EP0848220A1 - Verfahren und Anlage zur Lieferung eines Luftgases in variablen Mengen - Google Patents
Verfahren und Anlage zur Lieferung eines Luftgases in variablen Mengen Download PDFInfo
- Publication number
- EP0848220A1 EP0848220A1 EP97402990A EP97402990A EP0848220A1 EP 0848220 A1 EP0848220 A1 EP 0848220A1 EP 97402990 A EP97402990 A EP 97402990A EP 97402990 A EP97402990 A EP 97402990A EP 0848220 A1 EP0848220 A1 EP 0848220A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flow
- pressure
- total flow
- pump
- brought
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04836—Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/0403—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04036—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04236—Integration of different exchangers in a single core, so-called integrated cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/54—Oxygen production with multiple pressure O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/50—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/46—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/10—Mathematical formulae, modeling, plot or curves; Design methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Definitions
- the present invention relates to a process for supplying a consumer line, during a time interval, a variable demand flow of an air component, in particular of oxygen, produced by an air distillation apparatus. It applies in particular to the supply of pressurized oxygen with highly variable flow.
- the pressures discussed here are absolute pressures, and the flows are flows molars.
- oxygen is used in "batch", with significant variations in flow and at moderately high pressures (of the order of a few bars to about twenty bars).
- moderately high pressures of the order of a few bars to about twenty bars.
- Various solutions are conventionally used in order to follow these changes in debit.
- EP-A-0 422 974 on behalf of the Applicant describes a "rocking" process intended for the production of gaseous oxygen at variable flow.
- Oxygen requested is withdrawn from a tank, pumped to operating pressure, and vaporized by condensation with a variable flow of air to be distilled.
- the compressor, and possibly the booster are significantly oversized compared to the flow nominal oxygen to be produced.
- they work for the majority of the time at high flows different from their nominal flow, and therefore with a degraded yield.
- the right operation of the scale assumes permanent presence a reserve of the two liquids.
- the invention aims to allow the supply of variable-flow air gases in particularly effective and economical conditions.
- the subject of the invention is also a air distillation installation intended for work of the process defined above.
- This installation comprises, according to the invention, means for withdrawing from the distillation apparatus a constant total flow of said constituent; a buffer capacity; of the first means for bringing at least part of said total flow at operating pressure and in gaseous form, these first means being connected to the consumer line; second means for bringing a second flow of said constituting at a high pressure greater than the pressure of use and in gaseous form, these second means being connected to the buffer capacity; and a conduct auxiliary fitted with a controlled expansion valve, connecting the buffer capacity to the consumer line.
- pressure P constant and equal to 16 bars, but it will be understood that this pressure P can also fluctuate around an average value.
- DN the flow nominal of the oxygen production installation. This DN flow is equal to D1 in this example, but, in variant it could be greater than this value if the installation is also intended to provide oxygen to other consumers.
- the flow d1 is sent directly to the user or consumer behavior, while the flow d2 is sent to a buffer or buffer.
- the requested flow D is greater than D1
- This flow d3 is represented by diagram (d).
- FIGS 2, 3 and 5 to 11 show several different installations capable of implement such a method.
- Figures 2 and 3 relate to a installation close to that shown in Figure 1 from US-A-5,329,776, and differ from it only by the addition of an additional racking line 35 of liquid oxygen, of an additional pump 36 adapted to bring this liquid oxygen to the aforementioned pressure P, additional passages 37 of the exchange line thermal, for vaporization and reheating up to the ambient temperature of this oxygen, from a high oxygen storage buffer 38 pressure from the 12-passage pump circuit 17, from a pressure regulator 138 disposed upstream of this buffer, and a line 39 provided with an expansion valve 40, connecting this buffer to the consumer line 15.
- the air distillation installation shown in FIG. 3 essentially comprises: an air compressor 1; an apparatus 2 for purifying the compressed air into water and CO 2 by adsorption, this apparatus comprising two adsorption bottles 2A, 2B, one of which operates in adsorption while the other is being regenerated; a turbine-booster assembly 3 comprising an expansion turbine 4 and a booster 5 whose shafts are coupled; a heat exchanger 6 constituting the heat exchange line of the installation; a double distillation column 7 comprising a medium pressure column 8 surmounted by a low pressure column 9, with a vaporizer-condenser 10 putting the overhead vapor (nitrogen) from column 8 in heat exchange relation with the tank liquid (oxygen) from column 9; a liquid oxygen tank 11, the bottom of which is connected to a liquid oxygen pump 12; and a liquid nitrogen tank 13, the bottom of which is connected to a liquid nitrogen pump 14.
