EP0842382B1 - Appareil thermique compact du type a semi-conducteur - Google Patents

Appareil thermique compact du type a semi-conducteur Download PDF

Info

Publication number
EP0842382B1
EP0842382B1 EP96927630A EP96927630A EP0842382B1 EP 0842382 B1 EP0842382 B1 EP 0842382B1 EP 96927630 A EP96927630 A EP 96927630A EP 96927630 A EP96927630 A EP 96927630A EP 0842382 B1 EP0842382 B1 EP 0842382B1
Authority
EP
European Patent Office
Prior art keywords
thermocompact
heat exchanger
die
heat
und
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96927630A
Other languages
German (de)
English (en)
Other versions
EP0842382A1 (fr
Inventor
Bernhard Harter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0842382A1 publication Critical patent/EP0842382A1/fr
Application granted granted Critical
Publication of EP0842382B1 publication Critical patent/EP0842382B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0042Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect

Definitions

  • Ventilation units which may consist of fans, heat exchangers Humidifiers, heat recovery, damper controls and sensors (Sensor) exists, and that regulates the temperature and humidity by means of a regulation connected to an air duct system.
  • the heat exchangers installed across the air conditioning unit are flushed with water or water glycol mixture that is thermally enriched.
  • the winding system of the heat exchanger with water turns or water glycol mixture, on the other hand, they are around the pipe system mounted slats flushed with air.
  • the air duct network connected to the air conditioner or units or ventilation devices is connected, on the one hand ensures the ducting of the air, on the other hand, this results in a dosage of the conditioned amount of air for the individual Spaces achieved.
  • a special feature are chilled ceilings and underfloor heating, whose exchanger in the Ceiling construction or integrated in the ceiling panel or in the screed.
  • the heat exchangers which consist of a widely branched pipe system in the Ceiling construction or in the screed, with water or a water glycol mixture which flushes the thermal energy onto the heat exchanger (s) (for ceilings) or transfers the screed.
  • the thermal energy is transferred to the air. This heating or cooling energy is distributed in the room via the air.
  • the Heat generation through direct conversion of electrical energy with Resistance heat wires, which are almost exclusively embedded in floors, comes less often.
  • Air circulation systems are usually installed to support this on the one hand, the fresh air requirement cover, on the other hand, better room purging cause.
  • thermocouple blocks consisting of thermocouple blocks, several Peltier elements containing high performance heat sinks that act as heat exchangers.
  • the cold from the thermocouple blocks is on one side in one Heat exchangers and the heat on the other side of the thermocouple blocks derived in another heat exchanger. Thereby the thermocouple blocks stored in a heat-insulating layer.
  • the problem is that the Heating or cooling of the air conditioning systems only by a liquid medium such as Water or a water glycol mixture happens.
  • a liquid medium such as Water or a water glycol mixture
  • the conventional heating heating systems and cooling machines for cooling Find the thermal energy to the water or to the water glycol mixture submit.
  • the media-bound thermal energy becomes the respective one Air conditioner, to chilled ceilings, to radiators or to the underfloor heating to get there these into the air or into the room by means of the heat exchanger, radiator or screed to deliver.
  • the media-bound thermal energy is often not generated on site, you Transport to the place of use means to the heat exchangers or to the rooms however, an effort that should not be underestimated.
  • With the conversion of Energy in thermal energy is usually associated with a large emission of pollutants seems problematic especially in conurbations.
  • thermocompact devices act both as heating and / or cooling device and as a heat and / or cold exchanger with the possibility of Heat recovery and dehumidification.
  • High-performance heat sinks which act as heat exchangers, ensure the transfer of the Energy e.g. to the medium air.
  • Peltier element Electrical energy is generated directly by a doped semiconductor element, the Peltier element converted into thermal energy, ie heat and cold energy.
  • the thermal Energy is separated into heat and cold and polarized to the surfaces of the Peltier - Elements directed to accumulate there. It occurs at the same time opposite surfaces, that is, one surface is hot, the other is cold.
  • Several Peltier elements connected to each other with copper bridges on their thighs connected and externally with an electrically insulating and thermally conductive Insulating layer (ceramic layer) are covered, form a thermocouple block. Through the electrical series connection and the thermal parallel connection of Peltier elements the energy conversion effect described above is multiplied.
  • the on the surface of the Peltier element or the thermocouple block (on the Ceramic cover) resulting polarized heat and cold depends on the polarity of the Energy source or direct current source.
  • the thermal energy on the surfaces the Peltier elements are accumulated on the surfaces of the thermocouple block transfer. From there, the thermal energy (hot side and / or cold side) is either indirectly transmitted and derived (cooled) on both sides, i.e. the thermal energy is on Large-area heat exchanger segments, the heat exchanger block (heat sink segments or heat sink blocks (heat exchanger)), derived, which in turn the thermal Give energy to a medium (gas, liquid), or the thermal energy can too directly transmitted and derived on one side, or directly derived (cooled) on both sides i.e. Media are directed directly onto the thermocouple block surface to the dissipate thermal energy.
  • thermocouple blocks in the heat exchangers for fixing slightly in Recessed.
  • the counterparts point accordingly to these heat exchangers matching base.
  • the bases are horizontal on the heat exchanger block in the plane and vertically offset and aligned, while in the central arrangement in the Level are arranged in a line.
  • Unit type 1 of the H thermocompact unit contains two heat exchanger blocks. Since the bases are arranged in the center, a heat exchanger block must consist of several heat exchanger segments to compensate for the longitudinal expansion resulting from the thermal effects and the mechanical thermocouple block tolerances. However, the tolerances can also be compensated for by milling or plating on the base. When using a heat exchanger block, which consists of several heat exchanger segments, these are mounted at a spatial distance from one another, so that a mutual thermal influence of the heat exchanger segments and thus the thermocouple blocks is excluded. The thermocouple blocks are clamped between two heat exchanger blocks. These heat exchanger blocks are fixed to each other with screws so that the thermocouple blocks are clamped with a force.
