EP0850116B1 - Elektromagnetische einrichtung für eine stranggiesskokille - Google Patents

Elektromagnetische einrichtung für eine stranggiesskokille Download PDF

Info

Publication number
EP0850116B1
EP0850116B1 EP96932449A EP96932449A EP0850116B1 EP 0850116 B1 EP0850116 B1 EP 0850116B1 EP 96932449 A EP96932449 A EP 96932449A EP 96932449 A EP96932449 A EP 96932449A EP 0850116 B1 EP0850116 B1 EP 0850116B1
Authority
EP
European Patent Office
Prior art keywords
continuous casting
stirrers
sub
casting mould
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96932449A
Other languages
English (en)
French (fr)
Other versions
EP0850116A1 (de
Inventor
Dieter BÜLHOFF
Wolfram Jung
Hans-Joachim Paris
Otto-Alexander Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0850116A1 publication Critical patent/EP0850116A1/de
Application granted granted Critical
Publication of EP0850116B1 publication Critical patent/EP0850116B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Definitions

  • the invention relates to a stationary continuous casting mold, in particular for casting steel, with an electromagnetic device comprising a plurality of partial stirrers, which in pairs arranged at a distance from each other on the outer wall of the continuous casting mold and to a electrical alternating voltage with appropriate phase position to generate a rotating electromagnetic force field are connected.
  • Stationary continuous casting molds are suitable for carrying out the method for casting steel in the immersion tube casting process, in which the immersion tube extending into the continuous casting mold is immersed in the melt. It is known to influence the solidification during the continuous casting of high-melting metals, such as steel, by generating rotating electromagnetic fields in the stationary continuous casting mold by stirring.
  • a stirring device for stationary continuous casting molds with two part stirring devices which can be operated independently of one another and which are arranged one behind the other in the casting direction on the outer wall of the continuous casting mold is known, for example, from DE-OS 38 19 492.
  • the electromagnetic rotating fields are generated in the mold.
  • this stirring device is intended to achieve a uniform, finer microstructure of the cast strand, a uniform distribution of non-metallic inclusions, better heat dissipation, etc.
  • a stirrer arrangement is known, in which two opposing stirrers are rotated through an angle.
  • the stirring device (Herrmann, E., Manual of Continuous Casting, Aluminum-Verlag GmbH, Düsseldorf 1958, pages 417-429") can be formed, for example, from a plurality of electromagnets made of horseshoe-shaped transformer sheets, which are arranged vertically or horizontally on the wall of the Continuous casting mold are arranged. The induction flow goes from one leg of the horseshoe to the other through the molten metal.
  • the molten metal passed through the mold is subjected to a continuous mechanical circulation flow due to the magnetic fluxes generated.
  • the stirring device is operated such that the electromagnets, the magnetic field of which, for example, propagates in the direction of the vertical axis of the mold, are controlled in such a way that the direction of the maximum magnetic flux rotates about the vertical axis of the mold. This is intended to achieve a good circulation of the metal melt with good efficiency at the same time.
  • the invention solves the problem by the in the characterizing part of Claim 1 specified features. Due to the characteristic features of subclaims 2 to 7 is the inventive device of the stationary Continuous casting mold can be designed in an advantageous manner.
  • the invention provides that the electromagnetic device at least two Includes pairs of partial stirrers and the partial stirrers of each pair are arranged opposite one another, namely at an angle x-shaped rotated against each other, the rotation in a plane parallel to Pouring direction takes place. All pairs are essentially the same height arranged.
  • the electromagnetic Facilities each lead to an upward spiral Rotational movement of the molten metal in the middle of the mold, what causes superheated steel to move up from the bottom of the mold, which in turn solidifies the melt between the ceramic inlet pipe and Mold wall (so-called bridging) prevented.
  • electromagnetic device there is a horizontal and vertical Rotation of the melt.
  • the electromagnetic device continues to improve the Degree of purity of the cast strand, since the reduction is more vertical Currents in the melt floating impurities into the Slag zone favors.
  • the partial stirrers of the pairs facing each other on the broad sides are arranged. Both pairs generate independently in the between them, a mold area lying in a helical upward direction Rotational movement with opposite direction of rotation, whereby the currents of the Steel melt in the stationary continuous casting mold in the area of the dip tube influence each other so that also around the dip tube a helical upward rotational movement of the melt occurs.
  • the electromagnetic according to the invention has a particularly good effect Set up when the amount of the angle by which the partial stirrer is opposite the Casting direction are arranged rotated, is in the range between and 30 ° and 60 °.
  • the partial stirrers are in the form of coils with one ferromagnetic U-shaped core. This makes a strong one Generate a magnetic field in the stationary continuous casting mold with little effort.
  • Partial stirrers are expediently mounted in rotatable holders for this purpose can be adjusted by an actuator.
  • the control is usually done either controlled by hand or using a specified setting algorithm.
  • the manipulated variable can be, for example, the frequency of the swells on the surface of the Serve melt, but it can also be the depth of the formed on the dip tube Inlet funnel of the molten metal can be used.
  • the continuous casting mold 10 is open at the top and bottom; the lower one Cross-sectional area through which the metal strand leaves the mold is normal less than or equal to the upper cross-sectional area of the continuous casting mold 10.
