EP0504029B1 - Verfahren zur Herstellung von gasförmigem Sauerstoff unter Druck - Google Patents

Verfahren zur Herstellung von gasförmigem Sauerstoff unter Druck Download PDF

Info

Publication number
EP0504029B1
EP0504029B1 EP92400600A EP92400600A EP0504029B1 EP 0504029 B1 EP0504029 B1 EP 0504029B1 EP 92400600 A EP92400600 A EP 92400600A EP 92400600 A EP92400600 A EP 92400600A EP 0504029 B1 EP0504029 B1 EP 0504029B1
Authority
EP
European Patent Office
Prior art keywords
pressure
air
oxygen
turbine
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP92400600A
Other languages
English (en)
French (fr)
Other versions
EP0504029A1 (de
Inventor
Maurice Grenier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26228561&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0504029(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FR9102917A external-priority patent/FR2674011B1/fr
Priority claimed from FR9115935A external-priority patent/FR2685460B1/fr
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0504029A1 publication Critical patent/EP0504029A1/de
Application granted granted Critical
Publication of EP0504029B1 publication Critical patent/EP0504029B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04236Integration of different exchangers in a single core, so-called integrated cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air
    • Y10S62/94High pressure column

Definitions

  • the present invention relates to a process for the production of gaseous oxygen under a high oxygen pressure by air distillation in a double column installation, pumping of liquid oxygen withdrawn from the bottom of the low pressure column, and vaporization of liquid oxygen compressed by heat exchange, in the heat exchange line of the installation, with air brought to a high air pressure, in which all of the air is compressed at high air pressure the air to be distilled; at an intermediate cooling temperature, a fraction of this air is expanded in a turbine, at the pressure of the medium pressure column.
  • the pressures discussed below are absolute pressures.
  • the pressures in the medium pressure column and the low pressure column will be referred to as “medium pressure” and “low pressure”, respectively.
  • Pump processes make it possible to eliminate any gaseous oxygen compressor. To obtain a competitive energy expenditure, it is necessary to compress a large air flow, of the order of 1.5 times the flow of oxygen to be vaporized, to a sufficient pressure allowing it to liquefy against -current oxygen.
  • EP-A-0.024.962 describes a process for vaporizing liquid oxygen, using a Claude turbine with production of liquid nitrogen.
  • EP-A-0.042.676 describes a process for vaporizing liquid oxygen by heat exchange with nitrogen. The process frigories are supplied only by nitrogen expansion.
  • the invention aims to provide a "pump" process requiring only a reduced investment.
  • the process according to the invention is characterized in that the air fraction is in excess with respect to the refrigerating needs of the heat exchange line, the turbine is braked by an air booster and the temperature difference at the hot end of the exchange line by evacuating at least one liquid product from the installation.
  • the abovementioned small temperature differences are obtained, and therefore a low specific energy expenditure, while avoiding the appearance of liquid at the inlet of the wheel of the expansion turbine.
  • the invention also relates to a process for producing gaseous oxygen under a high oxygen pressure of at least Approximately 13 bar by air distillation in a double column installation comprising a low pressure column and a medium pressure column, pumping of liquid oxygen withdrawn from the bottom of the low pressure column, and vaporization of the compressed liquid oxygen by exchange of heat with air brought to a high pressure markedly higher than the medium pressure, in which all of the air to be distilled is compressed to a first high pressure markedly higher than the medium pressure, and a first fraction of this is cooled air under the first high pressure and, at an intermediate cooling temperature, at least part of it is relieved at medium pressure in a turbine before introducing it into the double column, characterized in that the rest of the air is boosted at a second high pressure under the first high pressure, at least part of the compressed air, the flow rate of which is lower than the flow rate of liquid oxygen to be vaporized, being cooled and liquefied then, after expansion, introduced into the double column, the second high pressure being on the one hand
  • the air distillation installation shown in FIG. 1 essentially comprises: an air compressor 1, an apparatus 2 for purifying the compressed air into water and CO 2 by adsorption, this apparatus comprising two bottles of adsorption 2A, 2B, one of which operates in adsorption while the other is being regenerated; a turbine-booster assembly 3 comprising an expansion turbine 4 and a booster 5 whose shafts are coupled; a heat exchanger 6 constituting the heat exchange line of the installation; a double distillation column 7 comprising a medium pressure column 8 surmounted by a low pressure column 9, with a vaporizer-condenser 10 putting the overhead vapor (nitrogen) from column 8 in heat exchange relation with the tank liquid (oxygen) from column 9; a liquid oxygen tank 11, the bottom of which is connected to a liquid oxygen pump 12; and a liquid nitrogen tank 13, the bottom of which is connected to a liquid nitrogen pump 14.
  • This installation is intended to supply, via a pipe 15, gaseous oxygen under a predetermined high pressure, which can be between a few bars and a few tens of bars (in the present specification, the pressures considered are absolute pressures).