  • the screws are made of thermally poorly conductive precious metal and are surrounded by a heat-insulating guide bush.
  • Heat-insulating spacers which are stretched between the heat exchanger segments or the heat exchanger block and the opposite heat exchanger block, keep them at the desired distance from one another.
  • thermocouple blocks release their thermal energy directly to the liquid medium, in particular to water.
  • the heat exchanger is also divided into several segments in order to rule out thermal and mechanical influences on the thermocouple blocks and to compensate for the mechanical tolerances of the thermocouple blocks.
  • the media used for cooling / heating the thermocouple blocks, in particular water, are guided in a body, the so-called fluid body.
  • the fluid body always bears a mirror image of the heat exchanger block or the base arranged to the heat exchanger segments.
  • the fluid body is traversed by an embedded channel system which is closed on all sides and which is connected to an inlet and outlet connection. Furthermore, the fluid body has an inflow and an outflow channel.
  • This inflow and outflow channel let into the fluid body is provided with a cover (cover) which is fastened to the body with screws and thereby seals the inflow channel to the outflow channel and to the outside.
  • An internal sealing cord (O-cord) which enables the sealing between the fluid body and the cover (cover), is fixed in the body by means of a milling. Another possibility of attaching the cover to the fluid body is to weld it to it.
  • the upper cover of the fluid body can be omitted if the inflow and outflow channels are made through deep holes in the fluid body: Holes are drilled longitudinally and transversely to the end face of the fluid body, which form inflow and outflow tubes.
  • thermocouple block surfaces are in connection with the inflow and outflow pipes that lead the medium (here water) to the thermocouple block surfaces or away from them.
  • the deep holes drilled longitudinally and transversely to the end face of the fluid body are closed to the outside by sealing plugs. This manufacturing is preferred because it is simpler and cheaper.
  • the inflow and outflow channel milled or driven into the upper side of the fluid body is connected to the thermocouple blocks via channel openings, which each lead to a thermocouple block surface of the thermocouple blocks mounted on the underside of the fluid body.
  • the medium is injected or directed onto the thermocouple block surfaces through these channel openings (bores) which lead from the inflow channel to the thermocouple block surfaces.
  • the medium is drained from the thermocouple block surfaces to the drainage channel through holes on the opposite side of the injection holes.
  • the volume flow that is directed onto the thermocouple block surfaces is essentially dependent on the media inflow pressure and on the cross-sectional size of the inflow hole.
  • the controlled and metered medium injection takes place through targeted cross-sectional narrowing in the inflow hole. This is made possible by inserting cylindrical bodies, which are provided with a screw crown, into the inflow bores which have the desired
  • the medium flow which acts on the screw crown, causes the cylinder to rotate about its longitudinal axis, which prevents limescale deposits between the cylinder jacket and the bore jacket.
  • Another way to avoid unwanted dirt, limescale deposits, etc. on all media-guided H - thermocompact devices of device types 2 to 5 is to separate the media flow into a primary and a secondary circuit.
  • the thermal energy transfer from the primary to the secondary circuit can take place using conventional heat exchangers, e.g. plate heat exchangers.
  • thermocouple block surface An outflow of the medium that flows between the thermocouple block surface and the fluid body is prevented by an inner sealing ring (O-ring), which is embedded and fixed by a milling in the base of the fluid body, on the outer edge of the respective thermo - Element - Block surface rests.
  • Two connection pins are used for the electrical connection of a thermocouple block, on which the thermocouple block lies. This creates an electrical connection between the thermocouple block and the energy source. For fixation, the pins are poured into a non-conductive mass.
  • thermocouple blocks are tensioned and fixed between the fluid body (medium-carrying body) and the heat exchanger block, which may consist of several heat exchanger segments.
  • the free volume between the heat exchanger block and the fluid body is filled with insulating material in order to avoid thermal losses.
  • the heat exchanger size or its surface size is thermally adapted.
  • the thermal power transferred to the heat exchanger blocks can be transferred to various media such as gases (air), liquids (water, oils) etc.
  • thermocouple blocks can be subjected to various and expedient electrical interconnections, which are carried out by connecting or disconnecting individual thermocouple blocks that are connected in series or in parallel, thereby throttling or increasing the electrical energy supply , ie a metering of the thermal energy is effected.
  • the electrical energy for the thermocouple blocks is processed by switching power supplies or by transformers with downstream rectifiers. The control of the ripple of the energy for the thermocouple blocks is used for the heating or Cooling case selected accordingly.
  • thermocouple blocks such as temperature sensors (room temperature sensors, temperature monitors (TW), duct temperature sensors, etc.), thermistors or safety temperature limiters (STB), which protect against thermal overload as well as overvoltage and overcurrent protection devices that protect against electrical overload of the thermocouple blocks installed, act directly or indirectly on control and regulating devices, actuators, etc. and thus influence the energy supply of the thermocouple blocks and limit them if necessary.
  • the temperature control loop influences the desired room temperature.
  • the temperature limiting control loop controls the maximum thermocouple temperature to protect the thermocouple blocks from thermal overload.
  • a flow monitor measures the media flow and switches the device off automatically if necessary.
  • the heating and cooling energy generated by the Peltier elements is essentially dependent on the energy source, ie on the direct voltage source and / or direct current source, which is generated by rectifying the mains voltage, ie alternating voltage.
  • the AC rectification creates a DC ripple and / or DC ripple that depends on the number of rectifier pulses.
  • the ripple influences the efficiency of the thermocouple blocks or the Peltier elements.