  • the Mold walls 11, 12 enclose the mold cavity 13 into which a dip tube 14 protrudes, which has one or more outflow openings at the free end. In the mold cavity 13 is molten metal that continuously over the dip tube 14 can be fed and through the lower mold outlet opening is continuously discharged.
  • the molten metal solidifies on contact with the cooled mold walls 11, 12 in the continuous casting mold 10, so that a shell is formed.
  • the thickness of this shell gradually increases as the metal Continuous casting mold 10 happens until it as a strand from the lower part of the Continuous casting mold 10 emerges.
  • the shell must exit 10 from the continuous casting mold have a sufficient thickness because the strand was not at that time is completely solidified to hold back the molten core that eventually solidifies and forms a solid strand.
  • the pouring level in the mold cavity 13 is above the Outflow opening of the dip tube 14 and is covered with mold powder.
  • the mold powder serves as a lubricant and reduces the friction between the outer surface of the Melt and the mold walls 11, 12.
  • the continuous casting mold 10 is provided with an electromagnetic device 20, from the partial stirrers 21-24 arranged on the mold walls 11, 12 is formed.
  • the partial stirrers 21-24 are in pairs 21, 24 and 22, 23 interconnected.
  • the angle through which the partial stirrers of a pair are arranged rotated relative to each other is preferably in the range between and 30 ° and 60 °.
  • the partial stirrers are a pair rotated by 45 ° against each other, i.e. the rotation of the partial stirrer Pair is (2 times 45 ° equal) 90 °.
  • the exact angle is determined in a known manner according to the phase position of the AC voltage, which is used to excite the partial stirrer 21 - 24 cares.
  • the partial stirrers 21-24 are turned on AC voltages connected in the order of the partial stirrer 21 - 24 differ by a phase difference of 45 °, so for the Angle by which the partial stirrer of a pair rotates against each other to be arranged, a value of 45 °.
  • Each partial stirrer 21-24 has a ferromagnetic U-shaped design Core.
  • the core is an iron core that consists of Dynamo sheet is made and carries coils made of copper wires.
  • the cross section of the Cores are rectangular; the pole shoes lie on the mold walls 11, 12 on.
  • the magnetic fields generated by the partial agitators 21-24 penetrate through the Mold walls 11, 12 into the mold cavity 13 and penetrate the molten metal.
  • Each pair of partial stirrers 21, 24 and 22, 23 is operated independently of one another and connected in phases so that in the mold cavity 13 between the Partial stirrers 21, 24 and 22, 23 each have a resulting rotating magnetic field is generated that a rotating mechanical force field in the melt, as in FIG. 3 shown, which originates in the left mold half near the front broad side 12 and in the right half near the rear broad side 12.
  • the rotating force field is upwards, but towards the opposite one Mold wall directed, i.e. there are force components in both vertical and in the horizontal direction. So it will be in the left and right mold halves opposing force fields induced, one in the left half of the mold in the middle to the left outer wall and in the right half of the mold one from the middle generate rotating flow in the melt to the right wall.
  • the vertical components of the force fields upwards directed; however, the horizontal vector components run in opposite directions for two mold halves.
  • the distance between the partial agitator pairs 21, 24 and 22, 23 is so chosen so that the melt performs a stirring movement in the area of the immersion tube, without the melt entering the mold through the dip tube already in Immersion tube is braked. Outside the dip tube is the electromagnetic one Braking effect of the device 20 is quite desirable.
  • the partial agitator pairs 21, 24 and 22, 23 consequently produces a constant upward flow of hot melt; the melt becomes an upward spiral rotation imposed.
  • the mold cavity 13 faces in the opposite direction, so that it is inside the mold cavity 13 at least partially to suppress the natural movement of the melt comes and the associated swellings on the surface with the disadvantages the drawing of casting powder and slag particles into the strand shell area be prevented.
  • the electromagnetic device 20 enables a reversal of the vertical Flow directions in the stationary continuous casting mold with the advantages mentioned with simultaneous horizontal stirring of the melt.
  • FIG. 2 shows a top view of the stationary continuous casting mold shown in FIG. 1.
  • the connection scheme of the partial agitators 21-24 is the electromagnetic one Device 20 shown.
  • the pairs are 21, 24 and 22, 23 the electromagnetic device 20 each electrically connected in series. So are the upper terminals of the coils 25, 27 and 26, 28 connected to each other.
  • the series connection can the partial stirrers of a pair 21, 24 and 22, 23 on one normal AC voltage source.
  • An actuator is used to adapt to different casting conditions (not shown) by which the partial stirrers of each pair 21, 24 and 22, 23 can be rotated against each other during operation, so much the same to optimally set the electromagnetic device 20.
  • the partial agitators 21, 24 and 22, 23 are conveniently mounted in rotatable brackets that the actuator can be adjusted.
  • the control is usually carried out by a microprocessor, either controlled by hand or based on a predetermined one Setting algorithm.
  • the frequency of the Surges on the surface of the melt serve, but it can also be the depth of the suction funnel of the molten metal that forms on the immersion tube become.
  • the electromagnetic device 20 may also be of a variety of Partial agitator pairs 21, 24 and 22, 23 can be constructed, each in a subspace the stationary continuous casting mold the corresponding described above generate magnetic rotating fields with a corresponding sense of rotation, what by correct control of the partial agitator pairs and a corresponding one Angular rotation of the partial stirrers of a pair 21, 24 and 22, 23 against each other can be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Confectionery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