- This facility is intended to provide, via a user line 15, gaseous oxygen under the operating pressure P.
- liquid oxygen drawn from the column 9 tank via line 16 and stored in the reservoir 11 is brought to the high pressure P1 (30 bars) by the pump 12 in the liquid state, then vaporized and heated under this high pressure in passages 17 of the exchanger 6, under the conditions of FIG. 1 (c), and sent to buffer 38. Under the conditions of Figure 1 (d), this oxygen is expanded at 40 and sent to the line 15 via line 39.
- the heat necessary for this vaporization and to this reheating, as well as to reheating and possibly vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, in the following conditions.
- All of the air to be distilled is compressed by compressor 1 at a first high pressure significantly higher than the average column pressure 8 of use. Then the air, precooled in 18 and cooled to around room temperature in 19, is purified in one, 2A for example, of the bottles adsorption, and fully boosted by the booster 5, which is driven by the turbine 4.
- Air is then introduced at the hot end of exchanger 6 and completely cooled to a intermediate temperature. At this temperature, a fraction of the air continues to cool and is liquefied in passages 20 of the exchanger, then is relaxed at low pressure in an expansion valve 21 and introduced at an intermediate level in the column 9. The rest of the air is relaxed to average pressure in turbine 4 then sent directly, via a pipe 22, at the base of column 8.
- Low pressure nitrogen is heated in passages 28 of exchanger 6 then evacuated via a pipe 29, while the waste gas, after heating in passages 30 of the exchanger, is used to regenerate an adsorption bottle, the 2B bottle in the example considered, before being evacuated via a pipe 31.
- part medium pressure liquid nitrogen is, after expansion in an expansion valve 32, stored in the tank 13, and that a production of liquid nitrogen and / or oxygen liquid is supplied via line 33 (for nitrogen) and / or 34 (for oxygen).
- the pressure of the compressed air at 5 is the air condensation pressure by heat exchange with oxygen being vaporized under pressure of use P, i.e. the pressure for which air liquefaction knee 100, on the diagram heat exchange is located slightly to the right of the vertical bearing 101 for vaporizing oxygen under the pressure P ( Figure 4).
- the temperature difference at the end heat of the exchange line is adjusted by means of the turbine 4, the suction temperature of which is indicated in 102.
- pumps 12 and 36 can be connected in series, the pump suction 12 being stitched on the delivery line of the pump 36.
- Figure 5 shows a variant installation which differs from the previous one by the removal of pump 36 and of the vaporization-heating circuit corresponding.
- Figures 7 and 8 show another variant of the installation which does not differ from that of Figures 2 and 3 only by the fact that the oxygen at 16 bars is withdrawn in gaseous form from the column tank low pressure 9, via a line 44, heated under the low pressure in passages 45 of the exchange line 6, and brought to 16 bars by an oxygen compressor 46.
- Oxygen at 30 bar is drawn from the tank 11 by pump 12, which brings it to this high pressure in liquid form and then is vaporized and warmed in passages 17, and is sent directly to buffer 38.
- Figures 9 and 10 illustrate the implementation work of the invention with a conventional apparatus of air distillation without pump, nitrogen cycle (turbine 47 releasing at low pressure medium pressure nitrogen) and an argon separation column (not shown) coupled to the low pressure column by two lines 48.
- the oxygen flow D1 is withdrawn in gaseous form from the bottom column tank pressure and, after heating, is compressed to 16 bars and / or at 30 bars, under the conditions described above, by two respective oxygen compressors 49 and 50.
- the compressor 49 discharges directly into line 15, while compressor 50 backs up in buffer 38.
- Figures 11 and 12 does not differs from the previous one only in that the two oxygen compressors are connected in series instead to be mounted in parallel. So the compressor 49 compresses the entire flow D1 to 16 bars, and the compressor 50 carries from 16 to 30 bars the flow d2 described next to Figure 1 (c).
- compressors 49 and 50 can be made up of two floors or groups stages of the same machine.
- operating pressure means the pressure in line 15. However, this does not exclude a subsequent modification of this pressure, for example by expansion.
- the pressure regulator 138 can be deleted.
- the buffer pressure then changes between pressures P and P1 as a function of time.
- the method of the invention can use multiple buffers at high pressures P1, P2, ... different, all significantly greater than the operating pressure P.