  • the efficiency of the thermocouple blocks, ie the conversion of electrical energy into refrigeration energy is greatest with an ideal direct voltage source / direct current source, which means here when the ripple of the direct voltage source / direct current source is zero, and deteriorates with poorly smoothed direct voltage sources / direct current sources, ie with large ripples.
  • thermocouple blocks with rectified electrical Energy supplied the ripple is very low.
  • the greatest possible thermal energy with Low cold energy can be generated in winter, for example, by the fact that Thermocouple blocks with rectified electrical energy, their ripple is great to be cared for.
  • thermocouple block surface While a fluid body and a heat exchanger block are used in device type 2, two fluid bodies are used in device type 3.
  • the converted thermal energy is available to both fluid bodies fixed to one another. Only an outer sealing ring is required here.
  • a medium to be cooled is passed directly onto a thermocouple block surface, while the other thermocouple block surface is cooled by a medium, for example water, and the latter is heated in the process. In this way, the cooling of a drink or the heating of a chemical substance can take place.
  • media that are explosive, the media is conducted in a closed heat exchanger. Media, such as drinks etc., which must be kept as germ-free as possible can also be managed in this way.
  • the medium is preheated in a media heat exchanger (see description of device type 5) and the media temperature is then cascaded by guiding the medium in the fluid body so that it flows to and via the subsequent thermocouple - Block surface flows. This causes the media temperature to accumulate.
  • thermocouple blocks in a line i.e. are in the middle and are mainly in the middle of device type 3, they are at Device type 4 offset. In this way there is a mutual thermal influence largely excluded.
  • One heat exchanger need not be segmented here.
  • the Fluid body has two inflow channels.
  • device type 5 there are two fluid bodies, two edge heat exchangers and a media heat exchanger, which is attached between the two edge heat exchangers.
  • the fluid bodies are fixed and clamped on the two edge heat exchangers by means of screws.
  • insulating materials are embedded in the edge heat exchangers.
  • the centrally located heat exchanger is connected to the edge heat exchangers via two spindle screws in the upper and lower heat exchanger halves. While the media heat exchanger always remains in its position, the edge heat exchangers can be moved longitudinally to their axis using the spindles.
  • the spindle screws are mounted and fixed transversely to the media heat exchanger, which only allows a rotational movement of the spindle screw in the media heat exchanger and in the edge heat exchangers, ie a longitudinal displacement of the same is excluded.
  • the spindle nut is in turn attached to the respective edge heat exchanger. Due to the rotary movement of the spindle, the edge heat exchangers experience a stroke movement along the spindle axis. This results in a shift of the edge heat exchanger in the direction of the media heat exchanger.
  • the edge heat exchanger and a removal of the edge heat exchanger from the media heat exchanger, ie their separation from the media heat exchanger is thereby ensured.
  • the rotation of the spindle is made possible by a motor, which is attached to the outside of an edge heat exchanger.
  • a disc spring rests on the right and left between the spindle nut and the edge heat exchanger. This creates a tolerance compensation that enables the two edge heat exchangers to lie evenly against the media heat exchanger. The same applies accordingly to the separation of the edge heat exchanger from the media heat exchanger.
  • the two fluid bodies are connected to one another via two tubes which are arranged in the upper and in the lower half and lead into the interior of the fluid bodies.
  • Each fluid body has an inflow and outflow system, which consist of hollow cylinders running in the fluid body, and wherein the inflow system is connected to the pipe running in the lower half, the outflow system has a connection to the upper half. Since the edge heat exchangers can be displaced and the fluid bodies are fixed on them, the fluid bodies must be displaceable accordingly. This is achieved in that the tubes connecting the fluid bodies to one another are screwed tightly in one fluid body, but in the other a limited displacement to the longitudinal direction of the tube can take place. In the fluid body in which the tube is fastened there is a thread that is screwed to a thread on the outside of the tube.
  • thermocouple blocks introduces the thermal energy generated in the edge heat exchangers with the aid of the thermocouple blocks introduced therein. While only the thermal energy of the medium (water) comes into play during cooling in the media heat exchanger, both the thermal energy of the medium (water) and that of the electrical energy, which are converted into thermal energy by the thermocouple blocks, come into play in the edge heat exchangers converted to effect and are available at the edge heat exchangers.
  • the thermal energy obtained in this way from the edge heat exchangers and the media heat exchanger has an additive effect in the medium to be cooled, for example air, if its temperature is higher than the one made available.
  • the water flow to the medium heat exchanger is interrupted. This is done by the evaluation electronics influencing a valve, possibly closing it and thus interrupting the media flow (water).
  • the evaluation electronics record both the temperature of the medium water and that of the medium air to be cooled.
  • the edge heat exchangers are pressed against the media heat exchanger in order to achieve a large heat exchanger surface. This prevents overheating of the thermocouple blocks and provides the greatest possible thermal energy on a correspondingly large surface.
  • the medium flow for example water
  • the edge heat exchangers into the media heat exchanger is interrupted by a valve.
  • the heat energy generated can be transferred to the medium (air) without loss of energy, ie removal of the heat energy generated by the medium (water) in the media heat exchanger is avoided here by closing the valve.
  • the media heat exchanger has two larger transverse channels on its rear side at the upper and lower ends, which in turn are connected to one another in the longitudinal direction via the finest channels.
  • the closure of the duct system is ensured by a cover (cover) that has two inlet connections. This causes media to be introduced at the upper right or left end and to be discharged at the lower left or right end of the cross channel.
  • All medium-guided device types (types 2 to 5) require ventilation taps to prevent the accumulation of air in the inflow and outflow channels and to enable ventilation.