  • liquid oxygen withdrawn from the tank of the column 9 via a pipe 16 and stored in the tank 11, is brought to high pressure by the pump 12 in the liquid state, then vaporized and heated --- under this high pressure in passages 17 of exchanger 6.
  • the heat necessary for this vaporization and this reheating, as well as for the reheating and possibly for the vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, under the following conditions.
  • All of the air to be distilled is compressed by compressor 1 at a pressure higher than the medium pressure of column 8 but lower than the high pressure. Then the air, precooled in 18 and cooled to around ambient temperature in 19, is purified in one, 2A for example, of the adsorption bottles, and entirely pressurized at high pressure by the booster 5, which is driven by the turbine 4.
  • the air is then introduced at the hot end of the exchanger 6 and completely cooled to an intermediate temperature. At this temperature, a fraction of the air continues to cool and is liquefied in passages 20 of the exchanger, then is expanded at low pressure in an expansion valve 21 and introduced at an intermediate level into column 9. The rest of the air, or excess air, is expanded to medium pressure in the turbine 4 and then sent directly, via a pipe 22, to the base of the column 8.
  • the low-pressure nitrogen is heated in passages 28 of the exchanger 6 and then discharged via a line 29, while the residual gas, after heating in passages 30 of the exchanger, is used to regenerate an adsorption bottle, the bottle 2B in the example considered, before being evacuated via a pipe 31.
  • part of the medium pressure liquid nitrogen is, after expansion in an expansion valve 32, stored in the reservoir 13, and a production of liquid nitrogen and / or liquid oxygen is supplied via a line 33 (for nitrogen) and / or 34 (for oxygen).
  • this air pressure is the pressure of condensation of the air by heat exchange with the oxygen being vaporized under the high pressure, i.e. - say the pressure for which the knee G of air liquefaction, on the heat exchange diagram (temperatures on the abscissa, quantities of heat exchanged on the ordinate) is located slightly to the right of the vertical stage P of vaporization of oxygen under high pressure ( Figure 3).
  • the temperature difference at the hot end of the exchange line is adjusted by means of the turbine, the suction temperature of which is indicated in A. The irreversibility of the heat exchange is thus minimal.
  • Such air pressure is worn depending on the high pressure, on the left portion C1 of the curve in Figure 2.
  • a high pressure of around 13 bars corresponds in this way to an air pressure of around 30 bars (more precisely, around 28.5 bars).
  • an air pressure of the order of 30 bars is chosen, whatever this high pressure, as indicated on the straight portion C2 of the curve of FIG. 2.
  • nitrogen gas under pressure can, in addition, be produced in an analogous manner, by bringing liquid nitrogen to the desired pressure, by drawing off at the top of the column 8 or by means of a pump such as 14 sucking the liquid nitrogen there or in the reservoir 13, and passing this liquid nitrogen through suitable vaporization-heating passages for the exchanger 6.
  • part of the gaseous oxygen produced can be produced under a different high pressure, by vaporizing it under this pressure in other suitable passages of the exchanger 6.
  • the two high pressures are one less than approximately 13 bars and the other greater than approximately 13 bars
  • all of the air is preferably compressed to approximately 30 bars (or above as explained above), and in any case so that the liquefaction knee G is opposite the vaporization level P1 of the oxygen at the lowest high pressure, and the suction temperature of the turbine (point A) is higher than that of the stage P2 for vaporizing the oxygen at the highest high pressure.
  • a tight heat exchange diagram is obtained, which is very favorable from an energy point of view.
  • a second turbine (not shown) can be provided, de-energizing a fraction of the medium pressure to the low pressure. in the order of 10 to 25% of the treated air flow, the low pressure air thus obtained being blown into column 9. If the high oxygen pressure is less than approximately 13 bars, this fraction can be taken with exhaust of the turbine 4, the temperature of which is sufficiently high. In the opposite case, said fraction is taken from the bottom of the column 8, or taken from the exhaust of the turbine 4 and separated from its liquid phase, and reheated before expansion.
  • This variant makes it possible to increase the production of liquid while slightly reducing the production of liquid at medium pressure, and consequently the operating pressure of the installation, that is to say the high air pressure.
  • the turbine 4 can also be braked by a device other than a booster.
  • the booster 5 is eliminated, and the compressor 1 directly compresses all of the air at the high air pressure defined above.
  • the installation shown in Figure 6 is intended to produce gaseous oxygen at a pressure at least equal to about 13 bars and, in this example, 35 bars. It essentially comprises a double distillation column 41, a main heat exchange line 42, a sub-cooler 43, a compressor single air 44, a blower 45 for air overpressure, an expansion turbine 46 whose wheel is mounted on the same shaft as that of the booster 45, an additional blower 47 driven by an electric motor 48, and a pump liquid oxygen 49.
  • the double column consists, in a conventional manner, of a medium pressure column 50 operating at about 6 bars and surmounted by a low pressure column 51 operating slightly above atmospheric pressure, with, in tank from the latter, a vaporizer-condenser 52 which brings the liquid oxygen from the bottom of the low pressure column into heat exchange relation with the nitrogen at the head of the medium pressure column.