Die Erfindung betrifft eine stationäre Stranggießkokille, insbesondere zum Gießen von Stahl, mit einer elektromagnetischen Einrichtung, die eine Vielzahl Teilumrührer umfaßt, welche paarweise auf der Außenwand der Stranggießkokille mit Abstand zueinander angeordnet und an eine elektrische Wechselspannung mit entsprechender Phasenlage zur Erzeugung eines rotierenden elektromagnetischen Kraftfeldes angeschlossen sind.
Stationäre Stranggießkokillen eignen sich für die Durchführung des Verfahrens zum Gießen von Stahl im Tauchrohrgießverfahren, bei dem das in die Stranggießkokille hineinreichende Tauchrohr in die Schmelze eintaucht. Es ist bekannt, die Erstarrung beim Stranggießen hochschmelzender Metalle, wie Stahl, durch Erzeugung rotierender elekromagnetischer Felder in der stationären Stranggießkokille durch Rühren zu beeinflussen. Eine Rühreinrichtung für stationäre Stranggießkokillen mit zwei unabhängig voneinander betreibbaren Teilrühreinrichtungen, die hintereinander in Gießrichtung auf der Außenwand der Stranggießkokille angeordnet sind, ist beispielsweise aus der DE-OS 38 19 492 bekannt. Die elektromagnetischen Drehfelder werden dabei in der Kokille erzeugt. Mit dieser Rühreinrichtung soll insbesondere eine gleichmäßige feinere Gefügestruktur des gegossenen Stranges, eine gleichmäßige Verteilung nichtmetallischer Einschlüsse, eine bessere Wärmeabfuhr usw. erzielt werden.
Aus der JP-A-60 040654 ist eine Rühreranordnung bekannt, bei der zwei um einen Winkel verdrehte, gegenüberliegende Rührer vorgesehen sind.
Zur Erzeugung des Magnetflusses kann die Rühreinrichtung ("Herrmann, E., Handbuch des Stranggießens, Aluminium-Verlag GmbH, Düsseldorf 1958, Seiten 417-429") beispielsweise aus mehreren Elektromagneten aus hufeisenförmigen Transformatorblechen ausgebildet sein, die vertikal oder horizontal auf der Wand der Stranggießkokille angeordnet sind. Der Induktionsfluß geht dabei von einem Schenkel des Hufeisens zum anderen durch die flüssige Metallschmelze. Die durch die Kokille geleitete Metallschmelze wird dabei durch die erzeugten Magnetflüsse einer kontinuierlichen mechanischen Umwälzströmung unterworfen. Die Rühreinrichtung wird so betrieben, daß die Elektromagnete, deren magnetisches Feld sich beispielsweise in Richtung zur vertikalen Achse der Kokille ausbreitet, derart angesteuert werden, daß die Richtung des maximalen Magnetflusses um die vertikale Achse der Kokille rotiert. Damit soll eine gute Umwälzung der Matallschmelze bei gleichzeitig gutem Wirkungsgrad erzielt werden.
Das Rühren der Schmelze mit einer solchen Rühreinrichtung hat aber verschiedene Nachteile. So kommt es trotz des Rührens regelmäßig zu Aufwallungen an der Oberfläche der Schmelze, mit der Folge, daß Gießpulver und Schlackenteilchen am Tauchrohr in den Strangschalenbereich eingezogen werden. Ein weiterer Nachteil ist, daß sich trotz des Rührens immer wieder Brücken aus erstarrtem Metall zwischen Keramikeinlaufrohr und Kokillenwand im oberen Bereich der Stranggießkokille bilden. Auch kommt es bei dieser Art des Rührens immer noch zu einem Stau von Überhitzungswärme im inneren Bereich der Kokille, was die Bildung von Dendriten verstärkt, die sich dann meist unerwünschterweise als Globuliten an der Erstarrungsfront der Schmelze anlagern. Obwohl mit der bekannten Vorrichtung eine gleichmäßige Erstarrungsfront erzielbar ist, entstehen in der Schmelze Bänder mit negativer Seigerung.
Es ist das Ziel der vorliegenden Erfindung, eine elektromagnetische Einrichtung für eine stationäre Stranggießkokille anzugeben, bei der die Schmelze in der Stranggießkokille so gerührt wird, daß Aufwallungen an der Oberfläche der Schmelze, die Bildung von Brücken aus erstarrtem Metall zwischen Keramikeinlaufrohr und Kokillenwand im oberen Bereich der Stranggießkokille und ein Stau von Überhitzungswärme im inneren Bereich der Kokille vermieden wird.
Die Erfindung löst das Problem durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale. Durch die kennzeichnenden Merkmale der Unteransprüche 2 bis 7 ist die erfindungsgemäße Einrichtung der stationären Stranggießkokille in vorteilhafter Weise ausgestaltbar.
Die Erfindung sieht vor, daß die elektromagnetische Einrichtung mindestens zwei Paare Teilumrührer umfaßt und die Teilumrührer jedes Paares einander gegenüberliegend angeordnet sind, und zwar um einen Winkel x-förmig gegeneinander verdreht, wobei die Verdrehung in einer Ebene parallel zur Gießrichtung erfolgt. Alle Paare sind dabei im wesentlichen in derselben Höhe angeordnet.