  • thermocouple block In order to allow maximum surface cooling of the thermocouple blocks, in addition to the previously used seals (outer and inner seal; O - ring), a specially designed seal can also be used for device types 2 to 5. What is special about this seal is the fact that it rests on the outer edge of the thermocouple block, which allows the surface to be cooled to a maximum by the medium because the surface of the thermocouple block that acts on the medium is larger than with the previously described seal.
  • the outer rows of Peltier elements in the thermocouple block are also optimally cooled.
  • the seal is designed in such a way that, on the one hand, it prevents the medium from flowing out laterally from the thermocouple block and, on the other, prevents the medium from flowing out if the thermocouple block breaks mechanically.
  • a carrier is embedded in the seal, which is constructed as a ring, to stabilize it.
  • the inner edge of the sealing ring resembles that of a channel lying in the direction of the thermocouple block, the upper edge of which lies in the form of a leg on the metal surface of the fluid body, while the lower edge in the form of the other leg on the outer edge of the thermo element.
  • Element - Blocks lies.
  • a support beam connected to the sealing ring is fitted below the edge surface to support the latter, which in turn is pressed together by the lower edge of the upper plate of the thermocouple block and the edge heat exchanger.
  • thermocouple block While the lower support of the sealing ring, the support beam, is interrupted at the corner points, the channel resting on the surface of the thermocouple block is completely closed.
  • the integrated outer sealing ring only lies between the fluid body and the heat exchanger (heat sink) and thus prevents the medium from flowing out if the thermocouple block surface breaks mechanically.
  • the tempered air in the case of indirect thermal energy transmission on both sides (device type 1), the tempered air (warm and cold air) is available in two separate duct systems. With one-sided indirect and one-sided direct thermal energy transfer (device type 2,4,5), the tempered air is only available in one duct system. It is transported to the respective locations by means of the air circulation by the fans. Ventilation flaps allow the air flows to be redirected. Only device type 1 is suitable for heating / cooling a room using air as the medium. The device types 2,4 and 5 heat / cool using water or the like as a medium. With device type 3, other liquids such as drinks or explosive substances can also be heated / cooled, since these are guided in a second separate fluid body.
  • Both axial and radial fans can be used for ventilation of the rooms and the necessary flushing of the cooling and heat exchangers of the H thermocompact units. It proves to be advantageous to introduce the medium supplied for cooling the warm heat exchanger block (device type 1) in the center and to discharge it on both sides, because the temperature difference between the medium introduced and discharged is small and therefore a greater cooling of the warm side is achieved than with lateral medium inflow and outflow.
  • the H - thermocompact devices always have heat and cold sources that can be used according to the requirement profile.
  • the peripheral devices such as filters, air flaps, etc. filter suspended matter from the air (clean the air) and ensure conditioned and metered amounts of air.
  • the fresh air requirement can be set and covered, and on the other hand an indirect temperature shift (admixture of mixed air chambers, etc.) can be realized.
  • Protective devices that are necessary for the additional device parts are the generally known standard devices. If the thermal energy generated on one side of the H thermocompact device, eg the energy of the warm side in summer, cannot be used, it can also be transferred to other media, such as other gases or liquid media. This possibility exists on both sides and in general.
  • the primary setting of the temperature is carried out by measuring the room temperature, the outside air temperature and / or at further measuring points and measuring locations.
  • the measurement results are evaluated by a control system, which in turn influences the energy source of the H thermocompact devices and adjusts the temperature of the H thermocompact devices. This compensates for the temperature gradient between the inflowing medium (gases, liquids), air and the H thermocompact devices.
  • the gas, air and other media that flow through the H - thermocompact devices are thus specifically tempered.
  • the advantages achieved by the invention are, in particular, that no refrigerants have to be used in the generation of refrigeration on a semiconductor basis with Peltier elements or with thermocouple blocks, and therefore no CFC is produced, whereas in conventional refrigeration with refrigeration machines almost exclusively refrigerants are used become.
  • the physically heavy type of energy transports (media energy; district heating, oil, etc.) are eliminated and pollutant emissions are reduced.
  • conventional heating and cooling circulates mass flows that are directed to the air conditioner and react sluggishly, according to the invention this is eliminated by the electrical energy transmission and its thermal conversion.
  • the effects of the control and regulation also take place more directly than with conventional air conditioning systems, where the upstream heating and cooling systems require long start-up times. While central parts of the heating and cooling machines have to provide building parts or technical rooms that dampen the noise level and have to comply with special fire regulations, this does not apply here according to the invention.
  • the H thermocompact devices can be set up as a central unit or device unit or can be accommodated decentrally in the building complex as a decentralized system. According to the invention, because of their small dimensions, the H thermocompact devices can be used in all rooms, particularly when converting. Another advantage is due to the fact that the H thermocompact devices can be used for heating and cooling by reversing the polarity of the energy source. Another expedient and advantageous embodiment of the invention is the heating / cooling of the H thermocompact devices with natural resources. Due to the separate medium routing in the H-thermocompact devices and the separate medium routing outside the H-thermocompact devices, natural resources or artificial energy sources can be used for winter heating and summer cooling.
  • the Peltier elements or the thermocouple block generally generate a temperature difference (difference between the cold and warm side), either the warmer or the colder side is fixed to a temperature specified by an existing medium.
  • the free temperature on the other side is used to optimize energy generation (energy saving measure).
