EP0848822A1 - Nachweisverfahren für spezifische, gegen hpv-proteine gerichtete antikörper - Google Patents

Nachweisverfahren für spezifische, gegen hpv-proteine gerichtete antikörper

Info

Publication number
EP0848822A1
EP0848822A1 EP96921890A EP96921890A EP0848822A1 EP 0848822 A1 EP0848822 A1 EP 0848822A1 EP 96921890 A EP96921890 A EP 96921890A EP 96921890 A EP96921890 A EP 96921890A EP 0848822 A1 EP0848822 A1 EP 0848822A1
Authority
EP
European Patent Office
Prior art keywords
hpv
antibodies
protein
buffer
proteins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96921890A
Other languages
English (en)
French (fr)
Inventor
Hanswalter Zentgraf
Manfred Frey
Iris Velhagen
Regina Martens
Wolfgang Meschede
Michael Pawlita
Joris Braspenning
Massimo Tommasino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Krebsforschungszentrum DKFZ
Original Assignee
Deutsches Krebsforschungszentrum DKFZ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Krebsforschungszentrum DKFZ filed Critical Deutsches Krebsforschungszentrum DKFZ
Publication of EP0848822A1 publication Critical patent/EP0848822A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54306Solid-phase reaction mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/01DNA viruses
    • G01N2333/025Papovaviridae, e.g. papillomavirus, polyomavirus, SV40, BK virus, JC virus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/815Test for named compound or class of compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/82Proteins from microorganisms
    • Y10S530/826Viruses