Hierdurch wird erreicht, daß die ursprünglich vertikal gerichteten Strömungsgeschwindigkeiten der flüssigen Metallschmelze im Bereich des Einlaufrohrs umgekehrt, zumindest aber stark vermindert werden, wobei einer Temperaturschichtung bei starker vertikaler Strömungsverminderung dadurch entgegengewirkt wird, daß die Teilrühreinrichtungen jeweils zusätzlich ein horizontales Rühren der flüssigen Metallschmelze bewirken. Die elektromagnetischen Einrichtungen führen jeweils zu einer wendelförmig nach oben gerichteten Rotationsbewegung der flüssigen Metallschmelze im mittleren Bereich der Kokille, was bewirkt, daß überhitzter Stahl vom unteren Bereich der Kokille aufwärts bewegt wird, was wiederum eine Erstarrung der Schmelze zwischen Keramikeinlaufrohr und Kokillenwand (sogenannte Brückenbildung) verhindert. Durch die erfindungsgemäße elektromagnetische Einrichtung kommt es zu einer horizontalen und vertikalen Rotation der Schmelze. Diese in der Schmelze erzeugten Rotationsbewegungen verhindern wirkungsvoll das Entstehen weißer Bänder (Bänder mit negativer Seigerung).
Die elektromagnetische Einrichtung führt weiterhin zu einer Verbesserung des Reinheitsgrades des gegossenen Stranges, da die Verminderung vertikaler Strömungen in der Schmelze das Aufschwimmen von Verunreinigungen in die Schlackenzone begünstigt.
Mit Vorteil wird bei einer stationären Stranggießkokille mit rechteckigem, sogenanntem beam-blank Querschnitt vorgeschlagen, zwei Paare von Teilumrührern vorzusehen, wobei die Teilumrührer der Paare einander gegenüberliegend auf den Breitseiten angeordnet sind. Beide Paare erzeugen dabei unabhängig voneinander jeweils in dem zwischen ihnen liegenden Kokillenbereich eine wendelförmig nach oben gerichtete Rotationsbewegung mit entgegengesetztem Drehsinn, wobei sich die Strömungen der Stahlschmelze in der stationären Stranggießkokille im Bereich des Tauchrohrs gegenseitig so beeinflussen, daß auch um das Tauchrohr herum eine wendelförmig nach oben gerichtete Rotationsbewegung der Schmelze entsteht.
Die Ansteuerung der Teilumrührer bei einer stationären Stranggießkokille mit rechteckigem Querschnitt mit zwei Paaren von Teilumrührern vereinfacht sich, wenn die Teilumrührer eines jeden Paares elektrisch in Reihe geschaltet werden.
Eine besonders gute Wirkung weist die erfindungsgemäße elektromagnetische Einrichtung auf, wenn der Betrag des Winkels, um den die Teilumrührer gegenüber der Gießrichtung verdreht angeordnet sind, im Bereich zwischen und 30° und 60 ° liegt.
Bei einer günstigen Ausführungsform sind die Teilumrührer als Spulen mit einem ferromagnetischen U-förmigen Kern ausgebildet. Dadurch läßt sich ein starkes Magnetfeld mit geringem Aufwand in der stationären Stranggießkokille erzeugen.
Eine einfach zu handhabende Anpassung an verschiedene Gießbedingungen wird durch einen vorgesehenen Stellantrieb erreicht, durch den die Teilumrührer jedes Paares während des Betriebs gegeneinander verdreht werden können. So kann die elektromagnetische Einrichtung mit geringem Aufwand optimal eingestellt werden. Die Teilumrührer sind dazu zweckmäßigerweise in drehbaren Halterungen gelagert, die von einem Stellantrieb verstellt werden können. Die Ansteuerung erfolgt üblicherweise entweder von Hand geregelt oder anhand eines vorgegebenen Einstellalgorithmus. Als Stellgröße kann beispielsweise die Häufigkeit der Aufwallungen an der Oberfläche der Schmelze dienen, es kann aber auch die Tiefe des sich am Tauchrohr bildenden Einsaugtrichters der Metallschmelze verwendet werden.
Ein Ausführungsbeispiel einer stationären Stranggießkokille zum kontinuierlichen Gießen von Metallen, insbesondere Stahl, mit einer erfindungsgemäßen elektromagnetischen Einrichtung wird nachfolgend anhand der schematischen Zeichnung beschrieben. Diese zeigt in:
Fig. 1
eine schematische räumliche Darstellung einer stationären Stranggießkokille zum kontinuierlichen Gießen von Metallen mit einer erfindungsgemäßen elektromagnetischen Einrichtung,
Fig. 2
eine Draufsicht auf die in Fig. 1 dargestellte stationäre Stranggießkokille mit dem Anschlußschema der Teilumrührer der elektromagnetischen Einrichtung an eine Wechselspannungsquelle und
Fig. 3
eine schematische räumliche Darstellung einer stationären Stranggießkokille nach Fig. 1 mit den durch die erfindungsgemäße elektromagnetische Einrichtung in der Schmelze induzierten mechanischen Kraftfeldern.