  • the first stream is cooled under this first high pressure in passages 53 of the exchange line 42. Part of this first stream continues to cool, and is liquefied, until the cold end of the exchange line, then is expanded at medium pressure and at low pressure in expansion valves 54 and 55 respectively and distributed between columns 50 and 51. The rest of the first stream left the exchange line at an intermediate temperature T1, expanded in the turbine 46 at medium pressure and introduced at the base of column 50.
  • the second stream of pressurized air is again pressurized, up to a second high pressure of the order of 35 to 40 bars, by the blower 47, then cooled and liquefied in passages 56 of the exchange line, up to 'at the cold end of it.
  • the liquid thus obtained is expanded in an expansion valve 57 and sent to the base of the column 50.
  • blower or "blower” is understood here to mean a single-wheel compressor whose energy expenditure, by the flow rate of treated gas and the compression ratio, is considerably lower than that of the main compressor 44 of the installation. , and for example of the order of 2 to 3% of the latter.
  • the compression ratio of such a blower is generally less than 2.
  • Each of the blowers in question here comprises at its outlet a water or atmospheric air refrigerant, not shown.
  • Liquid oxygen withdrawn from the tank of the column 51 is brought by the pump 49 to the desired production pressure, then vaporized and heated in passages 58 of the exchange line before being evacuated from the installation via a pipe. of production 59.
  • the temperature T1 of turbine inlet 46 is lower than the temperature of the stage 69 of vaporization of oxygen under the production pressure, and the refrigeration balance of the installation is balanced, in order to maintain a small temperature difference at hot end of the exchange line, by drawing off via the lines 64 and / or 65 certain quantities of liquid nitrogen and / or liquid oxygen, as explained above with reference to FIGS. 1 to 5.
  • the pressure of the air at the discharge of compressor 44 is of the order of 23 bars, this equilibrium is obtained for a withdrawal of liquid of the order of 5% of the treated air flow.
  • the aforementioned second high pressure is on the one hand lower than the condensation pressure of the air by heat exchange with the oxygen being vaporized under the production pressure, and on the other hand chosen so that the air brought to this second high pressure begins to condense at a temperature close to T1.
  • This ensures a significant supply of calories in the vicinity of this temperature T1 and allows the turbine 46 to operate in good conditions, that is to say without producing liquid at the entrance of its wheel, while maintaining gaps optimal temperatures, of the order of 2 to 3 ° C, at the two ends of the exchange line as well as at the location of the vaporization bearing 69.
  • the air compressor 44 of the installation directly compresses all of the air at the first high pressure of the order of 23 bars, and a first stream of this air is treated as previously in the passages 53, the turbine 46 and the expansion valve 54 then sent to the base of the column 50.
  • a first blower 70 which, like the blower 45 in Figure 6, is directly coupled to the turbine 46, and a second blower 71 directly coupled to a second expansion turbine 72.
  • the air boosted at 70 passes entirely through the blower 71 then through the passages 56 of the exchange line 42, and part of this air is exited from the exchange line at a temperature T2 higher than the temperature T1 in order to be expanded in the turbine 72.
  • the exhaust of the latter at medium pressure, is connected to the base of the column 50 like that of the turbine 46.
  • the air at the highest pressure which is not expanded in the turbine 72 continues to cool and is liquefied in the passages 56 to the cold end of the exchange line, then is expanded in expansion valves 57 and 57A and distributed between the two columns 50 and 51.
  • the valve 57A replaces the valve 55 in FIG. 6.
  • the temperature T2 can be chosen slightly above the stage 69 of oxygen vaporization. Taking into account the relatively low flow rate of the expanded air in the turbine 72, an air cooling curve is obtained which is roughly parallel to the warming curve for liquid oxygen and nitrogen gas at the temperature T2 knee 73 of condensation or pseudo-condensation of the air under the highest pressure.
  • an air flow taken between the two blowers 70 and 71, is cooled and liquefied in additional passages 74 of the exchange line, until the cold end thereof, then expanded to the medium pressure in an expansion valve 75 and sent to the base of the column 50.
  • the turbine 72 can be supplied with air flowing in the passages 74, which are then interrupted at the temperature T2.
  • the expansion valve 75 is then eliminated, and it is the air circulating in the passages 56 which is entirely liquefied in the passages 56 and then expanded at medium pressure in the expansion valve 57.
  • the highest air pressure can be increased by passing the air coming from the blower 71 into an additional blower 76 driven by an electric motor 77.
  • the installation represented in FIG. 11 is a variant of that of FIG. 8. It differs from it only in that the exhaust of the two turbines 46 and 72 opens into a phase separator 78 of which the liquid and a part of the vapor phase are sent to the bottom of the column 50 while the rest of the vapor phase, after partial reheating in passages 79 of the exchange line, is expanded at low pressure in an additional turbine 80 braked by an appropriate brake 81. The low pressure air leaving the turbine 80 is blown into the column 51 via a pipe 82.
  • This solution is applicable when the oxygen product gas under pressure is of low purity (less than 99.5%).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (17)