- gas is then taken from one or the other of the buffers, according to the variations of this flow.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9615281 | 1996-12-12 | ||
FR9615281A FR2757282B1 (fr) | 1996-12-12 | 1996-12-12 | Procede et installation de fourniture d'un debit variable d'un gaz de l'air |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0848220A1 true EP0848220A1 (de) | 1998-06-17 |
EP0848220B1 EP0848220B1 (de) | 2004-02-18 |
Family
ID=9498600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97402990A Revoked EP0848220B1 (de) | 1996-12-12 | 1997-12-10 | Verfahren und Anlage zur Lieferung eines Luftgases in variablen Mengen |
Country Status (13)
Country | Link |
---|---|
US (1) | US5941098A (de) |
EP (1) | EP0848220B1 (de) |
JP (1) | JPH10259990A (de) |
KR (1) | KR100474464B1 (de) |
CN (1) | CN1130538C (de) |
AR (1) | AR008937A1 (de) |
BR (1) | BR9705641A (de) |
CA (1) | CA2224742A1 (de) |
DE (1) | DE69727648T2 (de) |
ES (1) | ES2216119T3 (de) |
FR (1) | FR2757282B1 (de) |
PL (1) | PL323709A1 (de) |
ZA (1) | ZA9711131B (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0895045A2 (de) * | 1997-07-30 | 1999-02-03 | Linde Aktiengesellschaft | Verfahren zur Luftzerlegung |
WO2016025063A1 (en) * | 2014-07-28 | 2016-02-18 | Praxair Technolgy, Inc. | Air separation method and apparatus |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2751737B1 (fr) * | 1996-07-25 | 1998-09-11 | Air Liquide | Procede et installation de production d'un gaz de l'air a debit variable |
DE10013075A1 (de) * | 2000-03-17 | 2001-09-20 | Linde Ag | Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts |
US6357259B1 (en) * | 2000-09-29 | 2002-03-19 | The Boc Group, Inc. | Air separation method to produce gaseous product |
EP1207362A1 (de) * | 2000-10-23 | 2002-05-22 | Air Products And Chemicals, Inc. | Verfahren und Vorrichtung zur Herstellung von gasförmigem Niederdrucksauerstoff |
EP1202013B3 (de) * | 2000-10-23 | 2009-04-01 | Air Products And Chemicals, Inc. | Vorrichtung und Verfahren zur Herstellung von gasförmigem Sauerstoff unter niedrigem Druck |
GB0219415D0 (en) * | 2002-08-20 | 2002-09-25 | Air Prod & Chem | Process and apparatus for cryogenic separation process |
FR2854683B1 (fr) * | 2003-05-05 | 2006-09-29 | Air Liquide | Procede et installation de production de gaz de l'air sous pression par distillation cryogenique d'air |
FR2872262B1 (fr) * | 2004-06-29 | 2010-11-26 | Air Liquide | Procede et installation de fourniture de secours d'un gaz sous pression |
US7409835B2 (en) * | 2004-07-14 | 2008-08-12 | Air Liquide Process & Construction, Inc. | Backup system and method for production of pressurized gas |
AU2005225027A1 (en) * | 2005-07-21 | 2007-02-08 | L'air Liquide Societe Anonyme Pour L'etude Et L"Exploitation Des Procedes Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
FR2895068B1 (fr) * | 2005-12-15 | 2014-01-31 | Air Liquide | Procede de separation d'air par distillation cryogenique |
JP4688843B2 (ja) * | 2007-05-07 | 2011-05-25 | 株式会社神戸製鋼所 | 空気分離装置 |
US7821158B2 (en) * | 2008-05-27 | 2010-10-26 | Expansion Energy, Llc | System and method for liquid air production, power storage and power release |
CN101769438A (zh) * | 2008-12-30 | 2010-07-07 | 湖北宜化化工股份有限公司 | 进出气柜气体近路运行的方法 |
US8623107B2 (en) | 2009-02-17 | 2014-01-07 | Mcalister Technologies, Llc | Gas hydrate conversion system for harvesting hydrocarbon hydrate deposits |
JP5407661B2 (ja) * | 2009-08-26 | 2014-02-05 | Jfeスチール株式会社 | 酸素供給設備及び酸素供給方法 |
CN102072612B (zh) * | 2010-10-19 | 2013-05-29 | 上海加力气体有限公司 | N型模式节能制气方法 |
CN103575064B (zh) * | 2012-07-23 | 2015-10-28 | 中国石油化工股份有限公司 | 一种空气分离氧氮气快速增加压力氮气负荷的装置及方法 |
US9631863B2 (en) * | 2013-03-12 | 2017-04-25 | Mcalister Technologies, Llc | Liquefaction systems and associated processes and methods |
US8907524B2 (en) | 2013-05-09 | 2014-12-09 | Expansion Energy Llc | Systems and methods of semi-centralized power storage and power production for multi-directional smart grid and other applications |
EP3060864B1 (de) * | 2013-10-23 | 2020-10-07 | Praxair Technology, Inc. | Sauerstoffreserveverfahren und system |