  • the warm side of the H thermocompact units has to be supplied with cool underground car park air, cellar air or similar cool media that are discharged outdoors due to their poor air quality. This application is usually excluded in conventional air conditioning systems, because due to the high degree of pollution in the air, the air must be cleaned before it flows through the conventional heat exchanger, the fins of which are otherwise clogged.
  • the cold side of the H thermocompact devices is charged with fresh air, room air which is supplied to the desired rooms, this air leading to an additional gain in cooling energy.
  • the H thermocompact units can also be used for heat recovery. Conversely, additional heat energy can be obtained in winter. The prerequisite for this is that the ventilated rooms have a balanced air balance, which can be achieved with additional ventilation measures.
  • the advantages achieved with the invention are, in particular, that energy recirculation or heat or cold recovery is possible compared to outside air cooling.
  • the H thermocompact units are each suitable separately for summer and winter operation, or as a combination with a switchable unit, so that the hot side is swapped with the cold side, for summer and winter operation, which can be supported by an air flap control and thus one enables optimal annual utilization. Another advantage is that an increase in the efficiency of the thermal energy yield can be achieved by controlling the ripple of the electrical energy source.
  • the H thermocompact devices (device type 1,2,4,5) are supplied with the medium air by fans.
  • H - thermocompact devices can be used in both air conditioning and process engineering. Since the Peltier elements with their electrical supply have no direct contact with the media in the heat exchanger blocks, the sealed H - thermo compact devices can also be flushed with explosion - sensitive media, which is a further advantage. Further expedient and advantageous refinements of the invention emerge from the subclaims.
  • the H - thermocompact units (types 2 to 5) flushed with medium (air or / and water) can either be installed with two-branch air ducting in equipment rooms or in ceiling spaces or with single-branch air duct as cooling ceiling or as the basis for a ventilation unit (unit type 2.4, 5) can be integrated into ceilings.
  • Another useful and advantageous embodiment of the invention is a special type of decentralized system as a cooling and / or heating blanket.
  • Air or water is used for cooling ceilings to cool the heat-side heat exchanger block.
  • ventilation pipes and / or ventilation ducts are used for the air cooling of the heat-side heat exchanger block, the dimensions of which, particularly when converting, are cumbersome, the mechanical complexity and the mechanical dimensions are low for water cooling of the heat-side heat exchanger block, and are therefore advantageous.
  • one side of the H-Thermocompactors is supplied with air or water (air cooling or water cooling), which ensures that warm air or water is removed in summer and cold air or water in winter, i.e.
  • thermocompact devices overheating or freezing the H - Protects thermocompact devices.
  • the cooling capacity is transferred to the cooling ceiling
  • the heating capacity is transferred to the medium air in the heating ceiling (in the ceiling panel), which is then supplied to the rooms.
  • a position-oriented preferred direction required for installation is not to be provided for the chilled or heated ceiling.
  • the pipe system with its insulation is eliminated.
  • no heating and / or cooling system is required according to the invention.
  • the physically heavy transports of energy (media energy; District heating, oil, etc.) and pollutant emissions are reduced.
  • Another expedient and advantageous embodiment of the invention is a special type of decentralized system, such as heating and cooling radiators, in the function of static heating and static cooling.
  • the H - thermocompact device is only integrated in the ceiling of chilled ceilings, the radiator is installed in the room according to the radiators or similar used previously. Air and water are used for cooling ceilings to cool the heat-side heat exchanger block, while water is usually used for the radiators (wall mounting or similar).
  • an integrated cross fan is installed in order to ensure the greatest possible removal of heat or cold energy, i.e. in addition to heat radiation and heat convection, an additional continuous flushing of the warm / cold side heat exchanger block.
  • the resulting warm water can be collected as service water in a boiler and made available for further use, or the resulting cold water can be collected as waste water in containers and used, for example, to flush the toilet.
  • ventilation pipes and / or ventilation ducts are used for the air cooling of the heat-side heat exchanger block, the dimensions of which, particularly in the case of conversion measures, are cumbersome, the mechanical complexity and the mechanical dimensions are low for water cooling of the heat-side heat exchanger block and are therefore advantageous.
  • Summer / winter switching is a prerequisite for use as a heat and cold generating radiator.
  • a built-in frost monitor prevents the cold-side heat exchanger block or its water from freezing.
  • the advantages achieved by the invention are, in particular, that the dimensions compared to air cooling are small in water cooling. A great efficiency of heat and. Refrigeration results when using the available hot water. For example, hot water (city water) that has been prepared is used to flush the fluid body in winter and cold water in summer. This results in lower electrical energy consumption for heating and cooling with the H thermocompact device. Another advantage is that only those installed in the building
  • the following facts must be taken into account:
  • condensation water which is generated by condensation when the air is cooling (heat extraction)
  • the H - thermocompact device or the attachment of the heat exchanger blocks is brought into a slightly inclined position.
  • the condensation water flows along the cooling fins, collects in a specially designed channel and is drained into the wastewater or the outside through hose connections.
  • the cold side of the heat exchanger is made from an uninterrupted piece (device type 1), the warm side consists of heat exchanger segments that form a block.
  • sensors are attached outside or in the space between the heat exchanger blocks, which record the temperature of the heat exchanger and limit the energy supply via a control in connection with the room temperature measurement.
  • the segments In the case of the device types with electrical summer and winter changeover (device type 1,2,4,5), the segments must be sealed from one another, provided that there are no closed heat exchanger blocks, so that the condensation water drainage is ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Bipolar Transistors (AREA)
  • Liquid Developers In Electrophotography (AREA)
  • Surgical Instruments (AREA)
  • Discharge Heating (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Claims (17)