Definitions

  • the invention relates to a method for the detection of specific antibodies directed against HPV proteins in body fluids.
  • the invention also relates to a kit that can be used for this purpose.
  • the invention relates to native HPV proteins which are suitable for carrying out the method according to the invention.
  • HPVs human papilioma virus infections
  • the detection of such an expression could therefore be a way to detect HPV-associated carcinomas at an early stage.
  • the object of the present invention is therefore to provide a method with which the uncontrolled expression of HPV genes, in particular genes E6 and / or E7, can be detected.
  • the invention thus relates to a method for the detection of specific antibodies directed against HPV proteins, which comprises the following method steps:
  • the method according to the invention is based on the knowledge of the applicant that antibodies which are directed against the expression products of these genes often exist in people in whom there is uncontrolled expression of HPV genes, in particular genes E6 and / or E7.
  • HPV protein encompasses any protein of any HPV type.
  • the expression relates to an HPV-E6 and HPV-E7 protein, very particularly of HPV 1 6 and HPV 1 8.
  • the HPV protein can have a wild-type sequence. It can also have a sequence that deviates therefrom, wherein the deviations can take the form of additions, deletions and / or substitutions of one or more amino acids.
  • the HPV protein can be part of a fusion protein.
  • HPV protein Conventional methods can be used to produce an HPV protein. It is favorable to use a nucleic acid coding for an HPV protein, in particular a DNA to insert into an expression vector and to use this for the transfection or transformation of host cells.
  • HPV-E6 and HPV-E7 protein in particular of HPV 1 6 and HPV 1 8, he also knows the following: EMBL database, AC K0271 8 for HPV 1 6; Swiss protein database P031 26 for HPV 1 6-E6; Swiss protein database P031 29 and Durst, M. et al., Proc. Natl. Acad. Be.
  • Expression vectors are also known to the person skilled in the art.
  • these are e.g. pGEMEX, pUC derivatives, pGEX-2T, pET3b and pQE-8, the latter being preferred.
  • yeast these are e.g. pY100, Ycpad I and pREP-L20, the latter being preferred.
  • pAcSGHisNT-A is particularly suitable for expression in insect cells.
  • host cells examples include the E. coli strains HB101, DH 1, x1 776, JM 101, JM 109, BL21 and SG 1 3009, the latter being preferred, the yeast strains Saccharomyces cerevisiae and Saccharomyces Pombe, the latter strain is preferred, and the animal cells L, NIH 3T3, FM3A, CHO, COS, Vero and HeLa and the insect cells sf9.
  • HPV proteins in particular an HPV-E6 and / or HPV-E7 protein, very particularly of HPV 16 and HPV 18, can be used simultaneously or in succession. They are in native form. All natural epitopes of specific antibodies lying on the HPV proteins are thus provided. This optimizes the detection of specific antibodies against HPV proteins in denatured form.
  • an HPV protein in its native form can be refolded by conventional methods if it is in denatured form. It is beneficial to the denatured protein in a urea buffer, e.g. 10mM Na phosphate, pH 7.4, 10% glycerol, 2mM DTT, 8M urea, on a standard hydroxyapatite column, e.g. HA Ultrogel, IBF Biotechnics, with a conventional elution buffer of the above urea molarity, e.g.
  • a urea buffer e.g. 10mM Na phosphate, pH 7.4, 10% glycerol, 2mM DTT, 8M urea
  • a standard hydroxyapatite column e.g. HA Ultrogel, IBF Biotechnics
  • a conventional elution buffer of the above urea molarity e.g.
  • a urea buffer for example 100 mM phosphate buffer, pH 8.0, 8M urea
  • stepwise dialysis against conventional dialysis buffer for example 50 mM pug / NaOH, pH 7.8, 500 mM NaCl, 20% glycerol, 5 mM DTT, 1 00 ⁇ M ZnCl 2 .
  • the dialysis buffers have decreasing urea molarities, for example 8M, 3M, IM or OM. Dialysis is carried out in the usual way, for example within 24 hours.
  • HPV protein After the last dialysis, a refolded HPV protein is obtained, which in the usual way, for example by gel filtration, in particular on Superdex 200 (Pharmacia) is collected.
  • An HPV protein that has been refolded in the above manner is also the subject of the present invention.
  • an HPV protein is bound to a carrier material.
  • Any material suitable for binding proteins in particular microtiter plates, tubes, microspheres and slides, can be used as such.
  • the binding between the HPV protein and the carrier material can be carried out by customary methods. It is favorable if the HPV protein together with a C-terminus, e.g. 1 1 amino acids of SV40t antigen-forming tag polypeptide is present as a fusion protein, as a result of which this can be bound to the carrier material via an antibody which is generally available and which is directed against the tag polypeptide.
  • an HPV protein bound to a carrier material is incubated with body fluids.
  • body fluids can be obtained from an animal body, in particular a mammal and very particularly a human being.
  • the fluids preferably include serum, lymph, saliva, sputum, urine, stool, cerebrospinal fluid, bile and gastrointestinal secretions. They also include liquids made from solid tissues such as lungs, brain and bone marrow, smears and biopsies, and tumors, e.g. Anogenital carcinomas, can be isolated.
  • the HPV protein can be incubated with the body fluids by customary methods.
  • Antibodies which are specific for an HPV protein are bound to this by the above incubation. Such antibodies (hereinafter referred to as (a)) are then labeled with antibodies (b) directed against the antibodies (a), or with unlabelled antibodies (b) and the latter with labeled antibodies directed against the antibodies (b) ( c) implemented.
  • the label can be radioactive or non-radioactive. In the latter case other common markers are used. Fluorescent dyes such as fluorescein isothiocyanate and enzymes such as alkaline phosphatase or peroxidase are particularly suitable. A biotin / streptavidin complex can be used as the enhancer system.
  • the markers are generally available. The conjugation with the antibodies (b) or (c) takes place according to the manufacturer's instructions. Labeled antibodies (b) and (c) are also generally available.
  • suitable antibodies (b) whether labeled or unlabeled, depends on the animal or animal species from which the body fluid used originates. If, for example, it is a liquid from a human, then antibodies (b) which are directed against human immunoglobulin are used. If antibodies (c) are additionally used, these are selected in a corresponding manner with regard to the animal or the animal species from which the antibodies (b) originate.
  • suitable antibodies is known to the person skilled in the art and can be carried out without further ado.
  • Bound antibodies (a) can be reacted with labeled antibodies (b) or with unlabeled antibodies (b) and then with labeled antibodies (c) in the usual way. It is favorable to allow the reaction with the antibodies (b) in both alternatives to take place within 1 h at 37 ° C. After several washes, a substrate solution corresponding to the marker is then added in the first alternative to develop the detection reaction. This is done according to the manufacturer's instructions. In the second alternative, the antibodies (c) are added after the washing processes. Their implementation and the development of the detection reaction take place in a corresponding manner.
  • the method according to the invention has a high specificity. This is particularly high if an HPV-tag fusion protein is used in process step (I). Furthermore, the method according to the invention has a high sensitivity. This is particularly high if, in process step (II), the antibodies (c) be used. Furthermore, it is often advantageous if one or more denatured HPV proteins and / or one or more fragments thereof are additionally used in process step (I). In this way, specific antibodies can be detected which are directed, for example, against degradation products of an HPV protein.
  • kit is also provided which is suitable for carrying out the above method.
  • This kit preferably contains
  • one or more native, carrier-bound HPV proteins optionally one or more denatured, carrier-bound HPV proteins and / or fragments thereof, and labeled antibodies (b) according to claim 1 and conventional washing buffers and optionally one of the brands Appropriate substrate, or one or more native, carrier-bound HPV proteins, optionally one or more denatured, carrier-bound HPV proteins and / or fragments thereof and unlabeled antibodies (b) and labeled antibodies (c) according to claim 1 as well as usual wax buffers and possibly a substrate corresponding to the marking.
  • HPV genes in particular genes E6 and / or E7.
  • the invention is therefore suitable for early detection of HPV-associated carcinomas.
  • Example 1 Production of an HPV 16-E7 protein and an HPV 16-E7 tag fusion protein
  • the original DNA of HPV 16 was assumed (cf. Durst M. et al., Above). This DNA was used as a template for a PCR method.
  • the primer pair used was: 5'-TTTGGATCCATGCATGG-AGATACACCTACATTG-3 'and 5'-TTTGTCGACTTATGGTTTCTGAGA-3'.
  • the PCR approach and conditions were standard.
  • the amplified DNA was digested with BamHI and Sall and inserted into the yeast shuttle vector pREP-L20 opened with BamHI and Sall.
  • This vector corresponds to pREP3 (cf. Maundrell, K., Gene 1 23 (1 993), 1 27-1 30), but contains the following "multiple cloning site":