US20150168056A1 (en) * | 2013-12-17 | 2015-06-18 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method For Producing Pressurized Gaseous Oxygen Through The Cryogenic Separation Of Air |
DE102016004606A1 (de) * | 2016-04-14 | 2017-10-19 | Linde Aktiengesellschaft | Verfahrenstechnische Anlage und Verfahren zur Flüssiggasherstellung |
US10260801B2 (en) * | 2016-06-30 | 2019-04-16 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes George Claude | Method for operating an air separation plant |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1172934A (en) * | 1966-03-14 | 1969-12-03 | Air Reduction | A Low-Temperature Regenerator and its use in Gas Storage |
EP0250390A2 (de) * | 1986-05-14 | 1987-12-23 | VOEST-ALPINE Aktiengesellschaft | Einrichtung zum Zerlegen von Luft mit Speicherung von Produktgas in flüssiger Form |
EP0628778A1 (de) * | 1993-06-07 | 1994-12-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Verfahren und Hochdruckgasaufuhreinheit für eine Luftbestandteil verbrauchende Anlage |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61190277A (ja) * | 1985-02-16 | 1986-08-23 | 大同酸素株式会社 | 高純度窒素および酸素ガス製造装置 |
DE3913880A1 (de) * | 1989-04-27 | 1990-10-31 | Linde Ag | Verfahren und vorrichtung zur tieftemperaturzerlegung von luft |
FR2670278B1 (fr) * | 1990-12-06 | 1993-01-22 | Air Liquide | Procede et installation de distillation d'air en regime variable de production d'oxygene gazeux. |
US5224336A (en) * | 1991-06-20 | 1993-07-06 | Air Products And Chemicals, Inc. | Process and system for controlling a cryogenic air separation unit during rapid changes in production |
FR2697620B1 (fr) * | 1992-10-30 | 1994-12-23 | Air Liquide | Procédé et installation de production d'azote gazeux à débit variable. |
FR2716816B1 (fr) * | 1994-03-02 | 1996-05-03 | Air Liquide | Procédé de redémarrage d'une colonne auxiliaire de séparation argon/oxygène par distillation, et installation correspondante. |
-
1996
- 1996-12-12 FR FR9615281A patent/FR2757282B1/fr not_active Expired - Fee Related
-
1997
- 1997-12-10 ES ES97402990T patent/ES2216119T3/es not_active Expired - Lifetime
- 1997-12-10 ZA ZA9711131A patent/ZA9711131B/xx unknown
- 1997-12-10 DE DE69727648T patent/DE69727648T2/de not_active Revoked
- 1997-12-10 EP EP97402990A patent/EP0848220B1/de not_active Revoked
- 1997-12-11 BR BR9705641A patent/BR9705641A/pt not_active IP Right Cessation
- 1997-12-11 AR ARP970105832A patent/AR008937A1/es unknown
- 1997-12-11 JP JP9341721A patent/JPH10259990A/ja active Pending
- 1997-12-12 PL PL97323709A patent/PL323709A1/xx unknown
- 1997-12-12 US US08/990,085 patent/US5941098A/en not_active Expired - Fee Related
- 1997-12-12 CA CA002224742A patent/CA2224742A1/en not_active Abandoned
- 1997-12-12 CN CN97125391.9A patent/CN1130538C/zh not_active Expired - Fee Related
- 1997-12-15 KR KR1019970066873A patent/KR100474464B1/ko not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1172934A (en) * | 1966-03-14 | 1969-12-03 | Air Reduction | A Low-Temperature Regenerator and its use in Gas Storage |
EP0250390A2 (de) * | 1986-05-14 | 1987-12-23 | VOEST-ALPINE Aktiengesellschaft | Einrichtung zum Zerlegen von Luft mit Speicherung von Produktgas in flüssiger Form |
EP0628778A1 (de) * | 1993-06-07 | 1994-12-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Verfahren und Hochdruckgasaufuhreinheit für eine Luftbestandteil verbrauchende Anlage |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0895045A2 (de) * | 1997-07-30 | 1999-02-03 | Linde Aktiengesellschaft | Verfahren zur Luftzerlegung |
EP0895045A3 (de) * | 1997-07-30 | 1999-06-16 | Linde Aktiengesellschaft | Verfahren zur Luftzerlegung |
US6038885A (en) * | 1997-07-30 | 2000-03-21 | Linde Aktiengesellschaft | Air separation process |
WO2016025063A1 (en) * | 2014-07-28 | 2016-02-18 | Praxair Technolgy, Inc. | Air separation method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
CA2224742A1 (en) | 1998-06-12 |
ES2216119T3 (es) | 2004-10-16 |
KR100474464B1 (ko) | 2005-06-17 |
FR2757282B1 (fr) | 2006-06-23 |
US5941098A (en) | 1999-08-24 |
DE69727648T2 (de) | 2004-10-14 |
CN1130538C (zh) | 2003-12-10 |
AR008937A1 (es) | 2000-02-23 |
CN1190726A (zh) | 1998-08-19 |
ZA9711131B (en) | 1998-06-23 |