Wie in Fig. 1 gezeigt ist, weist eine stationäre Stranggießkokille 10 zum kontinuierlichen Gießen von Metallen eine Stranggießkokillenform auf, die durch vier Kokillenwände 11, 12 aus Metall, nämlich zwei Breitseiten 12 und zwei Schmalseiten 11, gebildet wird. Die Stranggießkokille 10 ist unten und oben offen; die untere Querschnittsfläche, durch die der Metallstrang die Kokille verläßt, ist normalerweise kleiner gleich der oberen Querschnittsfläche der Stranggießkokille 10. Die Kokillenwände 11, 12 umschließen den Kokillenhohlraum 13, in den ein Tauchrohr 14 hineinragt, das am freien Ende eine oder mehrere Ausströmöffnungen aufweist. In dem Kokillenhohlraum 13 befindet sich geschmolzenes Metall, das kontinuierlich über das Tauchrohr 14 zuführbar ist und durch die untere Kokillenaustrittsöffnung kontinuierlich abgeführt wird. Das geschmolzene Metall erstarrt bei Kontakt mit den gekühlten Kokillenwänden 11, 12 in der Stranggießkokille 10, so daß eine Schale gebildet wird. Die Dicke dieser Schale nimmt allmählich zu, wenn das Metall die Stranggießkokille 10 passiert, bis es als Strang aus dem Unterteil der Stranggießkokille 10 austritt. Die Schale muß bei Austritt aus der Stranggießkokille 10 eine ausreichende Dicke haben, weil der Strang zu dem Zeitpunkt noch nicht vollständig erstarrt ist, um den geschmolzenen Kern zurückzuhalten, der schließlich erstarrt und einen festen Strang bildet.
Der sich im Kokillenhohlraum 13 einstellende Gießspiegel liegt oberhalb der Ausströmöffnung des Tauchrohrs 14 und ist mit Gießpulver bedeckt. Das Gießpulver dient als Gleitmittel und verringert die Reibung zwischen der Außenfläche der Schmelze und den Kokillenwänden 11, 12.
Die Stranggießkokille 10 ist mit einer elektromagnetischen Einrichtung 20 versehen, die aus den auf den Kokillenwänden 11, 12 angeordneten Teilumrührern 21 - 24 gebildet wird. Die Teilumrührer 21 - 24 sind zu Paaren 21, 24 und 22, 23 zusammengeschaltet. Beim Ausführungsbeispiel sind je zwei Paare 21, 24 und 22, 23 vorgesehen, die rechts und links zur Gießrichtung A angeordnet sind, die Teilumrührer eines Paares 21, 24 und 22, 23 jeweils einander gegenüberliegend auf den Breitseiten 12 der Stranggießkokille 10. Wie Fig. 1 erkennen läßt, sind die Teilumrührer 21, 24 und 22, 23 eines Paares dabei in einer Ebene parallel zur Gießrichtung gegeneinander um einen Winkel x-förmig verdreht. Der Winkel, um den die Teilumrührer eines Paares jeweils gegeneinander verdreht angeordnet sind, liegt vorzugsweise im Bereich zwischen und 30° und 60°. Im Ausführungsbeispiel sind die Teilumrührer eines Paares jeweils um 45° gegeneinander verdreht, d.h. die Verdrehung der Teilumrührer eines Paares ist (2 mal 45° gleich) 90°. Der genaue Winkel richtet sich in bekannter Weise nach der Phasenlage der Wechselspannung, die für die Erregung der Teilumrührer 21 - 24 sorgt. Werden wie im Ausführungsbeispiel die Teilumrührer 21 - 24 an Wechelspannungen angeschlossen, die sich in der Reihenfolge der Teilumrührer 21 - 24 jeweils um eine Phasendifferenz von 45° unterscheiden, so ergibt sich für den Winkel, um den die Teilumrührer eines Paares jeweils gegeneinander verdreht anzuordnen sind, ein Wert von 45°.
Jeder Teilumrührer 21 - 24 besitzt einen ferromagnetischen U-förmig ausgebildeten Kern. Beim Kern handelt es sich im Ausführungsbeispiel um einen Eisenkern, der aus Dynamoblech hergestellt ist und Spulen aus Kupferdrähten trägt. Der Querschnitt der Kerne ist rechteckig ausgebildet; die Pohlschuhe liegen auf den Kokillenwänden 11, 12 auf. Die generierten Magnetfelder der Teilumrührer 21 - 24 dringen durch die Kokillenwände 11, 12 in den Kokillenhohlraum 13 ein und durchdringen die Metallschmelze.
In der sich bewegenden Schmelze wird nach dem Induktionsgesetz eine Spannung induziert, die gleich der Ableitung des magnetischen Flusses nach der Zeit ist. Die aus der induzierten Spannung resultierenden elektrischen Ströme bewirken nach dem Biot-Sarvartschen Gesetz eine Kraftwirkung in der Schmelze, die dem vektoriellen Produkt aus Induktion und Strom proportional ist. Das durch das Magnetfeld induzierte Kraftfeld führt in der Schmelze zu mechanischen Strömungen, die ein Umrühren der Schmelze bewirken.