  • the expression plasmid pREP3-L20 HPV1 6-E7 was obtained. This was used for the transfection of Schizosaccharomyces Pombe LEU 1, 32 (cf. Broker, M., Biotechniques, (1 993), 1 1 9). The transfected yeast cells were cultured overnight in a conventional "pombe min” medium in the presence of thiamine. This suppressed the "no message thiamine" promoter of the above expression plasmid. After washing away the thiamine and culturing in thiamine-free medium, the promoter was switched on and the HPV 16-E7 gene was expressed. The HPV1 6-E7 protein was isolated after mechanical disruption of the yeast cells.
  • the original DNA of HPV 16 was assumed (cf. Durst, M. et al., Above). This DNA was used as a template for a PCR method.
  • the primer pair used was: 5'-TTTTCTAGAA-GATCTATGCATGGAGATACACCT-3 'and 5'-TTTGGATCCTGGTTTCT-GAGAACA-3.
  • the PCR approach and the conditions were standard.
  • the amplified DNA was digested with BglII and BamHI and inserted into the Bluescript vector pL441, which was opened with BglII and BamHI and encodes a tag polypeptide.
  • the DNA molecule obtained was cleaved with Xbal and Sall and the HPV 16-E7 tag DNA was isolated.
  • This DNA was inserted into the expression vector pREP-L20 (see above) opened with Xbal and Sall.
  • the expression plasmid pREP-L20 HPV 1-6-7 days was obtained. This was used for the transfection of Schizosaccharomyces Pombe Leu 1.32 (see above).
  • the cultivation of the yeast cells and the expression of the HPV 16-E7 tag gene and the isolation of the HPV 16-E7 tag fusion protein were carried out as described in FIG. 1 (a).
  • Example 2 Refolding of an HPV 16-E7 protein and an HPV 16-E7 fusion protein
  • HPV 16-E7 protein obtained in Example 1 (a) was in insoluble, denatured form. It was dissolved in a buffer, 25 mM Tris-HCl, pH 8.0, 10% glycerol, 2 mM DTT, 6 M guanidine hydrochloride, 50 mM NaF, 0.1 mM Na-o-yanadate. To refold it, it was diluted 1:12 in a urea buffer, 10 mM Na phosphate, pH 7.4, 10% glycerol, 2 mM DTT, 8 M urea and onto a hydroxylapatite column (HA Ultragel, IBF Biotechnics).
  • HPV protein was treated with a urea elution buffer, 1 50 mM NaPi, pH 7.8, 10% glycerol, 2mM DTT, 8 M urea, eluted and dialyzed against a urea dialysis buffer, 50 mM Tris-HCl, pH 7.5, 0.1 mM ZnAc, 1 mM DTT, 50 mM NaCl, 4 M urea.
  • the dialysate was loaded onto an anion exchanger, Q-Sepharose (Pharmacia), and the HPV protein with a urea dialysis buffer, 50 mM Tris-HCl, pH 7.5, 0.1 mM ZnAc, 1 mM DTT , 1 M NaCl, 4 M urea, eluted.
  • the eluate was subjected to conventional gel filtration and then dialyzed against a dialysis buffer, 5 mM Hepes, 5% glycerol, 1 mM DTT, 20 ⁇ M ZnAc.
  • a native HPV 16-E7 protein was obtained.
  • Example 1 Refolding of the denatured HPV 16-E7 tag fusion protein obtained in Example 1 (b) was carried out as described in Example 2 (a). A native HPV 1 6-E7 tag fusion protein was obtained.
  • the HPV 16-E7 protein solution from Example 2 (a) was diluted in a carbonate buffer, pH 9.6.
  • a carbonate buffer pH 9.6.
  • 100 ng of the HPV protein and once carbonate buffer were added as an empty control per well.
  • 6 short washing steps with PBS, 0.05% Tween 20 followed.
  • the free binding sites of the polymeric carrier were then blocked by incubation for one hour with an irrelevant protein, for example pig skin gelatin, BSA or casein, the latter being preferred, in PBS at 37 ° C.
  • Sera from patients with cervical carcinoma and from controls from Mexico were incubated in PBS (1:50 dilution) for 1 hour at 37 ° C on the plate.
  • TMB developing solution 50 mM sodium acetate, 0.4 mM 3,3 ', 5,5'-tetramethyl-benzidine-dihydrochloride, 4, 4 mM H 2 0 2
  • HPV 16-E7 protein can detect HPV-specific antibodies in sera from cervical carcinoma patients.
  • the plate was incubated with the antibody dissolved in the above carbonate buffer overnight at 4 ° C. After six short washing steps with PBS, 0.05% Tween 20, the HPV 16-E7 tag protein dissolved in the above carbonate buffer was added in an amount of 100 ng per hole. The further process steps were carried out as described in Example 3 (a).
  • HPV-specific antibodies can be detected in sera from cervical carcinoma patients by means of an HPV 16-E7 tag protein.
  • Example 3 (a) and (b) Both detections in Example 3 (a) and (b) were more specific than a comparative ELISA in which an HPV 1 6-E7 fragment, ie no native protein, was used. The specificity of the detection of 3 (b) was even greater than that of the detection of 3 (a). In 3 (a), 64 positive values were obtained in 64 control values, while in 3 (b) all of these control values were negative. Furthermore, in 3 (b) 28 of 73 sera from the cervical carcinoma patients could be recognized as HPV-specific, while in 3 (a) there were only 20.
  • the plasmid pGem-2/1 6 E6 was started, which contains a DNA coding for the E6 protein of HPV 16 (cf. Werness, BA et al., Science, Volume 248, (1 990), 76-79) .
  • This DNA was used as a template for a PCR method.
  • the following was used as a primer pair: 5'-CAGGGATCCGATGACGATGACAAAATGTTTCAGGACCCACAGG-3 'and 5'-GGGAAGCTTATTACAGCTGGGTTTCTCTAC-3'.
  • the PCR approach and the PCR conditions were as follows:
  • the amplified DNA was digested with BamHI and HindIII and inserted into the expression vector pQE-8 (Diagen) opened with BamHI and HindIII.
  • the expression plasmid pQ / 16 / E6 was obtained. This codes for a fusion protein composed of 6 histidine residues and an enterokinase interface (N-terminus partner) and the E6 protein of HPV 16 (C-terminus partner).
  • pQ / 16 / E6 was used to transform E.coli SG 13009 (see Gottesman, S. et al., J. Bacteriol. 148, (1 981), 265-273).
  • the bacteria were cultivated in an LB medium with 100 ⁇ g / ml ampicillin and 25 / yg / ml kanamycin and induced for 4 h with 60 // M isopropyl- ⁇ -D-thiogalactopyranoside (IPTG). Lysis of the bacteria was achieved by adding 6 M guanidine hydrochloride, then chromatography (Ni-NTA resin) was carried out with the lysate in the presence of 8 M urea in accordance with the manufacturer's (Diagen) instructions for the chromatography material. The bound fusion protein was eluted in a buffer at pH 3.5.
  • the fusion protein was subjected to 1 8% SDS-polyacrylamide gel electrophoresis and stained with Coomassie blue (cf. Thomas, JO and Kornberg, RD, J. Mol. Biol. 149 (1 975), 709 -733).
  • HPV1 6-E6 fusion protein (MW approx. 18 kD) was obtained. This was in denatured form.
  • HPV 1 6-E7 and HPV 1 8-E6 (E7) proteins were produced and purified as described in FIG. 4 (a). The following deviations were guided:
  • the plasmid pWV 2916 which contains a DNA coding for HPV 16, was used to produce HPV 16-E7 (cf. Durst, M. et al., Proc. Natl. Acad. Sei. USA, Volume 60, (1983), 3812-3815).
  • the primer pair used for the PCR method 5'-CAGGGATCCATGC-ATGGAGATACACCTAC-3 'and 5'-GGGAAGCTTATTATGGTTTCTGA-GAACAGATG-3'.
  • HPV 18-E7 the plasmid pGEM 3/91 was used, which contains a DNA coding for HPV 18 (cf. Roggenbuck, B. et al., J. Virol., Volume 65, (1991), 5068-5072).
  • the primer pair used for the PCR method 5'-CAGGGATCCATGCATGG-ACCTAAGGCAAC-3 'and 5'-GGGAAGCTTATTACTGCTGGGATGCA-CACC-3'
  • pQE-8 pQ / 1 8 / E7
  • SG 1 3009 a pure HPV 1 8-E7 fusion protein (MW approx. 1 3 kD) received. This was in denatured form.
  • the HPV 16-E6 protein obtained in Example 4 (a) was dissolved in a urea buffer (100 mM phosphate buffer, 8M urea, pH 8.0) and subjected to gradual dialysis.
  • the dialysis buffers contained 50 mM pug / NaOH, pH 7.8, 500 mM NaCl, 20% glycerol, 5 mM DTT, 100 ⁇ M ZnCl 2 . They also had 8M, 3M, 1M and 0M urea, respectively.
  • the individual dialyses were carried out within 24 hours. Gel filtration was then carried out on Superdex 200 (Pharmacia).
  • HPV 16 - E6 protein was obtained in native form.
  • HPV 16-E7, HPV 18-E6 (E7) proteins obtained in Example 4 (b) were refolded as described in FIG. 5 (a). Corresponding HPV proteins were obtained in native form.
  • Example 6 Detection of HPV-E6 and HPV-E7 specific antibodies in the serum of patients
  • HPV 1 6-E6 and HPV 1 6-E7 proteins from Example 5 were taken up in buffer (0.1 M NaH 2 PO 4 , pH 8.0).
  • buffer 0.1 M NaH 2 PO 4 , pH 8.0.
  • 100 ⁇ l of 20 ng or 8 ng of the HPV proteins and 1% of BSA as an empty control were pipetted into each hole. After incubation Overnight at 4 ° C followed by 4 short washing steps with PBS, 0.05% Tween 20 every 5 min. Free binding sites of the polymeric support were then blocked by overnight incubation with 1% BSA in PBS, 0.05% Tween 20 at 4 ° C.
  • a serum to be tested from a patient with cervical cancer was incubated in a 1: 100 dilution (PBS, 1% BSA, 0.05% Tween 20) on the plate for 1 hour at 37 ° C. ("checkerboard titration"). After 4 short washing steps with PBS, 0.05% Tween 20 at intervals of 5 min, a generally available peroxidase-coupled goat anti-human antibody (dilution according to the manufacturer) was added.
  • HPV-E6 and HPV-E7 specific antibodies can be detected in the serum of a patient with cervical cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention concerns a process for detecting specific antibodies in bodily fluids, which antibodies act against HPV proteins. The process involves the following steps: (I) incubating a native carrier material-bonded HPV protein with bodily fluids; and (II) reacting specific antibodies (a) bonded to the HPV protein either with marked antibodies (b) which are active against antibodies (a), or with unmarked antibodies (b) and then reacting the latter with marked antibodies (c) acting against antibodies (b). The invention further concerns a kit for carrying out this process.