  1. Appareil thermique compact à semi-conducteur pour chauffer et refroidir des fluides, constitué de blocs de thermo-éléments (32, 138), contenant plusieurs éléments Peltier (151), et de refroidisseurs à grande puissance qui fonctionnent comme échangeurs de chaleur, caractérisé en ce que les blocs de thermo-éléments, qui sont encastrés dans des échangeurs de chaleur de bords (103) équipés d'écarteurs, échangeurs entre lesquels se trouve l'échangeur de chaleur de fluide (101), qui est assemblé aux échangeurs de chaleur de bords au moyen de deux broches filetées (108) installées dans la moitié supérieure et la moitié inférieure des échangeurs de chaleur, broches sur lesquelles est monté un écrou fixé sur les échangeurs de chaleur de bords, coupé à angle droit de son diamètre et assemblé sur ses faces latérales à deux vis, et une rondelle-ressort (110) s'appliquant entre l'écrou (109) et les échangeurs de chaleur de bords, ces blocs donc sont séparés les uns des autres par des matériaux calorifuges mis en place transversalement, y reposent sur des broches de connexion coulées dans une couche d'isolation et sont serrés, par des vis d'assemblage pourvues de douilles calorifuges, entre ces échangeurs de chaleur de bords et les corps de fluide (102) sus-jacents, qui disposent de tubulures d'alimentation à collecteur d'impuretés incorporé et de tubulures d'évacuation, un joint d'étanchéité intérieur encastré dans le culot du corps de fluide venant se placer sur le bord de la surface du bloc de thermo-élément, et un autre joint d'étanchéité, extérieur, également encastré dans ce culot, se plaçant autour du bord de la surface du bloc de thermo-élément, et les corps de fluide, qui disposent de robinets de purge d'air, étant reliés à deux tuyaux qui sont respectivement vissés dans un corps de fluide et encastrés dans le corps de fluide opposé par deux joints d'étanchéité, les espaces libres entre les échangeurs de chaleur de bords et les corps de fluide étant remplis de matériau calorifuge, des équipements électriques tels que des blocs d'alimentation et des transformateurs réglables graduellement ou en continu et suivis de redresseurs, des unités de protection, de mesure, de commande et de régulation et des distributeurs (124) étant installés sur l'échangeur de chaleur de fluide et sur les corps de fluide, des ventilateurs transversaux (125) étant montés sur les échangeurs de chaleur transversalement à l'axe longitudinal de ces derniers et des moteurs d'entraínement pour les broches filetées étant fixés sur un côté des échangeurs de chaleur de bords, et l'ensemble de ce côté arrière de l'appareil étant protégé par un capot de recouvrement.
  2. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce que l'échangeur de chaleur de fluide (101) est constitué d'un refroidisseur à grande puissance et en ce qu'il dispose sur son côté arrière, à l'extrémité supérieure et à l'extrémité inférieure, de deux relativement gros canaux transversaux (115), qui sont eux-mêmes mutuellement reliés en direction longitudinale par des canaux très fins (114), et en ce que le système de canaux est fermé par un élément de recouvrement pourvu de tubulures d'admission et d'évacuation.
  3. Appareil thermique compact à semi-conducteur selon la revendication 2, caractérisé en ce qu'il présente, sur son côté arrière, à l'extrémité supérieure et à l'extrémité inférieure, deux relativement grands cylindres creux, qui sont reliés par des cylindres creux plus petits s'étendant en direction longitudinale et qui disposent de tubulures d'alimentation et d'évacuation.
  4. Appareil thermique compact à semi-conducteur selon les revendications 2 et 3, caractérisé en ce que les lamelles du refroidisseur à grande puissance sont fermées, et ce dernier est pourvu de tubulures d'alimentation et d'évacuation.
  5. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce que le joint d'étanchéité est constitué de matière plastique élastique et d'un élément porteur intérieur (137), de sorte que le joint d'étanchéité intérieur (134) et le joint d'étanchéité extérieur (135) forment un ensemble avec l'élément porteur incorporé (137), le bord intérieur du joint d'étanchéité (135) reposant sous la forme d'une rigole plate sur le bord extérieur du corps à étancher et, pour soutenir ce dernier, un élément porteur de soutien (136) assemblé au joint d'étanchéité annulaire s'ajustant sous la surface du bord du corps à étancher.
  6. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce que le corps de fluide présente des cylindres creux qui forment un système d'alimentation (143) et un système d'évacuation (144) qui s'étendent en direction longitudinale et transversale, et qui sont eux-mêmes reliés par des cylindres creux plus petits (141, 142) s'étendant en direction transversale vers le corps de fluide, qui assurent l'alimentation et l'évacuation des surfaces de bloc de thermo-élément venant se placer sur des culots du corps de fluide.
  7. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce que deux tuyaux (112, 113) relient les corps de fluide (102) au-dessus de l'échangeur de chaleur de fluide (101), sur lequel ils sont fixés, le tuyau d'alimentation étant relié au système d'alimentation et le tuyau d'évacuation au système d'évacuation, deux joints d'étanchéité étant respectivement disposés sur les tuyaux au voisinage immédiat de ces points de raccordement, et des collets de raccordement étant prévus à chaque extrémité des tuyaux.
  8. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce que, dans le cas d'un canal d'alimentation (58, 88) et d'un canal d'évacuation (59, 87) fraisés dans la face supérieure du corps de fluide, le corps de fluide doit être pourvu de joints d'étanchéité annulaires (60, 61, 88, 89) encastrés dans la surface et s'étendant autour des canaux, et doit être fermé par un élément de recouvrement qui est assemblé au corps par vissage ou, en l'absence des joints d'étanchéité annulaires, par soudage, des goupilles cylindriques (56, 84) pourvues de créneaux de vissage étant insérées dans les perçages d'alimentation menant aux surfaces des blocs de thermo-éléments, perçages qui débutent dans un plan en renfoncement sur le culot, des perçages d'évacuation (57, 85) apportant le fluide au canal d'évacuation, et en cas de fixation de deux corps de fluide l'un sur l'autre, seul un joint d'étanchéité annulaire extérieur étant présent entre les culots respectifs qui se rencontrent.
  9. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce qu'on peut former un circuit secondaire pour l'écoulement du fluide de l'appareil thermique compact à semi-conducteur vers l'échangeur de chaleur, tandis que le circuit primaire peut mener de l'échangeur de chaleur au réseau de distribution.
  10. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce que les échangeurs de chaleur de bords (103), en faisant tourner les broches filetées (108), sont séparés de l'échangeur de chaleur de fluide (101) pour le refroidissement et amenés en application en pour le chauffage.
  11. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce que, pour l'alimentation en énergie électrique des blocs de thermo-éléments, on a besoin d'une ondulation importante pour le chauffage et d'une très faible ondulation pour le refroidissement.
  12. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce que les fluides peuvent, pour le chauffage et pour le refroidissement, être directement dirigés sur la surface de bloc de thermo-élément.
  13. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce que des fluides explosifs peuvent être dirigés dans un corps de fluide fermé pourvu de collets de raccordement, qui est traversé par des cylindres creux mutuellement reliés à leurs extrémités.
  14. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce que le fluide peut être pré-tempéré dans un échangeur de chaleur de fluide, puis soumis à une montée en cascade, le fluide pouvant être, dans un corps de fluide, dirigé de telle sorte qu'il s'écoule chaque fois vers la surface suivante de bloc de thermo-élément, de sorte qu'on peut obtenir un cumul de température.
  15. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce qu'on peut effectuer aussi bien un guidage séparé de fluide chaud et de fluide froid qu'un guidage de fluide en un seul circuit, l'appareil thermique compact à semi-conducteur servant alors de plafond refroidi.
  16. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce qu'il peut être utilisé dans des incubateurs et des réfrigérateurs.
  17. Appareil thermique compact à semi-conducteur selon la revendication 1, caractérisé en ce que le côté non utilisé pour le réchauffement ou, respectivement, le refroidissement du fluide peut être alimenté en fluide énergétique, et ainsi utilisé pour la récupération de chaleur.
EP96927630A 1995-08-01 1996-07-30 Appareil thermique compact du type a semi-conducteur Expired - Lifetime EP0842382B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19528144 1995-08-01
DE19528144 1995-08-01
PCT/EP1996/003346 WO1997005432A1 (fr) 1995-08-01 1996-07-30 Appareil thermique compact du type a semi-conducteur

Publications (2)

Publication Number Publication Date
EP0842382A1 EP0842382A1 (fr) 1998-05-20
EP0842382B1 true EP0842382B1 (fr) 2000-10-11

Family

ID=7768352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96927630A Expired - Lifetime EP0842382B1 (fr) 1995-08-01 1996-07-30 Appareil thermique compact du type a semi-conducteur

Country Status (6)

Country Link
EP (1) EP0842382B1 (fr)
AT (1) ATE196946T1 (fr)
AU (1) AU6739196A (fr)
DE (3) DE19600470C2 (fr)
ES (1) ES2152037T3 (fr)
WO (1) WO1997005432A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024038A1 (de) 2007-05-23 2008-11-27 Volkswagen Ag Wärmetauscher
DE102007053381B3 (de) * 2007-11-09 2009-04-02 Meiko Maschinenbau Gmbh & Co.Kg Geschirrspülmaschine mit Latentwärmespeicher
EP2050381A2 (fr) 2007-10-19 2009-04-22 MEIKO Maschinenbau GmbH & Co. KG Lave-vaisselle doté d'une récupération de chaleur améliorée
DE102007050533A1 (de) 2007-10-19 2009-04-23 Meiko Maschinenbau Gmbh & Co. Kg Geschirrspülmaschine mit verbesserter Wärmerückgewinnung
DE102008026875A1 (de) 2008-06-05 2009-12-10 Meiko Maschinenbau Gmbh & Co. Kg Geschirrspülmaschine mit verbesserter Wärmerückgewinnung

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378311B1 (en) 2000-05-18 2002-04-30 Raytheon Company Thermoelectric dehumidifier
DE20012752U1 (de) * 2000-05-24 2001-10-04 Mwg Biotech Ag Luftbehandlungsvorrichtung für eine Vorrichtung zum Erzeugen von Polymerchips
DE10296242D2 (de) * 2002-01-14 2005-01-05 Johann Geiger Klima-System
FR2879728B1 (fr) * 2004-12-22 2007-06-01 Acome Soc Coop Production Module de chauffage et de rafraichissement autonome
DE102004062804B3 (de) * 2004-12-27 2006-05-24 Bernhard Harter Kombitemperierungsgerät
DE102006005812A1 (de) * 2006-02-08 2007-08-09 BSH Bosch und Siemens Hausgeräte GmbH Dichtungsvorrichtung für eine Wärmetauscheranordnung
DE102007013779A1 (de) * 2007-03-22 2008-09-25 Gea Happel Klimatechnik Produktions- Und Servicegesellschaft Mbh Vorrichtung zum Kühlen oder Heizen von Luft
DE102009036598A1 (de) 2009-07-30 2011-02-03 Komos Gmbh Thermoelektrisches Modul und Thermoelektrischer Wohnraumentfeuchter
DE102012204865A1 (de) 2012-03-27 2013-10-02 Öko-Haustechnik inVENTer GmbH Belüftungsvorrichtung
DE102012208406A1 (de) 2012-05-21 2013-11-21 P.R. Agentur für transparente Kommunikation GmbH Vorrichtung zum Heizen und/oder Kühlen eines Raums
DE102014007853B3 (de) * 2014-05-30 2015-10-22 Bernhard Harter Verfahren und Vorrichtung zum Temperieren eines Wärmeaustauschers
CN104958054B (zh) * 2015-05-19 2017-10-31 杨星慧 全自动清洗设备
FR3094566B1 (fr) * 2019-03-29 2022-04-15 Sbs Synovate Dispositif de ventilation pour enceinte acoustique, enceinte acoustique et procédé correspondant
DE102019115045A1 (de) * 2019-06-04 2020-12-10 Maximilian Nikodem Flächen- Kühl- / Heizelement zur Raumkonditionierung mittels Peltierelementen
RU2718357C1 (ru) * 2019-10-24 2020-04-02 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Климатическая камера
SE2251037A1 (en) 2022-09-07 2024-03-08 Rikard Bergsten Air heat exchanger with peltier elements and a method for installing an air heat exchanger with peltier elements