Jedes Paar Teilumrührer 21, 24 und 22, 23 wird unabhängig voneinander betrieben und phasenmäßig so angeschlossen, daß im Kokillenhohlraum 13 zwischen den Teilumrührern 21, 24 und 22, 23 jeweils ein resultierendes magnetisches Drehfeld erzeugt wird, das in der Schmelze ein drehendes mechanisches Kraftfeld, wie in Fig. 3 gezeigt, induziert, welches in der linken Kokillenhälfte seinen Ursprung nahe der vorderen Breitseite 12 und in der rechten Hälfte nahe der hinteren Breitseite 12 hat. Das drehende Kraftfeld ist dabei jeweils aufwärts, aber zur gegenüberliegenden Kokillenwand gerichtet, d.h. es liegen Kraftkomponenten sowohl in vertikaler, als auch in horizontaler Richtung vor. Es werden also in der linken und rechten Kokillenhälfte gegensinnig verlaufende Kraftfelder induziert, die in der linken Kokillenhälfte eine von der Mitte zur linken äußeren Wand und in der rechten Kokillenhälfte eine von der Mitte zur rechten Wand rotierende Strömung in der Schmelze erzeugen. Dabei sind im mittleren Teil der Kokille die vertikalen Komponenten der Kraftfelder nach oben gerichtet; die horizontalen Vektorkomponenten verlaufen jedoch gegensinnig für beiden Kokillenhälften. Der Abstand der Teilumrührerpaare 21, 24 und 22, 23 ist so gewählt, daß die Schmelze im Bereich des Tauchrohrs eine Rührbewegung ausführt, ohne daß die durch das Tauchrohr in die Kokille eintretende Schmelze bereits im Tauchrohr abgebremst wird. Außerhalb des Tauchrohrs ist die elektromagnetische Bremswirkung der Einrichtung 20 durchaus erwünscht.
Im mittleren Bereich der Kokille wird durch die Teilumrührerpaare 21, 24 und 22, 23 folglich ein ständiges Aufwärtsströmen von heißer Schmelze erzeugt; der Schmelze wird dabei eine nach oben gerichtete wendelförmige Rotationsbewegung aufgezwungen. Diese ist der natürlichen Bewegungsrichtung der Schmelze im Kokillenhohlraum 13 entgegengerichtet, so daß es innerhalb des Kokillenhohlraums 13 mindestens teilweise zu einer Unterdrückung der natürlichen Bewegung der Schmelze kommt und die damit verbundenen Aufwallungen an der Oberfläche mit den Nachteilen des Einziehens von Gießpulver und Schlackenteilchen in den Strangschalenbereich verhindert werden.
Die elektromagnetische Einrichtung 20 ermöglicht eine Umkehrung der vertikalen Strömungsrichtungen in der stationären Stranggießkokille mit den genannten Vorteilen bei gleichzeitiger horizontaler Rührung der Schmelze.
Durch die gleichzeitig erfolgende horizontale Rührung im linken und rechten Teil der Kokille wird einer Temperaturschichtung entgegengewirkt, die Überhitzungswärme gleichmäßig abgebaut. Es werden sich bildende Dendriten weggerührt, die sich dann als Globuliten an der Erstarrungsfront der Schmelze anlagern. Bedingt durch die horizontale und vertikale Rührung der Schmelze wird die Bildung negativer Seigerungen (sogenannte weiße Bänder) verhindert.
Fig. 2 zeigt eine Draufsicht auf die in Fig. 1 dargestellte stationäre Stranggießkokille. Zusätzlich ist das Anschlußschema der Teilumrührer 21 - 24 der elektromagnetische Einrichtung 20 dargestellt. Wie Fig. 2 erkennen läßt, sind die Paare 21, 24 und 22, 23 der elektromagnetische Einrichtung 20 jeweils elektrisch in Reihe geschaltet. So sind die oberen Anschlüsse der Spulen 25, 27 und 26, 28 miteinander verbunden. Durch die Reihenschaltung können die Teilumrührer eines Paares 21, 24 und 22, 23 an einer normalen Wechselsspannungsquelle betrieben werden.
Derselbe Effekt ist natürlich auch mit mehrphasigen um 120° zueinander phasenverschobenen Drehströmen erzielbar, wenn eine entsprechende asymmetrische räumliche Anordnung der Teilumrührerpaare 21, 24 und 22, 23 verwendet wird.
Um eine Anpassung an verschiedene Gießbedingungen zu erzielen, ist ein Stellantrieb (nicht gezeigt) vorgesehen, durch den die Teilumrührer jedes Paares 21, 24 und 22, 23 während des Betriebs vorgebbar gegeneinander verdreht werden können, um so die elektromagnetische Einrichtung 20 optimal einzustellen. Die Teilumrührer 21, 24 und 22, 23 sind dazu zweckmäßigerweise in drehbaren Halterungen gelagert, die von dem Stellantrieb verstellt werden können. Die Ansteuerung erfolgt üblicherweise durch einen Mikroprozessor, entweder von Hand geregelt oder anhand eines vorgegebenen Einstellalgorithmus. Als Stellgröße kann beispielsweise die Häufigkeit der Aufwallungen an der Oberfläche der Schmelze dienen, es kann aber auch die Tiefe des sich am Tauchrohr bildenden Einsaugtrichters der Metallschmelze verwendet werden.
Natürlich kann die elektromagnetische Einrichtung 20 auch aus einer Vielzahl von Teilumrührerpaaren 21, 24 und 22, 23 aufgebaut sein, die jeweils in einem Teilraum der stationären Stranggießkokille die entsprechenden oben beschriebenen magnetischen Drehfelder mit entsprechendem Drehsinn erzeugen, was durch phasenrichtige Ansteuerung der Teilumrührerpaare sowie einer entsprechenden Winkelverdrehung der Teilumrührer eines Paares 21, 24 und 22, 23 gegeneinander eingestellt werden kann.
BEZUGSZEICHENLISTE:
Stranggießkokillenform
10
Schmalseiten
11
Breitseiten
12
Kokillenhohlraum
13
Tauchrohr
14
elektromagnetische Einrichtung
20
Teilumrührer
21 -24
Spulen
25 -28
Gießrichtung
A