EP0848220B1 (de) | 2004-02-18 |
PL323709A1 (en) | 1998-06-22 |
DE69727648D1 (de) | 2004-03-25 |
BR9705641A (pt) | 1999-05-25 |
FR2757282A1 (fr) | 1998-06-19 |
JPH10259990A (ja) | 1998-09-29 |
KR19980063916A (ko) | 1998-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0848220B1 (de) | Verfahren und Anlage zur Lieferung eines Luftgases in variablen Mengen | |
EP0628778B1 (de) | Verfahren und Hochdruckgasversorgungseinheit für eine ein Luftbestandteil verbrauchende Anlage | |
EP0504029B1 (de) | Verfahren zur Herstellung von gasförmigem Sauerstoff unter Druck | |
EP0576314B1 (de) | Verfahren und Apparat zur Herstelling von gasförmigem Sauerstoff unter Druck | |
EP1447634B1 (de) | Verfahren und Vorrichtung zur Erzeugung von mindestens einem gasförmigen unter hohem Druck stehenden Produktstrom, wie Sauerstoff, Stickstoff oder Argon, durch Tieftemperaturzerlegung von Luft | |
WO2007068858A2 (fr) | Procédé de séparation d'air par distillation cryogénique | |
EP0789208B1 (de) | Verfahren und Einrichtung zur Herstellung von gasförmigem Sauerstoff unter hohem Druck | |
EP0605262B1 (de) | Druckgassauerstoffherstellungsverfahren und Apparat | |
EP0694746B1 (de) | Verfahren zur Herstellung von Druckgas mit variabelen Mengen | |
EP0914584B1 (de) | Verfahren und einrichtung zur herstellung eines luftgases mit variablen mengen | |
EP2712419A2 (de) | Verfahren zur trennung von luft durch kryogene destillation | |
EP0952415A1 (de) | Rektifikationsverfahren und -vorrichtung zur variablen Argon Herstellung | |
FR2688052A1 (fr) | Procede et installation de production d'oxygene et/ou d'azote gazeux sous pression par distillation d'air. | |
EP0611218B2 (de) | Verfahren und Anlage zur Herstellung von Drucksauerstoff | |
EP0678317B1 (de) | Verfahren und Anlage zur Trennung einer Gasmischung durch Tieftemperaturdestillation | |
EP1521628B1 (de) | Verfahren zum betrieb einer produktionsanlage | |
FR2929697A1 (fr) | Procede de production d'azote gazeux variable et d'oxygene gazeux variable par distillation d'air | |
EP1697690A2 (de) | Verfahren und anlage zur anreicherung eines gasstroms mit einer seiner komponenten | |
FR2674011A1 (fr) | Procede et installation de production d'oxygene gazeux sous pression. | |
FR2685460A1 (fr) | Procede et installation de production d'oxygene gazeux sous pression par distillation d'air. | |
FR2787562A1 (fr) | Procede et installation de distillation d'air avec production d'argon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES GB IT NL SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19981217 |
|
AKX | Designation fees paid |
Free format text: BE DE ES GB IT NL SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): BE DE ES GB IT NL SE |
|
17Q | First examination report despatched |
Effective date: 20000901 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES GB IT NL SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69727648 Country of ref document: DE Date of ref document: 20040325 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040506 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2216119 Country of ref document: ES Kind code of ref document: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: LINDE AKTIENGESELLSCHAFT Effective date: 20041112 Opponent name: PRAXAIR, INC. Effective date: 20041109 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: LINDE AKTIENGESELLSCHAFT Opponent name: PRAXAIR, INC. |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20061114 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20061117 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20061121 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20061124 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20061204 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20061213 Year of fee payment: 10 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20061011 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 20061011 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: ECNC |
|
NLR2 | Nl: decision of opposition |
Effective date: 20061011 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071121 Year of fee payment: 11 |