  1. Verfahren zur Herstellung gasförmigen Sauerstoffs unter hohem Sauerstoffdruck durch Destillation von Luft in einer Doppelkolonnen-Anlage (7), Pumpen (12) von am Sumpf der Niederdruckkolonne (9) entnommenem, flüssigem Sauerstoff und Verdampfen (6) des verdichteten, flüssigen Sauerstoffs durch in einer Wärmeaustauschleitung (6) der Vorrichtung erfolgenden Wärmeaustausch gegen auf einen hohen Luftdruck gebrachte Luft, bei dem die gesamte zu destillierende Luft auf den hohen Luftdruck gebracht wird; und ein Teil dieser Luft bei einer Zwischenkühltemperatur in einer Turbine (4) auf den Druck der Mitteldruckkolonne (8) entspannt wird; dadurch gekennzeichnet, daß dieser Teil der Luft, bezogen auf den Kältebedarf der Wärmeaustauschleitung, überschüssig ist, daß die Turbine (4) durch einen Nachverdichter (5) gebremst wird, und daß der Temperaturunterschied am warmen Ende der Austauschleitung durch Entnahme zumindest eines Flüssigprodukts aus der Vorrichtung verringert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß für einen hohen Sauerstoffdruck kleiner als etwa 13 bar als hoher Luftdruck der aus dem Wärmeaustausch mit dem Sauerstoff im Verlauf der Verdampfung unter dem hohen Sauerstoffdruck resultierende Luftkondensationsdruck gewählt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß für einen hohen Sauerstoffdruck größer als etwa 13 bar als hoher Luftdruck unabhängig von dem hohen Sauerstoffdruck ein Druck gewählt wird, der kleiner als der aus dem Wärmeaustausch mit dem Sauerstoff im Verlauf der Verdampfung unter dem hohen Sauerstoffdruck resultierende Luftkondensationsdruck ist und zumindest etwa 30 bar beträgt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der hohe Luftdruck in der Nähe von 30 bar liegt und die entnommene Flüssigproduktmenge etwa 25% der Produktion gasförmigen Sauerstoffs unter dem hohen Sauerstoffdruck beträgt.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Herstellung gasförmigen Sauerstoffs unter zwei unterschiedlich hohen, unterhalb bzw. oberhalb von etwa 13 bar liegenden Sauerstoffdrücken die beiden durch Wärmeaustausch gegen komprimierte Luft auf einem einzigen, hohen Luftdruck, der zum einen kleiner als der aus dem Wärmeaustausch gegen den Sauerstoff im Verlauf der Verdampfung unter dem höheren Sauerstoffdruck resultierende Luftkondensationsdruck ist, zum anderen zumindest etwa 30 bar beträgt und insbesondere gleich einem hohen Luftdruck in der Nähe von 30 bar ist, sowie in jedem Fall größer als der aus dem Wärmeaustausch gegen den Sauerstoff im Verlauf der Verdampfung unter dem niedrigeren Sauerstoffdruck resultierende Luftkondensationsdruck ist, verdichteten Flüssigsauerstoffströme verdampft werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Luft in zwei Stufen verdichtet wird, wobei die letzte Stufe mittels des durch die Turbine (4) angetriebenen Nachverdichters (5) verwirklicht wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß in der Wärmeaustauschleitung (6) durch Wärmeaustausch gegen die Luft auf dem hohen Luftdruck auch der aus der Doppelkolonne (7) entnommene und gegebenenfalls durch eine Pumpe (14) verdichtete, unter Druck stehende, flüssige Stickstoff verdampft wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß ein Teil der Mitteldruckluft, gegebenenfalls nach Abtrennung ihrer flüssigen Phase, in einer zweiten Turbine auf den niedrigen Druck entspannt und in die Niederdruckkolonne (9) eingeblasen wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die auf den niedrigen Druck entspannte Luft am Sumpf der Mitteldruckkolonne (8) entnommen wird.
  10. Verfahren zur Herstellung gasförmigen Sauerstoffs unter hohem Sauerstoffdruck von zumindest etwa 13 bar durch Destillation von Luft in einer eine Niederdruckkolonne (51) und eine Mitteldruckkolonne (50) umfassenden Doppelkolonnen-Anlage, Pumpen (49) von am Sumpf der Niederdruckkolonne (51) entnommenem, flüssigem Sauerstoff und Verdampfen (42) des verdichteten, flüssigen Sauerstoffs durch Wärmeaustausch gegen auf einen hohen Luftdruck, der deutlich größer ist als der mittlere Druck, gebrachte Luft, bei dem die gesamte zu destillierende Luft auf einen ersten hohen Luftdruck, der deutlich größer ist als der mittlere Druck, gebracht wird; ein erster Teil dieser Luft unter dem ersten hohen Druck abgekühlt (53) und auf einer Zwischenkühltemperatur zumindest ein Teil derselben in einer Turbine (46) auf den Druck der Mitteldruckkolonne (8) entspannt wird, bevor er in die Doppelkolonne (41) eingeleitet wird; dadurch gekennzeichnet, daß der Rest der Luft unter dem ersten hohen Druck auf einen zweiten hohen Druck nachverdichtet wird, zumindest ein Teil der nachverdichteten Luft, deren Menge kleiner ist als die Menge zu verdampfenden, flüssigen Sauerstoffs, abgekühlt und verflüssigt (56) wird, dann, nach Entspannung (57, 57A), in die Doppelkolonne (41) eingeleitet wird, wobei der zweite hohe Druck zum einen kleiner als der aus dem Wärmeaustausch gegen den Sauerstoff im Verlauf der Verdampfung unter dem höheren Sauerstoffdruck resultierende Kondensations- oder Pseudo-Kondensationsluftdruck ist und zumindest etwa 30 bar beträgt, und zum anderen so gewählt ist, daß die Kondensation oder Pseudo-Kondensation der Luft unter diesem zweiten hohen Druck in der Nähe der Einlaßtemperatur der Turbine (46) stattfindet, und der Temperaturunterschied am warmen Ende einer Wärmeaustauschleitung (6) durch Entnahme zumindest eines Flüssigprodukts (64, 65) aus der Vorrichtung verringert wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Nachverdichtungsdruck durch einen Verdichter (47) mit einem Verdichtungsverhältnis kleiner als 2 erzeugt wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß der Verdichter (47) durch eine externe Energiequelle (48) (Fig. 1) angetrieben wird.
  13. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Nachverdichtungsdruck durch zwei in Reihe angeordnete und jeweils mit einer Entspannungsturbine (46, 72) gekuppelte Verdichter (70, 71) erzeugt wird, wobei der erste Verdichter (70) mit der Turbine (46) zur Entspannung der Luft unter dem ersten hohen Druck gekuppelt und der zweite Verdichter (71) mit einer zweiten Turbine (72) zur Entspannung eines Teils der nachverdichteten Luft gekuppelt ist, und wobei die Einlaßtemperatur der zweiten Turbine (72) größer ist als die der ersten Turbine (46) (Fig. 10 und 11).
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß eine Luftmenge zwischen den beiden Verdichtern (70, 71) entnommen und, zumindest teilweise, abgekühlt, verflüssigt (74) und nach Entspannung (75) dann in die Doppelkolonne (41) eingeleitet wird (Fig. 10).
  15. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Nachverdichtungsdruck durch einen mit der Turbine (46) zum Entspannen der Luft unter dem ersten hohen Druck gekuppelten Verdichter (70) erzeugt wird, wobei ein erster Teil der nachverdichteten Luft in einer zweiten Turbine (72) entspannt wird, die mit einem zweiten Verdichter (71) gekoppelt ist, welcher durch den Rest der nachverdichteten Luft gespeist wird, und wobei die aus dem zweiten Verdichter (71) austretende Luft gekühlt und verflüssigt und nach Entspannung (57) dann in die Doppelkolonne (41) eingeleitet wird (Fig. 10).
  16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß die aus dem zweiten Verdichter austretende Luft durch einen durch ein externe Energiequelle (77) (Fig. 10) angetriebenen, dritten Verdichter (76) erneut nachverdichtet wird.
  17. Verfahren nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, daß ein Teil der gasförmigen Phase der aus der bzw. jeder der Turbinen (46, 72) austretenden Luft in einer zusätzlichen Turbine (80) auf den niedrigen Druck entspannt und dann in die Niederdruckkolonne (51) eingeblasen wird.
EP92400600A 1991-03-11 1992-03-09 Verfahren zur Herstellung von gasförmigem Sauerstoff unter Druck Revoked EP0504029B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9102917A FR2674011B1 (fr) 1991-03-11 1991-03-11 Procede et installation de production d'oxygene gazeux sous pression.
FR9102917 1991-03-11
FR9115935 1991-12-20
FR9115935A FR2685460B1 (fr) 1991-12-20 1991-12-20 Procede et installation de production d'oxygene gazeux sous pression par distillation d'air