Description

Nachweisverfahren für spezifische, gegen HPV-Proteine gerichtete Antikörper
Die Erfindung betrifft ein Verfahren zum Nachweis von spezifischen, gegen HPV- Proteine gerichteten Antikörpern in Körperflüssigkeiten. Ferner betrifft die Erfin¬ dung einen hierfür verwendbaren Kit. Desweiteren betrifft die Erfindung native HPV-Proteine, die sich zur Durchführung des erfindungsgemäßen Verfahrens eignen.
Es ist bekannt, daß viele Menschen an persistierenden Infektionen durch humane Papiliomviren (nachstehend mit HPVs bezeichnet) leiden. Ferner ist bekannt, daß mehr als 95 % aller Anogenitalkarzinome, insbesondere des Gebärmutterhals¬ krebs, und ein beachtlicher Prozentsatz der Karzinome im Mund/Rachenraum mit persistierenden Infektionen durch HPVs assoziiert sind.
Desweiteren gibt es Hinweise, daß zur Entstehung von Karzinomen bei Zellen, die eine persistierende Infektion durch HPVs aufweisen, eine unkontrollierte Expression von HPV-Genen, insbesondere der Gene E6 und/oder E7, notwendig ist.
Der Nachweis einer solchen Expression könnte daher eine Möglichkeit sein, HPV- assoziierte Karzinome frühzeitig zu erkennen.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren bereitzustellen, mit dem die unkontrollierte Expression von HPV-Genen, ins¬ besondere der Gene E6 und/oder E7, nachgewiesen werden kann.
ERSATZBLATT (} 6) Erfindungsgemäß wird dies durch die Gegenstände in den Patentansprüchen erreicht.
Gegenstand der Erfindung ist somit ein Verfahren zum Nachweis von spezifi¬ schen, gegen HPV-Proteine gerichteten Antikörpern, das folgende Verfahrens¬ schritte umfaßt:
(I) Inkubation eines nativen, Trägermaterial-gebundenen HPV-Proteins mit Körperflüssigkeiten, und
(II) Umsetzung von spezifischen, an das HPV-Protein gebundenen Anti¬ körpern (a) mit markierten, gegen die Antikörper (a) gerichteten Antikörpern (b), oder mit unmarkierten Antikörpern (b) und letztere mit markierten, gegen die Antikörper (b) gerichteten Antikörpern (c) .
Das erfindungsgemäße Verfahren beruht auf der Erkenntnis des Anmelders, daß oftmals in Menschen, in denen eine unkontrollierte Expression von HPV Genen, insbesondere der Gene E6 und/oder E7, vorliegt, Antikörper existieren, die gegen die Expressionsprodukte dieser Gene gerichtet sind.
Der vorstehende Ausdruck "HPV-Protein" umfaßt jegliches Protein eines jegli¬ chen HPV-Typs. Insbesondere betrifft der Ausdruck ein HPV-E6 und HPV-E7 Protein, ganz besonders von HPV 1 6 und HPV 1 8. Das HPV-Protein kann eine Wildtyp-Sequenz aufweisen. Auch kann es eine davon abweichende Sequenz haben, wobei sich die Abweichungen in Form von Additionen, Deletionen und/oder Substitutionen von ein oder mehreren Aminosäuren darstellen können. Ferner kann das HPV-Protein Teil eines Fusionsproteins sein.
Zur Herstellung eines HPV-Proteins können übliche Verfahren verwendet wer¬ den. Günstig ist es, eine für ein HPV-Protein kodierende Nukleinsäure, insbeson- dere eine DNA, in einen Expressionsvektor zu inserieren und diesen zur Trans¬ fektion bzw. Transformation von Wirtszellen zu verwenden.
Der Fachmann kennt eine für ein HPV-Protein kodierende Nukleinsäure (vgl. Schwarz, E., 443-466 in "Papilloma Viruses and Human Diseases", (1 987), Springer-Verlag). Auch sind ihm hinsichtlich eines HPV-E6 und HPV-E7 Proteins, insbesondere von HPV 1 6 und HPV 1 8, folgendes bekannt: EMBL-Datenbank, AC K0271 8 für HPV 1 6; Swiss-Protein-Datenbank P031 26 für HPV 1 6-E6; Swiss-Protein-Datenbank P031 29 und Durst, M. et al., Proc. Natl. Acad. Sei. USA 60, (1 983), 381 2-381 5 für HPV 1 6-E7; EMBL-Datenbank, AC M20325 für HPV 18; Swiss-Protein-Datenbank, P06463 für HPV 1 8-E6; Swiss-Protein- Datenbank, P06788 für HPV 1 8-E7.
Ferner sind dem Fachmann Expressionsvektoren bekannt. Im Falle eines Expres¬ sionsvektors für E. coli sind dies z.B. pGEMEX, pUC-Derivate, pGEX-2T, pET3b und pQE-8, wobei letzterer bevorzugt ist. Für die Expression in Hefe sind dies z.B. pY100, Ycpad l und pREP-L20, wobei letzterer bevorzugt ist. Für die Expression in tierischen Zellen sind z.B. pKCR, pEFBOS, cDM8 und pCEV4 anzugeben, während sich für die Expression in Insektenzellen besonders der Baculovirus-Expressionsvektor pAcSGHisNT-A eignet.
Desweiteren kennt der Fachmann Wirtszellen. Beispiele solcher Wirtszellen um¬ fassen die E.coli-Stämme HB101 , DH 1 , x1 776, JM 101 , JM 109, BL21 und SG 1 3009, wobei letzterer bevorzugt ist, die Hefe-Stämme Saccharomyces cerevisiae und Saccharomyces Pombe, wobei letzterer Stamm bevorzugt ist, und die tierischen Zellen L, NIH 3T3, FM3A, CHO, COS, Vero und HeLa sowie die Insektenzellen sf9.
Darüberhinaus kennt der Fachmann Bedingungen, transformierte bzw. trans- fizierte Wirtszellen zu kultivieren. Auch sind ihm Verfahren bekannt, ein ex- primiertes HPV-Protein zu isolieren und zu reinigen. Im erfindungsgemäßen Verfahren können ein oder mehrere HPV-Proteine, ins¬ besondere ein HPV-E6 und/oder HPV-E7 Protein, ganz besonders von HPV 1 6 und HPV 18, gleichzeitig oder nacheinander eingesetzt werden. Sie liegen in nativer Form vor. Damit werden alle natürlichen, auf den HPV-Proteinen liegen¬ den Epitope spezifischer Antikörper bereitgestellt. Dies optimiert den Nachweis spezifischer Antikörper gegenüber HPV-Proteinen in denaturierter Form.
Zum Erhalt eines HPV-Proteins in nativer Form kann ein solches, wenn es in denaturierter Form vorliegt, durch übliche Verfahren rückgefaltet werden. Gün¬ stig ist es, das denaturierte Protein in einem Harnstoffpuffer, z.B. 10mM Na- Phosphat, pH 7,4, 1 0 % Glycerin, 2mM DTT, 8M Harnstoff, zu lösen, auf eine übliche Hydroxylapatit-Säule, z.B. HA Ultrogel, IBF Biotechnics, zu laden, mit einem üblichen Eluierungspuffer vorstehender Harnstoff-Molarität, z.B. 1 50 mM NaPi, pH 7,8, 10 % Glycerin, 2 mM DTT, 1 M NaCl, 8 M Harnstoff, zu eluieren, gegen einen üblichen Dialysepuffer absteigender Harnstoff-Molarität, z.B. 50 mM Tris-HCl, pH 7,5, 0, 1 mM ZnAc, 1 mM DTT, 50 mM NaCl, 4 M Harnstoff, zu dialysieren, auf einen üblichen Anionenaustauscher, z.B. G-Sepharose (Pharma¬ cia) zu laden, mit einem üblichen Eluierungspuffer gleicher Harnstoff-Molarität wie vorstehender Dialyse-Harnstoffpuffer, z.B. 50 mM Tris-HCl, pH 7, 5, 0, 1 mM ZnAc, 1 mM DTT, 1 M NaCl, 4 M Harnstoff, zu eluieren, einem üblichen Samm¬ lungsschritt, z.B. einer Gelfiltration, zu unterziehen und gegen einen üblichen Dialysepuffer, z.B. 5 mM Hepes, 5 % Glycerin, 1 mM DTT, 20/yM ZnAc, zu dialysieren.