Claims (7)

  1. Stationäre Stranggießkokille, insbesondere zum Gießen von Stahl, mit einer elektromagnetischen Einrichtung, die eine Vielzahl Teilumrührer umfaßt, welche paarweise auf der Außenwand der Stranggießkokille mit Abstand zueinander angeordnet und an eine elektrische Wechselspannung mit entsprechender Phasenlage zur Erzeugung eines rotierenden elektromagnetischen Kraftfeldes angeschlossen sind,
    dadurch gekennzeichnet,
    daß die Teilumrührer (21 -24) mindestens zwei Paare (21, 24 und 22,23) umfassen und die Teilumrührer jedes Paares (21, 24 und 22,23) einander gegenüberliegend und in einer Ebene parallel zur Gießrichtung gegeneinander um einen Winkel x-förmig verdreht und alle Paare (21, 24 und 22,23) im wesentlichen in derselben Höhe angeordnet sind.
  2. Strangießkokille nach Anspruch 1,
    dadurch gekennzeichnet,
    daß bei einer stationären Stranggießkokille mit rechteckigem Querschnitt die Teilumrührer der Paare (21, 24 und 22,23) einander gegenüberliegend auf den Breitseiten (12) angeordnet sind.
  3. Strangießkokille nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß die Teilumrührer eines jeden Paares (21, 24 und 22,23) elektrisch in Reihe geschaltet sind.
  4. Strangießkokille nach Anspruch 3,
    dadurch gekennzeichnet,
    daß die elektrisch in Reihe geschalteten Teilumrührer (21, 24 und 22,23) jeweils an um 90° phasenverschobene Wechselspannungen angeschlossen sind.
  5. Strangießkokille nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß der Betrag des Winkels, um den die Teilumrührer (21, 24 und 22,23) jeweils gegeneinander verdreht angeordnet sind, 30° bis 60° beträgt.
  6. Strangießkokille nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    daß die Teilumrührer (21, 24 und 22,23) als Spulen (25 -28) mit einem ferromagnetischen U-förmigen Kern ausgebildet sind.
  7. Strangießkokille nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    daß ein Stellantrieb vorgesehen ist, durch den die Teilumrührer jedes Paares (21, 24 und 22,23) während des Betriebs vorgebbar gegeneinander verdrehbar sind.
EP96932449A 1995-08-29 1996-08-13 Elektromagnetische einrichtung für eine stranggiesskokille Expired - Lifetime EP0850116B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19533577 1995-08-29
DE19533577A DE19533577C1 (de) 1995-08-29 1995-08-29 Elektromagnetische Einrichtung für eine Stranggießkokille
PCT/DE1996/001554 WO1997007911A1 (de) 1995-08-29 1996-08-13 Elektromagnetische einrichtung für eine stranggiesskokille

Publications (2)

Publication Number Publication Date
EP0850116A1 EP0850116A1 (de) 1998-07-01
EP0850116B1 true EP0850116B1 (de) 1999-03-24

Family

ID=7771842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96932449A Expired - Lifetime EP0850116B1 (de) 1995-08-29 1996-08-13 Elektromagnetische einrichtung für eine stranggiesskokille

Country Status (9)

Country Link
US (1) US6021842A (de)
EP (1) EP0850116B1 (de)
JP (1) JP2942361B2 (de)
KR (1) KR100264946B1 (de)
CN (1) CN1072058C (de)
AT (1) ATE177975T1 (de)
AU (1) AU7124796A (de)
DE (2) DE19533577C1 (de)
WO (1) WO1997007911A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738821A1 (de) * 1997-09-05 1999-03-11 Aeg Elotherm Gmbh Vorrichtung zum elektromagnetischen Rühren einer Metallschmelze
US6845809B1 (en) 1999-02-17 2005-01-25 Aemp Corporation Apparatus for and method of producing on-demand semi-solid material for castings
US6399017B1 (en) 2000-06-01 2002-06-04 Aemp Corporation Method and apparatus for containing and ejecting a thixotropic metal slurry
US6796362B2 (en) * 2000-06-01 2004-09-28 Brunswick Corporation Apparatus for producing a metallic slurry material for use in semi-solid forming of shaped parts
US6432160B1 (en) * 2000-06-01 2002-08-13 Aemp Corporation Method and apparatus for making a thixotropic metal slurry
US6402367B1 (en) * 2000-06-01 2002-06-11 Aemp Corporation Method and apparatus for magnetically stirring a thixotropic metal slurry
DE102009029889A1 (de) * 2008-07-15 2010-02-18 Sms Siemag Ag Elektromagnetische Bremseinrichtung an Stranggießkokillen
DE102009056000A1 (de) 2009-08-28 2011-03-03 Sms Siemag Ag Verfahren zum Gießen von flüssigen Metallen
US20110048669A1 (en) * 2009-08-31 2011-03-03 Abb Inc. Electromagnetic stirrer arrangement with continuous casting of steel billets and bloom
DE102012213746A1 (de) 2012-08-02 2014-02-06 Sms Siemag Ag Vorrichtung zur geformten Ausbringung zumindest teilweise erstarrten Metalls, insbesondere Stranggießkokille, und Verfahren zum Betreiben einer solchen Vorrichtung
GB201305822D0 (en) * 2013-03-28 2013-05-15 Pavlov Evgeny Improvements in and relating to apparatus and methods
CA2949837C (en) * 2014-05-21 2021-07-13 Novelis Inc. Mixing eductor nozzle and flow control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158259A (en) * 1980-05-13 1981-12-05 Kawasaki Steel Corp Method for accelerating floating of nonmetallic inclusion in tundish
JPS5970445A (ja) * 1982-10-15 1984-04-20 Nippon Steel Corp 連続鋳造設備用電磁撹拌装置
JPS6040654A (ja) * 1983-08-12 1985-03-04 Mitsubishi Heavy Ind Ltd モ−ルド内電磁撹拌装置
JPS60234757A (ja) * 1984-05-04 1985-11-21 Mitsubishi Heavy Ind Ltd モ−ルド内の電磁撹拌装置
DE3819492A1 (de) * 1988-06-08 1989-12-14 Voest Alpine Ind Anlagen Knueppel- bzw. vorblock-stranggiesskokille
JPH0673722B2 (ja) * 1988-09-09 1994-09-21 新日本製鐵株式会社 連続鋳造方法

Also Published As

Publication number Publication date
EP0850116A1 (de) 1998-07-01
JPH11500362A (ja) 1999-01-12
KR100264946B1 (ko) 2000-09-01
CN1194601A (zh) 1998-09-30
DE19533577C1 (de) 1996-10-24
ATE177975T1 (de) 1999-04-15
CN1072058C (zh) 2001-10-03
WO1997007911A1 (de) 1997-03-06
AU7124796A (en) 1997-03-19
DE59601517D1 (de) 1999-04-29
US6021842A (en) 2000-02-08
KR19990028576A (ko) 1999-04-15
JP2942361B2 (ja) 1999-08-30

Similar Documents

Publication Publication Date Title
DE60111943T2 (de) Vorrichtung zum magnetischen rühren einer thixotropen metallschmelze
DE3006588C2 (de)
EP0850116B1 (de) Elektromagnetische einrichtung für eine stranggiesskokille
DE2731238A1 (de) Verfahren und vorrichtung zum kontinuierlichen vergiessen insbesondere von stahl unter einwirkung eines magnetischen wanderfeldes
DE3006618C2 (de)
DE69809288T2 (de) Einrichtung zum elektromagnetischen abbremsen einer metalschmelze in einer stranggiessanlage
DE69231800T2 (de) Verfahren zum Giessen von Ingots mit durch Verwendung eines magnetischen Feldes verringerter Makroseigerung, Vorrichtung und Ingot
DE60003945T2 (de) Verfahren zum vertikalen stranggiessen von metallen unter verwendung elektromagnetischer felder und anlage zu dessen durchführung
DE3122155C2 (de)
EP2326441B1 (de) Elektromagnetische bremseinrichtung an stranggiesskokillen
DE69614274T2 (de) Verfahren und vorrichtung zum giessen von metall
DE69803775T2 (de) Elektromagnetisches Rührverfahren für Stranggiesskokillen und entsprechende Kokille
EP0009803B1 (de) Verfahren zum Stranggiessen von Stahl
DE69912105T2 (de) Vorrichtung zum giesen von metall
EP0008376B2 (de) Verfahren zum Stranggiessen von Metall in eine Kokille und Einwirkung eines elektromagnetischen Feldes
DE2903225A1 (de) Stranggiesskokille
DE2731239C2 (de)
EP0013441A1 (de) Einrichtung und Verfahren zum elektromagnetischen Rühren in einer Stahlstranggiessanlage
EP0045938A1 (de) Verfahren und Vorrichtung zum Rühren eines Stranges mit rechteckigem Querschnitt in einer Stahlstranggiessanlage
DE69517599T2 (de) Verfahren zum giessen in eine form
DE2827240A1 (de) Einrichtung zum umruehren von metallischen schmelzen in stranggiessanlagen
DE102009056001A1 (de) Verfahren zum Gießen von flüssigen Metallen
EP0051221B1 (de) Verfahren zum Stranggiessen von Stahl, insbesondere von Brammen
DE3041741C2 (de) Induktionsrinnenofen
DE3030377A1 (de) Verfahren und durchfuehrungsanordnung zum umruehren des sumpfes eines aus einer stranggiessmaschine austretenden geissstranges.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980817

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 177975

Country of ref document: AT

Date of ref document: 19990415

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990325

REF Corresponds to:

Ref document number: 59601517

Country of ref document: DE

Date of ref document: 19990429

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020729

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020730

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020812

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030813

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031114

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050813