Publications (2)

Publication Number Publication Date
EP0504029A1 EP0504029A1 (de) 1992-09-16
EP0504029B1 true EP0504029B1 (de) 1996-10-23

Family

ID=26228561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92400600A Revoked EP0504029B1 (de) 1991-03-11 1992-03-09 Verfahren zur Herstellung von gasförmigem Sauerstoff unter Druck

Country Status (9)

Country Link
US (1) US5329776A (de)
EP (1) EP0504029B1 (de)
JP (1) JP2909678B2 (de)
KR (1) KR100210532B1 (de)
AU (1) AU655630B2 (de)
CA (1) CA2062506C (de)
DE (1) DE69214693T2 (de)
ES (1) ES2093799T3 (de)
ZA (1) ZA921777B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038885A (en) * 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
US7076971B2 (en) 2003-02-13 2006-07-18 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Expolitation des Procédés Georges Claude Method and installation for producing, in gaseous form and under high pressure, at least one fluid chosen from oxygen, argon and nitrogen by cryogenic distillation of air
US7197894B2 (en) 2004-02-13 2007-04-03 L'air Liquide, Societe Anonyme A' Directorie Et Conseil De Survelliance Pour L'etude Et, L'exploltation Des Procedes Georges, Claude Integrated process and air separation process
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2688052B1 (fr) * 1992-03-02 1994-05-20 Maurice Grenier Procede et installation de production d'oxygene et/ou d'azote gazeux sous pression par distillation d'air.
FR2692664A1 (fr) * 1992-06-23 1993-12-24 Lair Liquide Procédé et installation de production d'oxygène gazeux sous pression.
US5303556A (en) * 1993-01-21 1994-04-19 Praxair Technology, Inc. Single column cryogenic rectification system for producing nitrogen gas at elevated pressure and high purity
FR2701553B1 (fr) * 1993-02-12 1995-04-28 Maurice Grenier Procédé et installation de production d'oxygène sous pression.
FR2702040B1 (fr) * 1993-02-25 1995-05-19 Air Liquide Procédé et installation de production d'oxygène et/ou d'azote sous pression.
FR2703140B1 (fr) * 1993-03-23 1995-05-19 Air Liquide Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation de l'air.
FR2706195B1 (fr) * 1993-06-07 1995-07-28 Air Liquide Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air.
US5471843A (en) * 1993-06-18 1995-12-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen and/or nitrogen under pressure at variable flow rate
FR2706595B1 (fr) * 1993-06-18 1995-08-18 Air Liquide Procédé et installation de production d'oxygène et/ou d'azote sous pression à débit variable.
US5379598A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
FR2709537B1 (fr) * 1993-09-01 1995-10-13 Air Liquide Procédé et installation de production d'oxygène et/ou d'azote gazeux sous pression.
US5355682A (en) * 1993-09-15 1994-10-18 Air Products And Chemicals, Inc. Cryogenic air separation process producing elevated pressure nitrogen by pumped liquid nitrogen
FR2711778B1 (fr) * 1993-10-26 1995-12-08 Air Liquide Procédé et installation de production d'oxygène et/ou d'azote sous pression.
FR2714721B1 (fr) * 1993-12-31 1996-02-16 Air Liquide Procédé et installation de liquéfaction d'un gaz.
FR2721383B1 (fr) * 1994-06-20 1996-07-19 Maurice Grenier Procédé et installation de production d'oxygène gazeux sous pression.
FR2723184B1 (fr) * 1994-07-29 1996-09-06 Grenier Maurice Procede et installation de production d'oxygene gazeux sous pression a debit variable
FR2726046B1 (fr) * 1994-10-25 1996-12-20 Air Liquide Procede et installation de detente et de compression d'au moins un flux gazeux
US5655388A (en) * 1995-07-27 1997-08-12 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure gaseous oxygen and liquid product
GB9515907D0 (en) * 1995-08-03 1995-10-04 Boc Group Plc Air separation
US5564290A (en) * 1995-09-29 1996-10-15 Praxair Technology, Inc. Cryogenic rectification system with dual phase turboexpansion
FR2744795B1 (fr) * 1996-02-12 1998-06-05 Grenier Maurice Procede et installation de production d'oxygene gazeux sous haute pression
US5765396A (en) * 1997-03-19 1998-06-16 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen
US5758515A (en) * 1997-05-08 1998-06-02 Praxair Technology, Inc. Cryogenic air separation with warm turbine recycle
US5802873A (en) * 1997-05-08 1998-09-08 Praxair Technology, Inc. Cryogenic rectification system with dual feed air turboexpansion
FR2782154B1 (fr) 1998-08-06 2000-09-08 Air Liquide Installation combinee d'un appareil de production de fluide de l'air et d'une unite dans laquelle se produit une reaction chimique et procede de mise en oeuvre
US6112550A (en) * 1998-12-30 2000-09-05 Praxair Technology, Inc. Cryogenic rectification system and hybrid refrigeration generation