Alternativ ist es günstig, das denaturierte Protein in einem Harnstoffpuffer, z.B. 100 mM Phosphatpuffer, pH 8,0, 8M Harnstoff, zu lösen und einer schritt¬ weisen Dialyse gegen übliche Dialysepuffer, z.B. 50 mM Mops/NaOH, pH 7,8, 500 mM NaCl, 20 % Glycerin, 5 mM DTT, 1 00 μM ZnCI2, zu unterziehen. Die Dialysepuffer weisen absteigene Harnstoff-Molaritäten, z.B. 8M, 3M, IM bzw. OM auf. Die Dialysen erfolgen in üblicher Weise, z.B. jeweils innerhalb von 24 Stunden. Nach der letzten Dialyse wird ein rückgefaltetes HPV-Protein erhalten, das in üblicher Weise, z.B. durch Gelfiltration, insbesondere an Superdex 200 (Pharmacia), gesammelt wird. Ein HPV-Protein, das in vorstehender Weise rückgefaltet worden ist, ist ebenfalls Gegenstand der vorliegenden Erfindung.
Erfindungsgemäß wird ein HPV-Protein an ein Trägermaterial gebunden. Als solches kann jegliches zur Bindung von Proteinen geeignete Material, insbeson¬ dere Mikrotiterplatten, Röhrchen, Mikrokugeln und Objektträger, verwendet werden. Die Bindung zwischen dem HPV-Protein und dem Trägermaterial kann nach üblichen Verfahren erfolgen. Günstig ist es, wenn das HPV-Protein zu¬ sammen mit einem den C-Terminus, z.B. 1 1 Aminosäuren, von SV40t-Antigen bildenden tag Polypeptid als Fusionsprotein vorliegt, wodurch dieses über einen allgemein erhältlichen gegen das tag Polypeptid gerichteten Antikörper an das Trägermaterial gebunden werden kann.
Erfindungsgemäß wird ein an ein Trägermaterial gebundenes HPV-Protein mit Körperflüssigkeiten inkubiert. Als solche sind sämtliche Flüssigkeiten gemeint, die aus einem tierischen Körper, insbesondere einem Säugetier und ganz beson¬ ders einem Menschen erhalten werden können. Die Flüssigkeiten umfassen vorzugsweise Serum, Lymphe, Speichel, Sputum, Urin, Stuhl, Liquor, Galle und gastrointestinale Sekrete. Ferner gehören zu ihnen auch Flüssigkeiten, die aus festen Geweben, wie Lunge, Gehirn und Knochenmark, Abstrichen und Biopsien sowie Tumoren, z.B. Anogenitalkarzinome, isoliert werden können. Die Inkuba¬ tion des HPV-Proteins mit den Körperflüssigkeiten kann nach üblichen Verfahren erfolgen.
Durch vorstehende Inkubation werden Antikörper, die spezifisch für ein HPV- Protein sind, an dieses gebunden. Solche Antikörper (nachstehend mit (a) be¬ zeichnet) werden dann mit markierten, gegen die Antikörper (a) gerichteten Antikörpern (b), oder mit unmarkierten Antikörpern (b) und letztere mit markierten, gegen die Antikörper (b) gerichteten Antikörpern (c) umgesetzt.
Die Markierung kann radioaktiv oder nicht-radioaktiv sein. Im letzteren Fall werden andere übliche Marker verwendet. Geeignet sind insbesondere Fluo¬ reszenzfarbstoffe, wie z.B. Fluoresceinisothiocyanat, und Enzyme, wie alkalische Phosphatase oder Peroxidase. Als Verstärkersystem kann ein Biotin/Streptavidin- komplex eingesetzt werden. Die Marker sind allgemein erhältlich. Die Konjugie¬ rung mit den Antikörpern (b) oder (c) erfolgt nach den Vorschriften des Herstel¬ lers. Auch sind bereits markierte Antikörper (b) und (c) allgemein erhältlich.
Die Wahl der geeigneten Antikörper (b), ob markiert oder unmarkiert, hängt davon ab, von welchem Tier bzw. welcher Tierart die verwendete Körperflüssig¬ keit stammt. Handelt es sich beispielsweise um eine Flüssigkeit aus einem Menschen, so werden als Antikörper (b) solche verwendet, die gegen humanes Immunglobulin gerichtet sind. In entsprechender Weise werden, sofern zusätzlich noch Antikörper (c) eingesetzt werden, diese bezüglich des Tieres oder der Tierart ausgewählt, aus der die Antikörper (b) stammen. Die Wahl geeigneter Antikörper ist dem Fachmann bekannt und kann ohne weiteres durchgeführt werden.
Die Umsetzung von gebundenen Antikörpern (a) mit markierten Antikörpern (b) bzw. mit unmarkierten Antikörpern (b) und dann mit markierten Antikörpern (c) kann in üblicher weise erfolgen. Günstig ist es, die Umsetzung mit den Antikör¬ pern (b) in beiden Alternativen innerhalb von 1 h bei 37°C erfolgen zu lassen. Nach mehreren Waschvorgängen wird dann in der ersten Alternative eine dem Marker entsprechende Substratlösung zur Entwicklung der Nachweisreaktion zugegeben. Dies erfolgt gemäß der Anleitung des Herstellers. In der zweiten Alternative werden nach den Waschvorgängen die Antikörper (c) zugegeben. Deren Umsetzung und die Entwickung der Nachweisreaktion erfolgen in ent¬ sprechender Weise.
Das erfindungsgemäße Verfahren weist eine hohe Spezifität auf. Diese ist beson¬ ders hoch, wenn im Verfahrensschritt (I) ein HPV-tag-Fusionsprotein verwendet wird. Ferner weist das erfindungsgemäße Verfahren eine hohe Sensitivität auf. Diese ist besonders hoch, wenn im Verfahrensschritt (II) auch die Antikörper (c) eingesetzt werden. Desweiteren ist es oftmals günstig, wenn im Verfahrens¬ schritt (I) zusätzlich ein oder mehrere denaturierte HPV-Proteine und/oder ein oder mehrere Fragmente davon eingesetzt werden. Damit können spezifische Antikörper nachgewiesen werden, die z.B. gegen Abbauprodukte eines HPV-Pro¬ teins gerichtet sind. Die vorstehenden Ausführungen zum erfindungsgemäßen Verfahren, insbesondere zur Bindung eines nativen HPV-Proteins an Träger¬ material und zur Inkubation des Proteins mit Körperflüssigkeiten, gelten hier entsprechend.
Erfindungsgemäß wird auch ein Kit bereitgestellt, der zur Durchführung vor¬ stehenden Verfahrens geeignet ist. Dieser Kit enthält vorzugsweise
ein oder mehrere native, Trägermaterial-gebundene HPV-Proteine, gegebe¬ nenfalls ein oder mehrere denaturierte, Trägermaterial-gebundene HPV- Proteine und/oder Fragmente davon, und markierte Antikörper (b) nach Anspruch 1 sowie übliche Waschpuffer und gegebenenfalls ein der Mar¬ kierung entsprechendes Substrat, oder ein oder mehrere native, Trägermaterial-gebundene HPV-Proteine, gegebe¬ nenfalls ein oder mehrere denaturierte, Trägermaterial-gebundene HPV- Proteine und/oder Fragmente davon und unmarkierte Antikörper (b) und markierte Antikörper (c) nach Anspruch 1 sowie übliche Wachpuffer und gegebenenfalls ein der Markierung entsprechendes Substrat.
Vorstehende Ausführungen zum erfindungsgemäßen Verfahren gelten hier ent¬ sprechend.
Mit der vorliegenden Erfindung ist es möglich, eine unkontrollierte Expression von HPV-Genen, insbesondere der Gene E6 und/oder E7, nachzuweisen. Damit eignet sich die Erfindung, HPV-assoziierte Karzinome frühzeitig zu erkennen.
Die folgenden Beispiele erläutern die Erfindung. Beispiel 1 : Herstellung eines HPV 16-E7-Proteins und eines HPV 16-E7 tag Fusionsproteins
(a) Herstellung eines HPV 16-E7 Proteins
Es wurde von der Original-DNA von HPV 1 6 ausgegangen (vgl. Durst M. et al., vorstehend). Diese DNA wurde als Template für ein PCR-Verfahren verwendet. Als Primer-Paar wurde verwendet: 5'-TTTGGATCCATGCATGG- AGATACACCTACATTG-3' und 5'-TTTGTCGACTTATGGTTTCTGAGA-3'. Der PCR-Ansatz und die Bedingungen waren standardmäßig.
Die amplifizierte DNA wurde mit BamHI und Sall gespalten und in den mit BamHI und Sall geöffneten Hefe-Shuttle-Vektor pREP-L20 inseriert. Dieser Vektor entspricht pREP3 (vgl. Maundrell, K. , Gene 1 23 ( 1 993), 1 27-1 30), enthält aber die nachstehende "Multiple Cloning Site":
L- 20 Mscl BamHI Spei Not l Sal l Apal Xhol Smal i r i ; i 1 ι 1 ι 1 ι 1 ι 1 i 1 aaattggCCAAGGATCCAACTAGTAGCGGCCGCAGTCGACAGGGCCCACTCGAGACCCgggt tttaaccGGTTCCTAGGTTGATCATCGCCGGCGTCAGCTGTCCCGGGTGAGCTCTGGGccca
Es wurde das Expressionsplasmid pREP3-L20 HPV1 6-E7 erhalten. Dieses wurde zur Transfektion von Schizosaccharomyces Pombe LEU 1 ,32 (vgl. Broker, M., Biotechniques, ( 1 993) , 1 1 9) verwendet. Die transfizierten Hefezellen wurden in einem üblichen "Pombe min"-Medium in Anwesenheit von Thiamin über Nacht kultiviert. Dadurch wurde der "no message thia- min"-Promotor des vorstehenden Expressionsplasmids unterdrückt. Nach Wegwaschen des Thiamins und Kultivierung in Thiamin-freiem Medium wurde der Promotor angeschaltet und das HPV 1 6-E7 Gen exprimiert. Das HPV1 6-E7 Protein wurde nach mechanischem Aufbrechen der Hefezellen isoliert.
ERSATZBLAπ (REGEL 26) (b) Herstellung eines HPV 16-E7 tag Fusionsproteins
Es wurde von der Original-DNA von HPV 1 6 ausgegangen (vgl. Durst, M. et al., vorstehend). Diese DNA wurde als Template für ein PCR-Verfahren verwendet. Als Primer-Paar wurde verwendet: 5'-TTTTCTAGAA- GATCTATGCATGGAGATACACCT-3' und 5'-TTTGGATCCTGGTTTCT- GAGAACA-3. Der PCR-Ansatz und die -Bedingungen waren standardmä¬ ßig.
Die amplifizierte DNA wurde mit Bglll and BamHI gespalten und in den mit Bglll und BamHI geöffneten, für ein tag-Polypeptid kodierenden Bluescript- Vektor pL441 inseriert. Das erhaltene DNA-Molekül wurde mit Xbal und Sall gespalten und die HPV 1 6-E7 tag DNA isoliert. Diese DNA wurde in den mit Xbal und Sall geöffneten Expressionvektor pREP-L20 (vgl. vor¬ stehend) inseriert. Es wurde das Expressionsplasmid pREP-L20 HPV 1 6- E7 tag erhalten. Dieses wurde zur Transfektion von Schizosaccharomyces Pombe Leu 1 .32 (vgl. vorstehend) verwendet. Die Kultivierung der Hefe¬ zellen und die Expression des HPV 1 6-E7 tag Gens sowie die Isolierung des HPV 1 6-E7 tag Fusionsproteins erfolgten wie in 1 (a) beschrieben.
Beispiel 2: Rückfaltung eines HPV 16-E7 Proteins und eines HPV 16-E7 Fusions¬ proteins
(a) Rückfaltung eines HPV 16 - E7 Proteins
Das in Beispiel 1 (a) erhaltene HPV 1 6-E7 Protein lag in unlöslicher, dena¬ turierter Form vor. Es wurde in einem Puffer, 25 mM Tris-HCl, pH 8,0, 10 % Glycerin, 2 mM DTT, 6 M Guanidinhydrochlroid, 50 mM NaF, 0, 1 mM Na-o-Yanadat, gelöst. Zu seiner Rückfaltung wurde es in einem Harn¬ stoffpuffer, 10 mM Na-Phosphat, pH 7,4, 10 % Glycerin, 2 mM DTT, 8 M Harnstoff, 1 : 12 verdünnt und auf eine Hydroxylapatit-Säule (HA Ul- trogel, IBF Biotechnics) geladen. Das HPV-Protein wurde mit einem Harn- stoff-Eluierungspuffer, 1 50 mM NaPi, pH 7,8, 10 % Glycerin, 2mM DTT, 8 M Harnstoff, eluiert und gegen einen Harnstoff-Dialysepuffer, 50 mM Tris-HCl, pH 7,5, 0, 1 mM ZnAc, 1 mM DTT, 50 mM NaCl, 4 M Harnstoff, dialysiert. Das Dialysat wurde auf einen Anionenaustauscher, Q-Sepharo- se (Pharmacia), geladen und das HPV-Protein mit einem Harnstoff-Dialyse¬ puffer, 50 mM Tris-HCl, pH 7,5, 0, 1 mM ZnAc, 1 mM DTT, 1 M NaCl, 4 M Harnstoff, eluiert. Das Eluat wurde einer üblichen Gelfiltration unter¬ zogen und anschließend gegen einen Dialysepuffer, 5 mM Hepes, 5 % Glycerin, 1 mM DTT, 20 μM ZnAc, dialysiert. Es wurde ein natives HPV 16-E7 Protein erhalten.
(b) Rückfaltung eines HPV 16-E7 tag Fusionsproteins
Die Rückfaltung des in Beispiel 1 (b) erhaltenen, denaturierten HPV 1 6-E7 tag Fusionsproteins erfolgte wie in Beispiel 2(a) beschrieben. Es wurde ein natives HPV 1 6-E7 tag Fusionsprotein erhalten.
Beispiel 3: Nachweis von HPV spezifischen Antikörpern in Seren von Cervix- Carcinom-Patientinnen
(a) ELISA mit einem HPV 16-E7 Protein
Zur Durchführung eines ELISA wurde die HPV 1 6-E7 Protein-Lösung von Beispiel 2(a) in einem Carbonatpuffer, pH 9,6, verdünnt. Zur Beschich¬ tung einer 96-Loch-Platte wurden pro Loch 100 ng des HPV Proteins sowie einmal Carbonatpuffer als Leerkontrolle zugegeben. Nach Inkuba¬ tion über Nacht bei 4°C schlössen sich 6 kurze Waschschritte mit PBS, 0,05 % Tween 20 an. Anschließend erfolgte die Blockierung freier Bin¬ dungsstellen des polymeren Trägers durch einstündige Inkubation mit einem irrelevanten Protein, z.B. Schweinehaut-Gelatine, BSA oder Casein, wobei letzteres bevorzugt ist, in PBS bei 37 °C. Seren von Patientinnen mit Cervix-Carcinom und von Kontrollpersonen jeweils aus Mexiko wurden in PBS ( 1 :50 Verdünnung) 1 Stunde bei 37 °C auf der Platte inkubiert. Nach erneutem Waschen mit PBS, 0,05 % Tween 20 wurde ein allgemein erhältlicher Peroxidase-gekoppelter Ziege Anti-Human Antikörper (Zymed Laboratories, CA, USA; Verdünnung nach Angabe des Herstellers) zu¬ gegeben. Nach einstündiger Inkubation bei 37°C erfolgte ein erneutes Waschen und anschließend die Peroxidase-Nachweisreaktion mit TMB- Entwicklungslösung (50 mM Natriumacetat, 0,4 mM 3,3',5,5'-Tetrame- thyl-benzidin-dihydrochlorid, 4,4 mM H202) innerhalb 30 Minuten bei Raumtemperatur. Nach dem Abstoppen der Reaktion mit 1 M Schwefel¬ säure wurde die Farbintensität photometrisch bei 450 nm bestimmt.
Es zeigte sich, daß durch ein HPV 1 6-E7 Protein HPV-spezifische Antikör¬ per in Seren von Cervix-Carcinom-Patientinnen nachgewiesen werden können.
(b) ELISA mit einem HPV 16-E7 tag Protein
Zur Durchführung eines ELISA mit dem HPV 1 6-E7 tag Protein von Bei¬ spiel 2(b) wurde eine 96-Loch-Platte mit 200 ng pro Loch des allgemein erhältlichen, gegen das tag Polypeptid gerichteten monoklonalen Maus- Antikörpers Mab tag (KT3) beschichtet. Hierzu wurde die Platte mit dem in vorstehendem Carbonatpuffer gelösten Antikörper über Nacht bei 4°C inkubiert. Nach sechs kurzen Waschschritten mit PBS, 0,05 % Tween 20 wurde das in vorstehendem Carbonatpuffer gelöste HPV 1 6-E7 tag Pro¬ tein in einer Menge von 100 ng pro Loch zugegeben. Die weiteren Ver¬ fahrensschritte erfolgten wie in Beispiel 3(a) beschrieben.
Es zeigte sich, daß durch ein HPV 1 6-E7 tag Protein HPV-spezifische Anti¬ körper in Seren von Cervix-Carcinom-Patientinnen nachgewiesen werden können.
Beide Nachweise in Beispiel 3(a) und (b) waren spezifischer als ein Ver- gleichs-ELISA, in dem ein HPV 1 6-E7-Fragment, d.h. kein natives Protein, verwendet wurde. Die Spezifität des Nachweises von 3(b) war dabei noch größer als jene des Nachweises von 3(a) . In 3(a) wurden in 64 Kontroll¬ werten 2 positive Beispiele erhalten, während in 3(b) all diese Kontroll- werte negativ waren. Ferner konnten in 3(b) 28 von 73 Seren der Cervix- Carcinom-Patientinnen als HPV-spezifisch erkannt werden, während es in 3(a) nur 20 waren.
Beispiel 4: Herstellung und Reinigung von HPV 16 (18) - E6 (E7) Proteinen
(a) Herstellung und Reinigung eines HPV 16 - E6 Proteins
Es wurde von dem Plasmid pGem-2/1 6 E6 ausgegangen, das eine für das E6 Protein von HPV 16 kodierende DNA enthält (vgl. Werness, B.A. et al., Science, Band 248, (1 990), 76-79) . Diese DNA wurde als Template für ein PCR-Verfahren verwendet. Als Primer-Paar wurde verwendet: 5'- CAGGGATCCGATGACGATGACAAAATGTTTCAGGACCCACAGG-3'und 5'-GGGAAGCTTATTACAGCTGGGTTTCTCTAC-3'. Der PCR-Ansatz bzw. die PCR-Bedingungen waren wie folgt:
PCR-Ansatz
Template DNA : ,μ\ = 1 ng
Pfu-Polymerase 10x-Puffer 10//I = 1 x
DMSO 10/vl = 10 % dNTP's 1μL = je 200/yM
Oligonukleotide, je 1 ,5μl 3μl = je 1 50 ng
H20-bidest ad 99/vl
PCR-Bedingungen
- 92 °C - 5 min
- Zugabe von 1μl Pfu-Polymerase (Stratagene) = 2,5 Einheiten
- Zugabe von Paraffin
PCR
92°C 1 min
58 °C 1 min 1 Zyklus 72°C 1 0 min
92°C 1 min
58°C 1 min 39 Zyklen
72°C 2 min
72°C 10 min 1 Zyklus
Die amplifizierte DNA wurde mit BamHI und Hindlll gespalten und in den mit BamHI und Hindlll geöffneten Expressionsvektors pQE-8 (Diagen) inseriert. Es wurde das Expressionsplasmid pQ/1 6/E6 erhalten. Dieses kodiert für ein Fusionsprotein aus 6 Histidin-Resten und einer Enterokina¬ se-Schnittstelle (N-Terminuspartner) sowie dem E6 Protein von HPV 1 6 (C-Terminuspartner). pQ/1 6/E6 wurde zur Transformation von E.coli SG 13009 (vgl. Gottesman, S. et al., J. Bacteriol. 148, (1 981 ), 265-273) verwendet. Die Bakterien wurden in einem LB-Medium mit 100μg/ml Ampicillin und 25/yg/ml Kanamycin kultiviert und 4 h mit 60//M Isopropyl- ß-D-Thiogalactopyranosid (IPTG) induziert. Durch Zugabe von 6 M Guani¬ dinhydrochlorid wurde eine Lyse der Bakterien erreicht, anschließend wurde mit dem Lysat eine Chromatographie (Ni-NTA-Resin) in Gegenwart von 8 M Harnstoff entsprechend der Angaben des Herstellers (Diagen) des Chromatographie-Materials durchgeführt. Das gebundene Fusions¬ protein wurde in einem Puffer mit pH 3, 5 eluiert. Nach seiner Neutralisie¬ rung wurde das Fusionsprotein einer 1 8 % SDS-Polyacrylamid-Gelelek- trophorese unterworfen und mit Coomassie-Blau angefärbt (vgl. Thomas, J.O. und Kornberg, R.D., J.Mol. Biol. 149 ( 1 975), 709-733) .
Es wurde ein reines HPV1 6-E6 Fusionsprotein (MG ca. 1 8 kD) erhalten. Dieses lag in denaturierter Form vor.
(b) Herstellung und Reinigung von HPV 16-E7 und HPV 18-E6 (E7) Proteinen
HPV 1 6-E7 und HPV 1 8-E6 (E7) Proteine wurden, wie in 4 (a) beschrie¬ ben, hergestellt und gereinigt. Folgende Abweichungen wurden durch- geführt:
Zur Herstellung von HPV 16-E7 wurde von dem Plasmid pWV 2916 ausgegangen, das eine für HPV 16 kodierende DNA enthält (vgl. Durst, M. etal., Proc. Natl. Acad. Sei. USA, Band 60, (1983), 3812-3815). Für das PCR-Verfahren wurde als Primer-Paar verwendet: 5'-CAGGGATCCATGC- ATGGAGATACACCTAC-3' und 5'-GGGAAGCTTATTATGGTTTCTGA- GAACAGATG-3'.
Nach Klonierung der amplifizierten DNA in pQE-8 (pQ/16/E7), wobei die DNA keine Enterokinase-Schnittstelle aufwies, und Expression in SG 13009 sowie Reinigung wurde ein reines HPV 16-E7 Fusionsprotein (MG ca.12 kD) erhalten. Dieses lag in denaturierter Form vor.
Zur Herstellung von HPV 18-E6 wurde von dem Plasmid pGem-1/18 E6 ausgegangen, das eine für das HPV 18-E6 Protein kodierende DNA enthält (vgl. Werness, B.A. et al., vorstehend). Für das PCR-Verfahren wurde als Primer-Paar verwendet: 5'-CAGAGATCTGATGACGATGACAA- AATGGCGCGCTTTGAGGATC-3' und 5'-GGGAAGCTTATTA- TACTTGTGTTTCTCTGCG-3'
Nach Klonierung in pQE-8 (pQ/18/E6) und Expression in SG 13009 wurde ein reines HPV18-E6 Fusionsprotein (MG ca.19 kD) erhalten. Dieses lag in denaturierter Form vor.
Zur Herstellung von HPV 18-E7 wurde von dem Plasmid pGEM 3/91 ausgegangen, das eine für HPV 18 kodierende DNA enthält (vgl. Roggen- buck, B. et al., J. Virol., Band 65, (1991 ), 5068-5072). Für das PCR-Ver¬ fahren wurde als Primer-Paar verwendet:5'-CAGGGATCCATGCATGG- ACCTAAGGCAAC-3' und 5'-GGGAAGCTTATTACTGCTGGGATGCA- CACC-3' Nach Klonierung der amplifizierten DNA in pQE-8 (pQ/1 8/E7), wobei die DNA keine Enterokinase-Schnittstelle aufwies, und Expression in SG 1 3009 wurde ein reines HPV 1 8-E7 Fusionsprotein (MG ca. 1 3 kD) erhal¬ ten. Dieses lag in denaturierter Form vor.
Beispiel 5: Rückfaltung von denaturierten HPV 16(18)-E6(E7) Proteinen
(a) Rückfaltung eines HPV 16 - E6 Proteins
Das in Beispiel 4(a) erhaltene HPV 1 6-E6 Protein wurde in einem Harn¬ stoff-Puffer (100 mM Phosphatpuffer, 8M Harnstoff, pH 8,0) gelöst und einer schrittweisen Dialyse unterworfen. Die Dialysepuffer enthielten 50 mM Mops/NaOH, pH 7,8, 500 mM NaCl, 20 % Glycerin, 5 mM DTT, 100 μM ZnCI2. Ferner wiesen sie 8 M, 3M, 1 M bzw. 0M Harnstoff auf. Die einzelnen Dialysen erfolgten jeweils innerhalb von 24 Stunden. Anschlie¬ ßend wurde eine Gelfiltration an Superdex 200 (Pharmacia) durchgeführt.
Es wurde ein HPV 16 - E6 Protein in nativer Form erhalten.
(b) Rückfaltung von HPV 16-E7 und HPV 18-E6 (E7) Proteinen
Die in Beispiel 4 (b) erhaltenen HPV 16-E7, HPV 18-E6 (E7) Proteine wur¬ den, wie in 5 (a) beschrieben, rückgefaltet. Es wurden entsprechende HPV- Proteine in nativer Form erhalten.
Beispiel 6: Nachweis von HPV-E6 und HPV-E7 spezifischen Antikörpern im Serum von Patienten
Zur Durchführung eines ELISA wurden HPV 1 6-E6 und HPV 1 6-E7 Proteine aus Beispiel 5 in Puffer (0, 1 M NaH2P04, pH 8,0) aufgenommen. Zur Beschichtung einer 96-Loch-Platte wurden pro Loch je 100μl mit 20 ng bzw. 8 ng der HPV Proteine sowie einmal 1 % BSA als Leerkontrolle einpipettiert. Nach Inkubation über Nacht bei 4°C schlössen sich je 4 kurze Waschschritte mit PBS, 0,05 % Tween 20 im Abstand von 5 min an. Anschließend erfolgte die Blockierung freier Bindungsstellen des polymeren Trägers durch über Nacht-Inkubation mit 1 % BSA in PBS, 0,05 % Tween 20 bei 4°C. Ein zu testendes Serum einer Patientin mit Gebärmutterhalskrebs wurde in 1 : 100 Verdünnung (PBS, 1 % BSA, 0,05 % Tween 20) für 1 Stunde bei 37°C auf der Platte inkubiert ("Schachbrett-Titra¬ tion"). Nach 4 kurzen Waschschritten mit PBS, 0,05 % Tween 20 im Abstand von 5 min wurde ein allgemein erhältlicher Peroxidase-gekoppelter Ziege Anti- Human Antikörper (Verdünnung nach Angabe der Hersteller) zugegeben. Nach dreißigminütiger Inkubation bei 37°C folgten wieder 4 Waschschritte, wie vorstehend, und anschließend die Peroxidase-Nachweisreaktion mit TMB-Ent- wicklungslösung (50 mM Natriumacetat, 0,4 mM 3,3', 5,5'-Tetramethyl-benzi- din-dihydrochlorid, 4,4 mM H202) innerhalb 30 Minuten bei Raumtemperatur. Nach dem Abstoppen der Reaktion mit 2 M HCI wurde die Farbintensität photo¬ metrisch bei 450 nm bestimmt. Absorbtionswerte des mehr als doppelten der BSA-Kontrolle wurden als positive Reaktion gewertet.
Es zeigte sich, daß HPV-E6 und HPV-E7 spezifische Antikörper im Serum einer Patienten mit Gebärmutterhalskrebs nachgewiesen werden können.
ERSATZBLAπ (REGEL 26)

Claims

Patentansprüche
1 . Verfahren zum Nachweis von spezifischen, gegen HPV-Proteine gerichteten Antikörpern in Körperflüssigkeiten, umfassend die folgenden Verfahrens¬ schritte:
(I) Inkubation eines nativen, Trägermaterial-gebundenen HPV-Proteins mit Körperflüssigkeiten, und
(II) Umsetzung von spezifischen, an das HPV-Protein gebundenen Anti¬ körpern (a) mit markierten, gegen die Antikörper (a) gerichteten Antikörpern (b), oder mit unmarkierten Antikörpern (b) und letztere mit markierten, gegen die Antikörper (b) gerichteten Antikörpern (c).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß im Verfahrens¬ schritt (I) ein HPV -tag Fusionsprotein verwendet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Ver¬ fahrensschritt (I) ferner ein oder mehrere denaturierte, Trägermaterial-gebun¬ dene HPV-Proteine und/oder Fragmente davon verwendet werden.
4. Verfahren nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß das HPV-Protein ein HPV-E6 oder HPV-E7 Protein ist.
5. Verfahren nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß das HPV-Protein von HPV 16 oder HPV 18 stammt.
6. Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, daß im Verfahrensschritt (I) mehrere native HPV-Proteine verwendet werden.
7. Verfahren nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, daß das native HPV-Protein durch Rückfaltung eines entsprechenden denatu¬ rierten Proteins erhalten ist.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Rückfaltung des denaturierten HPV-Proteins eine Lösung dieses Proteins in einem Harn¬ stoffpuffer und eine Dialyse des gelösten Proteins in üblichen, absteigende Molaritäten von Harnstoff aufweisenden Puffern sowie eine Gelfiltration des dialysierten Proteins umfaßt.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Rückfaltung des denaturierten HPV-Proteins ein Lösen des Proteins in einem üblichen Harnstoffpuffer, ein Aufbringen auf eine übliche Hydroxylapatit-Säule, ein Eluieren mit einem üblichen Eluierungspuffer vorstehender Harnstoff-Molari¬ tät, ein Dialysieren gegen einen üblichen Dialysepuffer absteigender Harn¬ stoff-Molarität, ein Aufbringen auf einen üblichen Anionenaustauscher, ein Eluieren mit einem üblichen Eluierungspuffer gleicher Harnstoff-Molarität wie vorstehender Dialysepuffer, eine Durchführung einer Gelfiltration, und ein Dialysieren gegen einen üblichen Dialysepuffer umfaßt.
1 0. Verfahren nach einem der Ansprüche 1 - 9, dadurch gekennzeichnet, daß die Körperflüssigkeiten Serum, Lymphe, Speichel, Sputum, Urin, Stuhl, Liquor, Galle, gastrointestinale Sekrete sowie aus festen Geweben und Tumoren erhaltene Flüssigkeiten umfassen.
1 1 . Verfahren nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, daß das Trägermaterial Mikrotiterplatten, Röhrchen, Mikrokugeln und Objekt¬ träger umfaßt.
ERSATZ3LAπ (REGEL 26)
12. Verfahren nach einem der Ansprüche 1 - 1 1 , dadurch gekennzeichnet, daß die Antikörper (b) in der ersten Alternative und die Antikörper (c) in der zweiten Alternative mit einem Enzym markiert sind.
13. Verfahren nach einem der Ansprüche 1 - 1 1 , dadurch gekennzeichnet, daß die Antikörper (b) in der ersten Alternative und die Antikörper (c) in der zweiten Alternative mit einem Fluoreszenzfarbstoff markiert sind.
14. Verfahren nach einem der Ansprüche 1 - 1 1 , dadurch gekennzeichnet, daß die Antikörper (b) in der ersten Alternative und die Antikörper (c) in der zweiten Alternative radioaktiv markiert sind.
15. Kit, enthaltend ein oder mehrere native, Trägermaterial-gebundene HPV-Proteine, gegebenenfalls ein oder mehrere denaturierte, Trägermaterial-gebun¬ dene HPV-Proteine und/oder Fragmente davon, und markierte Anti¬ körper (b) nach Anspruch 1 sowie übliche Waschpuffer und gegebe¬ nenfalls ein der Markierung entsprechendes Substrat, oder ein oder mehrere native, Trägermaterial-gebundene HPV-Proteine, gegebenenfalls ein oder mehrere, denaturierte, Trägermaterial-gebun¬ dene HPV-Proteine und/oder Fragmente davon, und unmarkierte Anti¬ körper (b) und markierte Antikörper (c) nach Anspruch 1 sowie übli¬ che Waschpuffer und gegebenenfalls ein der Markierung entsprechen¬ des Substrat.
16. Native HPV-Proteine, erhalten durch das Verfahren nach einem der An¬ sprüche 7-9.
ERSATZBLAπ (REGEL 26)
EP96921890A 1995-07-04 1996-07-04 Nachweisverfahren für spezifische, gegen hpv-proteine gerichtete antikörper Withdrawn EP0848822A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19524346 1995-07-04
DE19524347 1995-07-04
DE19524346 1995-07-04
DE19524347 1995-07-04
PCT/DE1996/001195 WO1997002491A1 (de) 1995-07-04 1996-07-04 Nachweisverfahren für spezifische, gegen hpv-proteine gerichtete antikörper

Publications (1)

Publication Number Publication Date
EP0848822A1 true EP0848822A1 (de) 1998-06-24

Family

ID=26016529

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96921890A Withdrawn EP0848822A1 (de) 1995-07-04 1996-07-04 Nachweisverfahren für spezifische, gegen hpv-proteine gerichtete antikörper

Country Status (5)

Country Link
US (1) US6214541B1 (de)
EP (1) EP0848822A1 (de)
JP (1) JPH11508685A (de)
DE (1) DE19627031C2 (de)
WO (1) WO1997002491A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018334A2 (en) * 1995-11-15 1997-05-22 Gen-Probe Incorporated Nucleic acid probes complementary to human papillomavirus nucleic acid and related methods and kits
DE19649604C1 (de) * 1996-11-29 1997-09-25 Deutsches Krebsforsch Verfahren zur Reinigung und Rückfaltung von HPV-Proteinen
US6824985B1 (en) * 1997-09-09 2004-11-30 Bayer Corporation Formulation for reducing urea effect for immunochromatography assays using urine samples
US6825550B2 (en) * 1999-09-02 2004-11-30 Micron Technology, Inc. Board-on-chip packages with conductive foil on the chip surface
JP4474264B2 (ja) * 2004-08-20 2010-06-02 生寶生物科技股▲ふん▼有限公司 子宮頸癌抑制の融合蛋白
EP1757615B1 (de) * 2005-08-24 2011-08-24 Healthbanks Biotech Co., Ltd. Fusionsprotein zur Inhibierung von Gebärmutterhalskrebs
DE102010061028A1 (de) 2010-12-03 2012-06-06 Ralf Hilfrich Schnelltest zum qualitativen und/oder quantitativen Bestimmen von Körperflüssigkeit enthaltenen Antikörpern gegen humane Papillomviren sowie Vorrichtung zum Durchführen des Schnelltests
EP3222301B1 (de) 2016-03-23 2018-05-09 Abiomed Europe GmbH Blutpumpe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748109A (en) 1983-07-01 1988-05-31 Baird Phillip J Assay method and reagent to determine antibodies to papillomavirus virions
DE3625257A1 (de) * 1986-07-23 1988-02-04 Behringwerke Ag Expressionsprodukte der menschlichen papillomviren typ 16 und 18, fuer diese proteine spezifische antikoerper und diese antikoerper bzw. entsprechende dna enthaltende diagnostika
GB9207701D0 (en) * 1992-04-08 1992-05-27 Cancer Res Campaign Tech Papillomavirus e7 protein
WO1995015497A1 (en) * 1993-11-30 1995-06-08 The University Of Queensland Immunoassay for cervical cancer
DE4441197C1 (de) * 1994-11-18 1996-03-28 Deutsches Krebsforsch Expressionsplasmide für Hefe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9702491A1 *

Also Published As

Publication number Publication date
DE19627031C2 (de) 1998-07-02
DE19627031A1 (de) 1997-01-09
JPH11508685A (ja) 1999-07-27
US6214541B1 (en) 2001-04-10
WO1997002491A1 (de) 1997-01-23

Similar Documents

Publication Publication Date Title
DE69534995T2 (de) Varianten von antigenen des menschlichen papillomvirus
DE69334192T2 (de) Papillomavirus vakzine
DE69836753T2 (de) Papilloma virus capsomere impfstoff-formulierungen und deren verwendungen
DE19627031C2 (de) Nachweisverfahren für spezifische, gegen frühe HPV-Proteine gerichtete Antikörper
DE69614393T2 (de) Herpes simplex viren diagnostik
DE69933875T2 (de) Protein-verabreichungssystem, das dem menschlichen papillomavirus ähnliche partikel benützt.
DE69524415T2 (de) UNGESPLEISSTE VARIANTEN DES gp350/220
DE10059630A1 (de) Arzneimittel zur Vermeidung oder Behandlung von durch humanen Papillomavirus-Typ 18-hervorgerufenem Tumor
DE10059631A1 (de) T-Zellepitope des Papillomavirus L1-und E7-Proteins und ihre Verwendung in Diagnostik und Therapie
DE69528578T2 (de) Verändertes l2-protein des papillomavirus und damit gestellte viroide
DE19904800C1 (de) Partikel zur Gentherapie
DE19521046C1 (de) Protein mit DNase-Aktivität
EP0893504B1 (de) Von Kaposi-sarkom assoziiertem Herpes-Virus (KSHV, HHV-8) kodiertes Polypeptid und dessen Verwendung in Diagnostik und Therapie
DE19611234C1 (de) Tyrosin-Phosphatase-verwandtes Protein
WO1998023752A2 (de) Papillomviren, mittel zu deren nachweis sowie zur therapie von durch sie verursachten erkrankungen
DE69104012T2 (de) Rekombiniebares Hepatitis-Delta-Antigen, Verfahren zu seiner Reinigung und Verwendung.
WO1998042847A2 (de) Papillomvirus-hauptcapsid-proteins und deren verwendung in diagnose, therapie und vakzinierung
DE19819476C1 (de) Polypeptid mit immunogenen Eigenschaften und veränderten biologischen Funktionen eines Proteins
EP1003877A2 (de) Papillomviren, mittel zu deren nachweis sowie zur therapie von durch sie verursachten erkrankungen
DE19649606C1 (de) Systeme zur Bestimmung von Wirksubstanzen gegen HPV-assoziierte Karzinome
EP0754755B1 (de) Rekombinante autologe Fusionsproteine des Epstein-Barr-Virus, diese enthaltende Testkits und Verfahren zum Nachweis von Epstein-Barr-Virus-spezifischen Antikörpern
DE19527552C2 (de) Transketolase-verwandtes-Protein
DE19713434C1 (de) Protein zur Inhibierung von Apoptose
DE19812940A1 (de) Formulierung mit Papillomavirus-spezifischem Protein, seine Herstellung und Verwendung
DE19534763C1 (de) FMR1-verwandtes Protein

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19980827

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010131