08-24 Kinaform Technology, Inc. Sustained-release pharmaceutical preparation
US5382601A (en) * 1992-08-04 1995-01-17 Merz + Co. Gmbh & Co. Memantine-containing solid pharmaceutical dosage forms having an extended two-stage release profile and production thereof
US5436255A (en) * 1992-07-23 1995-07-25 Pfizer Inc. Method of treating diseases susceptable to treatment by blocking NMDA-receptors

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716496A (en) * 1986-05-09 1987-12-29 Eaton Corporation Panel-mounted control station housing
US4859461A (en) * 1986-07-30 1989-08-22 Fisons Corporation Coatable ion exchange resins
US4859462A (en) * 1986-07-30 1989-08-22 Fisons Corporation Polymer-treated ion exchange resins
IE59934B1 (en) * 1987-06-19 1994-05-04 Elan Corp Plc Liquid suspension for oral administration
US5084278A (en) * 1989-06-02 1992-01-28 Nortec Development Associates, Inc. Taste-masked pharmaceutical compositions
CA2115792C (fr) 1993-03-05 2005-11-01 David J. Mayer Methode de traitement de la douleur
US5352683A (en) 1993-03-05 1994-10-04 Virginia Commonwealth University Medical College Of Virginia Method for the treatment of chronic pain
US5834479A (en) 1993-03-05 1998-11-10 Mayer; David J. Method and composition for alleviating pain
US5840731A (en) 1995-08-02 1998-11-24 Virginia Commonwealth University Pain-alleviating drug composition and method for alleviating pain

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238686A (en) * 1986-03-27 1993-08-24 Kinaform Technology, Inc. Sustained-release pharmaceutical preparation
EP0459695A1 (fr) * 1990-05-23 1991-12-04 McNEIL-PPC, INC. Enrobages pour produits pharmaceutiques pour masquer le goût et prolonger leur libération
US5436255A (en) * 1992-07-23 1995-07-25 Pfizer Inc. Method of treating diseases susceptable to treatment by blocking NMDA-receptors
US5382601A (en) * 1992-08-04 1995-01-17 Merz + Co. Gmbh & Co. Memantine-containing solid pharmaceutical dosage forms having an extended two-stage release profile and production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9714415A1 *

Also Published As

Publication number Publication date
EP0858334A4 (fr) 2000-08-09
WO1997014415A1 (fr) 1997-04-24
US6194000B1 (en) 2001-02-27
AUPN605795A0 (en) 1995-11-09

Similar Documents

Publication Publication Date Title
US6194000B1 (en) Analgesic immediate and controlled release pharmaceutical composition
US6399096B1 (en) Pharmaceutical formulation
US6685964B1 (en) Opioid analgesics with controlled active substance release
JP4712099B2 (ja) 延長された放出抑制性を有するオピオイド製剤
JP4663880B2 (ja) 制御/調整放出型メチルフェニデート経口製剤
AU680891C (en) Controlled release preparation containing a salt of morphine
JP5774865B2 (ja) 下肢静止不能症候群の治療用オピオイド
US20020006438A1 (en) Sustained release hydromorphone formulations exhibiting bimodal characteristics
JPH0122245B2 (fr)
HU218673B (hu) Opioid analgetikumot tartalmazó elnyújtott hatóanyag-felszabadítású orális gyógyszerkészítmény és eljárás előállítására
RU2235540C2 (ru) Способ получения пероральной препаративной формы пролонгированного действия с регулируемым высвобождением активного вещества в зависимости от вида и количества наполнения желудка и пищеварительного тракта
JP2003513032A (ja) 制御放出ヒドロコドン処方
AU777330B2 (en) Analgesic with controlled active substance release
JP2005537240A (ja) 水に可溶性の有効成分を含有する球状ペレット
AU708408B2 (en) Analgesic immediate and controlled release pharmaceutical composition
AU2020100441B4 (en) Dosage form providing prolonged release of tapentadol phosphoric acid salt
CA2235071A1 (fr) Composition pharmaceutique analgesique a liberation immediate et a liberation lente
US20210128549A1 (en) Oxycodone and methylnaltrexone multiparticulates and suspensions containing them
MXPA00000603A (en) Analgesic compositionwith controlled release
MXPA01002821A (en) Multiple unit controlled food effect-independent release pharmaceutical preparations and method for preparing the same
CZ2007658A3 (cs) Léková forma obsahující tramadol s kontrolovaným uvolnováním po dobu 24 hodin a zpusob její prípravy
MXPA00000604A (en) Opioid analgesics with controlled release
JP2004224767A (ja) ベンジルアルコール誘導体含有徐放性経口製剤
CZ296131B6 (cs) Farmaceutická kompozice uvolnující diltiazem hydrochlorid rychlostí nezávislou na hodnote pH v rozmezí 1 az 7,2

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 20000623

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010205

RIC1 Information provided on ipc code assigned before grant

Ipc: 7A 61P 25/28 B

Ipc: 7A 61P 25/00 B

Ipc: 7A 61K 31/00 B

Ipc: 7A 61K 31/485 A

RIC1 Information provided on ipc code assigned before grant

Ipc: 7A 61P 25/28 B

Ipc: 7A 61P 25/00 B

Ipc: 7A 61K 31/00 B

Ipc: 7A 61K 31/485 A

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIC1 Information provided on ipc code assigned before grant

Ipc: 7A 61P 25/28 B

Ipc: 7A 61P 25/00 B

Ipc: 7A 61K 31/00 B

Ipc: 7A 61K 31/485 A

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031018