US6053008A (en) * 1998-12-30 2000-04-25 Praxair Technology, Inc. Method for carrying out subambient temperature, especially cryogenic, separation using refrigeration from a multicomponent refrigerant fluid
JP3715497B2 (ja) 2000-02-23 2005-11-09 株式会社神戸製鋼所 酸素の製造方法
DE60024634T2 (de) 2000-10-30 2006-08-03 L'Air Liquide, S.A. a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren und Einrichtung für kryogenische Luftzerlegung integriert mit assoziiertem Verfahren
FR2854682B1 (fr) * 2003-05-05 2005-06-17 Air Liquide Procede et installation de separation d'air par distillation cryogenique
FR2854683B1 (fr) 2003-05-05 2006-09-29 Air Liquide Procede et installation de production de gaz de l'air sous pression par distillation cryogenique d'air
FR2861841B1 (fr) * 2003-11-04 2006-06-30 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
FR2865024B3 (fr) * 2004-01-12 2006-05-05 Air Liquide Procede et installation de separation d'air par distillation cryogenique
US20060272353A1 (en) * 2005-05-20 2006-12-07 Gabbita Venkata Maruthi Prasad Process and apparatus for the separation of air by cryogenic distillation
US20070095100A1 (en) * 2005-11-03 2007-05-03 Rankin Peter J Cryogenic air separation process with excess turbine refrigeration
US7437890B2 (en) * 2006-01-12 2008-10-21 Praxair Technology, Inc. Cryogenic air separation system with multi-pressure air liquefaction
US7533540B2 (en) * 2006-03-10 2009-05-19 Praxair Technology, Inc. Cryogenic air separation system for enhanced liquid production
DE102006012241A1 (de) * 2006-03-15 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1892490A1 (de) * 2006-08-16 2008-02-27 Linde Aktiengesellschaft Verfahren und Vorrichtung zur variablen Gewinnung eines Druckprodukts durch Tieftemperatur-Gaszerlegung
FR2906605B1 (fr) * 2006-10-02 2009-03-06 Air Liquide Procede et appareil de separation d'air par distillation cryogenique.
FR2913760B1 (fr) 2007-03-13 2013-08-16 Air Liquide Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique
FR2913759B1 (fr) * 2007-03-13 2013-08-16 Air Liquide Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique.
US8429933B2 (en) * 2007-11-14 2013-04-30 Praxair Technology, Inc. Method for varying liquid production in an air separation plant with use of a variable speed turboexpander
US20100192628A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Apparatus and air separation plant
US20100192629A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Oxygen product production method
US8726691B2 (en) * 2009-01-30 2014-05-20 Praxair Technology, Inc. Air separation apparatus and method
FR2973487B1 (fr) * 2011-03-31 2018-01-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de production d'un gaz de l'air sous pression par distillation cryogenique
EP2600090B1 (de) * 2011-12-01 2014-07-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
FR2985005B1 (fr) 2011-12-21 2017-12-22 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de separation d'air par distillation cryogenique
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
DE102013019504A1 (de) 2013-11-21 2015-05-21 Linde Aktiengesellschaft Verfahren zur Gewinnung eines flüssigen Stickstoffprodukts durch Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
EP2980514A1 (de) 2014-07-31 2016-02-03 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
DE102014019612A1 (de) 2014-12-30 2015-04-02 Linde Aktiengesellschaft Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
EP3101374A3 (de) 2015-06-03 2017-01-18 Linde Aktiengesellschaft Verfahren und anlage zur tieftemperaturzerlegung von luft
EP3196573A1 (de) 2016-01-21 2017-07-26 Linde Aktiengesellschaft Verfahren zur gewinnung eines luftprodukts und luftzerlegungs anlage
WO2018219501A1 (de) * 2017-05-31 2018-12-06 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
EP3700857B1 (de) 2017-10-24 2021-12-15 Linde GmbH Verfahren und vorrichtung zur behandlung eines sauergasgemisches
EP3727646B1 (de) 2017-12-19 2023-05-24 Linde GmbH Verfahren zur gasbehandlung mit einem oxidativen prozess, der abwärme liefert, und entsprechende vorrichtung
EP3899388A4 (de) * 2018-12-19 2022-07-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren zum anfahren einer kryogenen lufttrenneinheit und zugehörige lufttrenneinheit
WO2020160842A1 (en) 2019-02-07 2020-08-13 Linde Gmbh Gas treatment method and apparatus including an oxidative process for treating a sour gas mixture using gas from an air separation process
WO2023129434A2 (en) 2021-12-30 2023-07-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for precooling hydrogen for liquefaction with supplement liquid nitrogen