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1262547B (de) * 1963-07-12 1968-03-07 Ver Flugtechnische Werke Ges M Ortsunabhaengiges Geraet zum Kuehlen oder Erwaermen der Raumluft unter Verwendung des Peltiereffektes
DE6901069U (de) * 1969-01-13 1969-10-23 Christian Schneider Raumklimageraet mit peltier-block-aggregat
DE6914503U (de) * 1969-04-11 1969-09-11 Christian Schneider Klimageraet mit peltier-block-aggregat
FR2315771A1 (fr) * 1975-06-27 1977-01-21 Air Ind Perfectionnements apportes aux installations thermo-electriques
FR2394761A2 (fr) * 1977-03-11 1979-01-12 Air Ind Perfectionnements apportes aux installations de climatisation a effet peltier
EP0078932A1 (fr) * 1981-10-22 1983-05-18 Hölter, Heinz, Dipl.-Ing. Procédé pour chauffer, ventiler et/ou conditionner des locaux d'habitation
EP0105953A1 (fr) * 1982-10-13 1984-04-25 Viktor Bollinger Système de conditionnement d'air pour des locaux chauffés
FR2558574B1 (fr) * 1984-01-25 1986-06-13 Buffet Jean Perfectionnements apportes aux installations thermo-electriques a thermo-elements interposes entre des conduits chauds et froids
DE4036210A1 (de) * 1990-11-14 1992-05-21 Bartel Uwe Temperiervorrichtung
WO1994012833A1 (fr) * 1992-11-27 1994-06-09 Pneumo Abex Corporation Dispositif thermoelectrique conçu pour chauffer et refroidir l'air et destine a être utilise par l'homme

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024038A1 (de) 2007-05-23 2008-11-27 Volkswagen Ag Wärmetauscher
EP2050381A2 (fr) 2007-10-19 2009-04-22 MEIKO Maschinenbau GmbH & Co. KG Lave-vaisselle doté d'une récupération de chaleur améliorée
DE102007050533A1 (de) 2007-10-19 2009-04-23 Meiko Maschinenbau Gmbh & Co. Kg Geschirrspülmaschine mit verbesserter Wärmerückgewinnung
DE102007053381B3 (de) * 2007-11-09 2009-04-02 Meiko Maschinenbau Gmbh & Co.Kg Geschirrspülmaschine mit Latentwärmespeicher
EP2057928A2 (fr) 2007-11-09 2009-05-13 MEIKO Maschinenbau GmbH & Co. KG Lave-vaisselle doté d'un accumulateur thermique latent
US8307839B2 (en) 2007-11-09 2012-11-13 Meiko Maschinenbau Gmbh & Co. Kg Dishwasher with a latent heat accumulator
DE102008026875A1 (de) 2008-06-05 2009-12-10 Meiko Maschinenbau Gmbh & Co. Kg Geschirrspülmaschine mit verbesserter Wärmerückgewinnung
DE102008026875B4 (de) * 2008-06-05 2011-06-01 Meiko Maschinenbau Gmbh & Co. Kg Geschirrspülmaschine mit verbesserter Wärmerückgewinnung

Also Published As

Publication number Publication date
EP0842382A1 (fr) 1998-05-20
DE19600470C2 (de) 1999-06-10
ATE196946T1 (de) 2000-10-15
DE19600470A1 (de) 1997-02-06
AU6739196A (en) 1997-02-26
WO1997005432A1 (fr) 1997-02-13
DE19680617D2 (de) 1998-10-29
ES2152037T3 (es) 2001-01-16
DE59605991D1 (de) 2000-11-16

Similar Documents

Publication Publication Date Title
EP0842382B1 (fr) Appareil thermique compact du type a semi-conducteur
DE102008013850B3 (de) Klimatisierungseinrichtung für in einem Schaltschrank angeordnete elektronische Bauelemente und Anordnung zur Klimatisierung eines Schaltschrankes
WO2012110461A1 (fr) Appareil de climatisation de local comprenant un appareil échangeur de chaleur liquide-air à éléments à effet peltier
DE19650892C2 (de) Fußbodenheizung
DE102008053554A1 (de) Klimasystem für ein Gebäude
DE19831918C2 (de) Verfahren und Einrichtung zum Heizen oder Kühlen von vorwiegend geschlossenen Räumen
DE10354355B4 (de) Vorrichtung zum Temperieren von Räumen
DE3328229C2 (de) Wärmetauscher
DE69912014T2 (de) Zentralheizung benutzende Heiz- und Klimaanlage
DE4202875A1 (de) Beheiz- und kuehlbares doppelbodenelement
EP2932168B1 (fr) Système de pompe à chaleur et procédé pour faire fonctionner un système de pompe à chaleur
AT413756B (de) Raumklimaeinrichtung
DE10035563C2 (de) Mobiler Container
DE102020128629A1 (de) Vorrichtung und Verfahren zum kombinierten Betrieb einer Wärmepumpe zur Erwärmung von Wasser und eines Lüftungssystems
EP1422482B1 (fr) Dispositif de chauffage et de refroidissement d'un local, élément de plafond pour ce dispositif et méthode pour sa commande
CH697823B1 (de) Einrichtung zum Klimatisieren eines Raumes.
WO2022084487A1 (fr) Appareil, procédé et système de refroidissement
WO2010034498A2 (fr) Dispositif de climatisation d'un local
DE69001073T2 (de) Klimavorrichtung für ein gebäude.
DE10320365B4 (de) Kühldecke bzw. Kühlsegel mit Speicherfähigkeit
DE29601794U1 (de) Deckenlüftungsgerät zum Heizen und Klimatisieren von Räumen
DE9414055U1 (de) Zentralheizsystem für Gebäude
DE10201751A1 (de) Kombiniertes Heiz-Kühlsystem
DE102015203293A1 (de) Gebäude
AT524712A1 (de) Vorrichtung zur Klimatisierung eines Raumes mit einem Klimagerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI

AX Request for extension of the european patent

Free format text: SI PAYMENT 970407

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990504

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE ES FR GB IT LI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI

AX Request for extension of the european patent

Free format text: SI PAYMENT 19970407

REF Corresponds to:

Ref document number: 196946

Country of ref document: AT

Date of ref document: 20001015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59605991

Country of ref document: DE

Date of ref document: 20001116

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2152037

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010615

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010706

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010723

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010726

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010731

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070731

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203