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB929798A (en) * 1960-04-11 1963-06-26 British Oxygen Co Ltd Low temperature separation of air
US3447332A (en) * 1967-07-13 1969-06-03 Genrikh Maxovich Basin Air separation employing separated nitrogen as heat exchange fluid in liquid oxygen pump jacket
US3760596A (en) * 1968-10-23 1973-09-25 M Lemberg Method of liberation of pure nitrogen and oxygen from air
DE1907525A1 (de) * 1969-02-14 1970-08-20 Vnii Kriogennogo Masinostrojen Verfahren zur Trennung von Stickstoff und Sauerstoff aus der Luft
US4224045A (en) * 1978-08-23 1980-09-23 Union Carbide Corporation Cryogenic system for producing low-purity oxygen
FR2461906A1 (fr) * 1979-07-20 1981-02-06 Air Liquide Procede et installation cryogeniques de separation d'air avec production d'oxygene sous haute pression
GB2079428A (en) * 1980-06-17 1982-01-20 Air Prod & Chem A method for producing gaseous oxygen
US4555256A (en) * 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
DE3216510A1 (de) * 1982-05-03 1983-11-03 Linde Ag, 6200 Wiesbaden Verfahren zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck
JPS5939671A (ja) * 1982-08-31 1984-03-05 株式会社東芝 エレベ−タの自動案内放送装置
JPS62102074A (ja) * 1985-10-30 1987-05-12 株式会社日立製作所 ガス分離方法及び装置
DE3610973A1 (de) * 1986-04-02 1987-10-08 Linde Ag Verfahren und vorrichtung zur erzeugung von stickstoff
JPS6399483A (ja) * 1986-10-15 1988-04-30 株式会社日立製作所 空気分離装置
FR2619718B1 (fr) * 1987-09-02 1991-07-12 Medibrevex Nouvelles formes galeniques de beta-2-mimetiques pour administration par voie per- et sublinguale
US4817394A (en) * 1988-02-02 1989-04-04 Erickson Donald C Optimized intermediate height reflux for multipressure air distillation
GB8904275D0 (en) * 1989-02-24 1989-04-12 Boc Group Plc Air separation
GB8921428D0 (en) * 1989-09-22 1989-11-08 Boc Group Plc Separation of air
FR2652409A1 (fr) * 1989-09-25 1991-03-29 Air Liquide Procede de production frigorifique, cycle frigorifique correspondant et leur application a la distillation d'air.
JPH03137483A (ja) * 1989-10-23 1991-06-12 Kobe Steel Ltd 空気分離装置
US5148680A (en) * 1990-06-27 1992-09-22 Union Carbide Industrial Gases Technology Corporation Cryogenic air separation system with dual product side condenser
US5098456A (en) * 1990-06-27 1992-03-24 Union Carbide Industrial Gases Technology Corporation Cryogenic air separation system with dual feed air side condensers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038885A (en) * 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
US7076971B2 (en) 2003-02-13 2006-07-18 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Expolitation des Procédés Georges Claude Method and installation for producing, in gaseous form and under high pressure, at least one fluid chosen from oxygen, argon and nitrogen by cryogenic distillation of air
US7197894B2 (en) 2004-02-13 2007-04-03 L'air Liquide, Societe Anonyme A' Directorie Et Conseil De Survelliance Pour L'etude Et, L'exploltation Des Procedes Georges, Claude Integrated process and air separation process
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren

Also Published As

Publication number Publication date
KR100210532B1 (ko) 1999-07-15
DE69214693D1 (de) 1996-11-28
ES2093799T3 (es) 1997-01-01
ZA921777B (en) 1992-11-25
KR920017943A (ko) 1992-10-21
JPH0579753A (ja) 1993-03-30
CA2062506A1 (fr) 1992-09-12
AU1215792A (en) 1992-09-17
JP2909678B2 (ja) 1999-06-23
DE69214693T2 (de) 1997-02-20
US5329776A (en) 1994-07-19
EP0504029A1 (de) 1992-09-16
AU655630B2 (en) 1995-01-05
CA2062506C (fr) 2004-07-20

Similar Documents

Publication Publication Date Title
EP0504029B1 (de) Verfahren zur Herstellung von gasförmigem Sauerstoff unter Druck
EP0576314B1 (de) Verfahren und Apparat zur Herstelling von gasförmigem Sauerstoff unter Druck
EP0689019B1 (de) Verfahren und Einrichtung zur Herstellung von gasförmigem Drucksauerstoff
EP0628778B2 (de) Verfahren und Hochdruckgasversorgungseinheit für eine ein Luftbestandteil verbrauchende Anlage
EP0848220B1 (de) Verfahren und Anlage zur Lieferung eines Luftgases in variablen Mengen
WO2007068858A2 (fr) Procédé de séparation d'air par distillation cryogénique
EP3631327B1 (de) Verfahren und vorrichtung zur lufttrennung durch kryogene destillation
EP0618415B1 (de) Verfahren und Vorrichtung zur Herstellung von gasförmigem Sauerstoff und/oder gasförmigem Stickstoff unter Druck durch Zerlegung von Luft
EP0606027B1 (de) Lufttrennungsverfahren und Anlage zur Herstellung von wenigstens einem Druckgasprodukt und von wenigstens einer Flüssigkeit
EP0694746B1 (de) Verfahren zur Herstellung von Druckgas mit variabelen Mengen
EP0789208A1 (de) Verfahren und Einrichtung zur Herstellung von gasförmigem Sauerstoff unter hohe Druck
TW201903342A (zh) 用於獲得一或多種空氣產品之方法及空氣分離廠
EP0914584B1 (de) Verfahren und einrichtung zur herstellung eines luftgases mit variablen mengen
EP0611218B2 (de) Verfahren und Anlage zur Herstellung von Drucksauerstoff
EP0641983B1 (de) Verfahren und Einrichtung zur Herstellung von gasförmigem Sauerstoff und/oder Stickstoff unter Druck
FR2688052A1 (fr) Procede et installation de production d'oxygene et/ou d'azote gazeux sous pression par distillation d'air.
CA2146831A1 (fr) Procede et installation pour la production de l'oxygene par distillation de l'air
EP0612967B1 (de) Verfahren zur Herstellung von Sauerstoff und/oder Stickstoff unter Druck
FR2674011A1 (fr) Procede et installation de production d'oxygene gazeux sous pression.
EP0641982A1 (de) Verfahren und Einrichtung zur Herstellung von wenigstens einem Gas aus Druckluft
FR2929697A1 (fr) Procede de production d'azote gazeux variable et d'oxygene gazeux variable par distillation d'air
FR2685460A1 (fr) Procede et installation de production d'oxygene gazeux sous pression par distillation d'air.
EP0869322A1 (de) Verfahren und Anlage zur Lufttrennung durch Tieftemperaturdestillation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19940304

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 69214693

Country of ref document: DE

Date of ref document: 19961128

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961122

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2093799

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19970723

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIR ET CONSEIL DE SURV

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAT Information related to reply to examination report in opposition deleted

Free format text: ORIGINAL CODE: EPIDOSDORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAT Information related to reply to examination report in opposition deleted

Free format text: ORIGINAL CODE: EPIDOSDORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE

Effective date: 20070425

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE

Effective date: 20070627

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110404

Year of fee payment: 20

Ref country code: NL

Payment date: 20110316

Year of fee payment: 20

Ref country code: SE

Payment date: 20110314

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110322

Year of fee payment: 20

Ref country code: GB

Payment date: 20110321

Year of fee payment: 20

Ref country code: BE

Payment date: 20110311

Year of fee payment: 20

Ref country code: DE

Payment date: 20110325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110328

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69214693

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69214693

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120308

BE20 Be: patent expired

Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20120309

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20120309

RDAD Information modified related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSCREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 69214693

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 69214693

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120308

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20120428

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 69214693

Country of ref document: DE

Effective date: 20130228

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC