EP0828707A1 - Verfahren zur herstellung von cyclohexanonoxim und caprolactam - Google Patents
Verfahren zur herstellung von cyclohexanonoxim und caprolactamInfo
- Publication number
- EP0828707A1 EP0828707A1 EP96917419A EP96917419A EP0828707A1 EP 0828707 A1 EP0828707 A1 EP 0828707A1 EP 96917419 A EP96917419 A EP 96917419A EP 96917419 A EP96917419 A EP 96917419A EP 0828707 A1 EP0828707 A1 EP 0828707A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- formic acid
- mixture
- cyclohexanone oxime
- formate
- hydroxylammonium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- VEZUQRBDRNJBJY-UHFFFAOYSA-N cyclohexanone oxime Chemical compound ON=C1CCCCC1 VEZUQRBDRNJBJY-UHFFFAOYSA-N 0.000 title claims abstract description 73
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims description 38
- 230000008569 process Effects 0.000 title claims description 21
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims abstract description 26
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 238000006237 Beckmann rearrangement reaction Methods 0.000 claims abstract description 3
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 136
- 235000019253 formic acid Nutrition 0.000 claims description 69
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 53
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 33
- 229910052717 sulfur Inorganic materials 0.000 claims description 30
- 239000011593 sulfur Substances 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 29
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical class [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 28
- QJMMOFKVXUHETR-UHFFFAOYSA-N formic acid;hydroxylamine Chemical compound ON.OC=O QJMMOFKVXUHETR-UHFFFAOYSA-N 0.000 claims description 22
- 238000002360 preparation method Methods 0.000 claims description 19
- 239000003054 catalyst Substances 0.000 claims description 18
- -1 formic acid ester Chemical class 0.000 claims description 17
- 239000011541 reaction mixture Substances 0.000 claims description 15
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 14
- 238000005984 hydrogenation reaction Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 230000008707 rearrangement Effects 0.000 claims description 10
- 238000004821 distillation Methods 0.000 claims description 9
- 230000032050 esterification Effects 0.000 claims description 8
- 238000005886 esterification reaction Methods 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 claims description 2
- 150000001735 carboxylic acids Chemical class 0.000 claims description 2
- 238000007363 ring formation reaction Methods 0.000 claims 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- RBLWMQWAHONKNC-UHFFFAOYSA-N hydroxyazanium Chemical compound O[NH3+] RBLWMQWAHONKNC-UHFFFAOYSA-N 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 150000003057 platinum Chemical class 0.000 description 11
- 229910052697 platinum Inorganic materials 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 6
- 229940044170 formate Drugs 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 229920001732 Lignosulfonate Polymers 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 235000011054 acetic acid Nutrition 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 4
- 235000011130 ammonium sulphate Nutrition 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000007127 saponification reaction Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002443 hydroxylamines Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000003951 lactams Chemical class 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000010626 work up procedure Methods 0.000 description 2
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 238000007171 acid catalysis Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000005815 base catalysis Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000004281 calcium formate Substances 0.000 description 1
- 229940044172 calcium formate Drugs 0.000 description 1
- 235000019255 calcium formate Nutrition 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- HRGDZIGMBDGFTC-UHFFFAOYSA-N platinum(2+) Chemical class [Pt+2] HRGDZIGMBDGFTC-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011833 salt mixture Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 150000003497 tellurium Chemical class 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D201/00—Preparation, separation, purification or stabilisation of unsubstituted lactams
- C07D201/02—Preparation of lactams
- C07D201/04—Preparation of lactams from or via oximes by Beckmann rearrangement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/14—Hydroxylamine; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C249/00—Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
- C07C249/04—Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
- C07C249/08—Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes by reaction of hydroxylamines with carbonyl compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C251/00—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
- C07C251/32—Oximes
- C07C251/34—Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
- C07C251/44—Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/41—Preparation of salts of carboxylic acids
- C07C51/412—Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a process for the preparation of cyclohexanone oxime by reacting cyclohexanone with a hydroxylammonium salt.
- the invention further relates to a process for the production of caprolactam.
- DE-C 14 93 198 describes, according to claim, the preparation of cyclohexanone oxime by reacting cyclohexanone with an aqueous solution of a hydroxylamine salt of an inorganic or organic acid, wherein a residual solution containing aqueous acid obtained after the removal of the oxy is obtained Performs salt / acid separation, uses the separated amount of acid to prepare the hydroxylamine salt starting solution.
- a disadvantage of this process is the great expenditure on equipment and the use of sulfuric acid and ammonia in the workup of the acid / salt mixture when a carboxylic acid, in particular acetic acid, is used, so that ammonium sulfate or a phosphate - in smaller amounts than previously - but still has to be disposed of.
- EP-A 620 042 describes the preparation of hydroxylammonium salts by reduction of nitrogen monoxide with hydrogen in the presence of a hydrogenation catalyst in strong mineral acids or aliphatic Ci-Cs monocarboxylic acids such as formic and acetic acid, the hydrogenation catalyst being obtainable by treatment a platinum metal salt with finely divided sulfur and subsequent reduction of the platinum metal salt to metallic platinum metal.
- a hydrogenation catalyst in strong mineral acids or aliphatic Ci-Cs monocarboxylic acids such as formic and acetic acid
- cyclohexanone oxime is prepared by reacting cyclohexanone with hydroxylammonium formate in aqueous formic acid.
- the molar ratio of hydroxylammonium formate to cyclohexanone is usually chosen in the range from 1.3: 1 to 1: 1, preferably from 1.2: 1 to 1: 1.
- the hydroxylammonium formate is converted into aqueous formic acid, the concentration increasing
- Hydroxylammonium formate is generally selected in the range from 10 to 16, preferably from 12 to 14,% by weight.
- concentration on hydroxylammonium formate is generally selected in the range from 10 to 16, preferably from 12 to 14,% by weight.
- Formic acid in the aqueous formic acid solution is in the aqueous formic acid solution
- the temperature is generally chosen in the range from 70 to 90, preferably from 75 to 80 ° C.
- the pressure is generally selected in the range from 90 to 120, preferably from 100 to 120, particularly preferably from 105 to 110 kPa.
- the pH is usually selected in the range from 0.5 to 2.5, preferably from 1.2 to 1.8.
- the pH value is generally set by the buffering action of the ammonium formate / formic acid system itself, if one uses, preferably, hydroxylammonium formate solutions which come directly from the hydroxylammonium formate synthesis without further work-up.
- the reaction can be carried out batchwise or continuously, in one or more stages, preferably in two stages, particularly preferably continuously and in two stages.
- the residence time is usually 1.5 to 3 hours per stage.
- the yields are generally in the range from 94 to 98, based on the cyclohexanone used.
- hydroxylammonium formate is used, which is obtained by reducing nitrogen monoxide with hydrogen in the presence of a hydrogenation catalyst in aqueous formic acid.
- the preparation of hydroxylammonium formate is usually carried out by suspending the hydrogenation catalyst in aqueous formic acid and introducing a mixture of nitrogen monoxide and hydrogen into the suspension.
- the formic acid content is generally chosen in the range from 20 50 to 500, preferably from 100 to 250 g of formic acid per liter of formic acid / water mixture. According to previous observations, hydrogenation at concentrations of more than 60% by weight of formic acid is no longer possible.
- the hydrogenation of nitrogen monoxide is generally carried out at a temperature in the range from 30 to 80, preferably from 35 to 60 ° C. Furthermore, the pressure during the hydrogenation is usually chosen in the range from 100 to 3000, preferably from 150 to 2000 kPa.
- the ratio of formic acid to catalyst is usually chosen in the range from 10 to 100, preferably from 30 to 80, g of platinum-graphite catalyst per liter of the aqueous formic acid.
- catalyst is treated
- the usual hydrogenation catalysts known for the preparation of hydroxylammonium salts can be used as the catalyst.
- a hydrogenation catalyst is particularly preferred, produced by the process described in DE-A 4,311,420. According to this process, platinum is treated with finely divided sulfur and then the platinum thus treated is reduced to metallic platinum.
- Suitable platinum salts are, in particular, the water-soluble salts such as the halides, nitrates and sulfates. Examples include:
- Platinum (IV) compounds such as hexachloroplatinic acid and its alkali metal and ammonium salts, tetrachloroplatinate or tetrachlorodihydroxyplatinic acid; and
- Platinum (II) compounds such as tetrachloroplatinic acid and its alkali metal salts or plati (II) chloride;
- mixtures of essentially salts with other metal salts for example arsenic, antimony, selenium or tellurium salts, can also be used.
- finely divided sulfur for example the commercially available "sulfur bloom" is used as the sulfur used for partial poisoning. It is preferred to use sulfur with a particle size of less than 500 ⁇ m, preferably less than 50 ⁇ m, particularly preferably one
- Suitable sulfur is commercially available, for example, as "Kumulus WG®” network sulfur (BASF) or using methods known per se, in particular sieves, from, for example, sulfur bloom or finely ground sulfur.
- the platinum salt is treated with the finely divided sulfur in aqueous solution by bringing the aqueous platinum salt solution into contact with the finely divided sulfur.
- the sulfur can also be used as a colloidal sulfur solution.
- the sulfur is preferably added in the form of an aqueous suspension.
- Suitable surfactants which are also referred to as dispersants, can be found, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 4th edition, volume 23, Verlag Chemie, Weinheim, 1983, pp. 31-39. Examples include:
- Polyacrylates polyvinyl sulfonates, polyvinyl pyrrolidone, TAMOL ® (BASF), Schaeffer salt and lignin sulfonates.
- the surfactant used is lignin sulfonates (known, for example, from Ulimann, Encyclopedia of Industrial Chemistry, 4th edition, vol. 16, pp. 253 ff., Verlag Chemie, 1978), preferably alkali metal lignosulfonates such as sodium and potassium lignin sulfonate , since they can be easily removed with the washing water when washing the finished catalyst and because of their easy degradability they do not represent an environmental burden.
- lignin sulfonates known, for example, from Ulimann, Encyclopedia of Industrial Chemistry, 4th edition, vol. 16, pp. 253 ff., Verlag Chemie, 1978
- alkali metal lignosulfonates such as sodium and potassium lignin sulfonate
- the surfactants are generally added to the reaction mixture before the sulfur is added to the platinum salt or advantageously to the aqueous sulfur suspension.
- the weight ratio of surfactant to sulfur is generally chosen in the range from 0.1 to 50, preferably from 1 to 15,% by weight.
- the temperature during the treatment of the platinum salt with the finely divided sulfur is usually chosen in the range from 20 to 95 ° C., preferably from 40 to 95 ° C., particularly preferably from 50 to 85 ° C.
- the pH during the treatment of the platinum salt with the finely divided sulfur is generally chosen in the range from 1.5 to 11.5, preferably from 2.5 to 8.5, particularly preferably 4.5 to 8.5 , very particularly preferably from 7.0 to 7.5.
- the duration of treatment of the platinum salt with the finely divided sulfur i.e. the period from the addition of the finely divided sulfur to the addition of the reducing agent is generally chosen in the range from 0.5 to 60 min, preferably from 2 to 15 min.
- the molar ratio of platinum to sulfur is generally selected in the range from 90 to 10, preferably from 75 to 35, mol%.
- the platinum salt is reduced to metallic platinum by expediently adding a reducing agent to the reaction mixture obtained after treating the platinum salt with finely divided sulfur.
- Suitable reducing agents are usually all known reducing agents for platinum salts to platinum, e.g. Hydrazine, formaldehyde, formic acid or an alkali metal or alkaline earth metal formate such as. Sodium, potassium and calcium formate, particularly preferably formic acid.
- the molar ratio of platinum to reducing agent is generally chosen in the range from 0.5 to 100, preferably from 5 to 85 mol%.
- the temperature during the reduction is usually chosen in the range from 20 to 95 ° C., preferably from 40 to 95 ° C., particularly preferably from 50 to 85 ° C.
- the pH during the reduction essentially depends on the amount and type of reducing agent.
- the pH is generally selected in the range from 0.5 to 3.5, preferably from 1.0 to 2.5.
- the catalyst is generally worked up in the customary manner, for example by filtering it off from the reaction mixture and washing it appropriately with water.
- the reduction and, if desired, the treatment with finely divided sulfur is carried out in the presence of a catalyst support such as graphite or activated carbon, preferably graphite.
- a catalyst support such as graphite or activated carbon, preferably graphite.
- the platinum salt is particularly preferably mixed with finely divided graphite before the treatment with finely divided sulfur, generally with a particle size in the range from 0.1 to 1000, preferably from 0.1 to 300 ⁇ m, particularly preferably from 5 to 100 ⁇ m.
- the molar ratio of carbon (or graphite or activated carbon) to platinum is generally chosen in the range from 99.99 to 10 mol%, preferably 99.99 to 30 mol%, especially if it is platinum, preferably 99, 99 to 90 mol%, particularly preferably from 99.98 to 95.0 mol%.
- the formic acid used and released in the preparation of cyclohexanone oxime is separated from the reaction mixture obtained.
- the separated formic acid can then be used again in the production of hydroxylammonium formate and cyclohexanone oxime.
- step (c) separating the formic acid ester obtained in step (b) from mixture B by distillation,
- step (d) the formic acid ester obtained from step (c) is saponified in a manner known per se to obtain a mixture C comprising essentially formic acid and the corresponding alcohol used in step (a),
- the formic acid from stage (d) is separated from the mixture and used to prepare hydroxylammonium formate and / or cyclohexanone oxime.
- the cyclohexanone oxime is usually obtained by phase separation processes, for example in a phase separator at 70 to 75 ° C. in the upper phase, from the reaction mixture obtained in the preparation of the cyclohexanone oxime.
- a mixture A is obtained which essentially consists of water, formic acid and, if appropriate, impurities such as ammonium formate and traces of hydroxylammonium formate.
- this mixture A is mixed with a C 1 -C 4 -alkanol such as methanol, ethanol, n-, i-propanol, n-, i-, sec.- and tert.
- a C 1 -C 4 -alkanol such as methanol, ethanol, n-, i-propanol, n-, i-, sec.- and tert.
- Butanol the alkanol usually being used in an excess of 10 to 40, preferably 20 to 40,% by weight, based on the formic acid.
- Formic acid is particularly preferably esterified with methanol, since methyl formate can be easily separated off because of its low boiling point (31.8 ° C. at 100 kPa).
- the esterification is carried out according to methods known per se, for example by heating the mixture A to which the alkanol has been added to a temperature in the range from 40 to 80 ° C. and by maintaining a pressure in the range from 150 to 500 kPa. Esterification produces a mixture B containing the formic acid ester.
- the formic acid ester is removed by distillation from mixture B. In a preferred embodiment, the formic acid ester formed is removed continuously during the esterification.
- esterification is carried out acid-catalyzed by using up to 2% by weight, based on formic acid, of an acid, preferably a mineral acid such as sulfuric acid, hydrochloric acid or phosphoric acid.
- an acid preferably a mineral acid such as sulfuric acid, hydrochloric acid or phosphoric acid.
- This procedure is preferably carried out in a stirred tank reactor with a distillation column attached, the C 1 -C 4 -alkyl formate formed being continuously separated off by distillation.
- the pH is usually in the range of 0.5 to 2.5.
- the formic acid ester, C 1 -C 4 -alkyl formate is usually saponified in a manner known per se, ie cleaved into formic acid and C 4 -C 4 -alkanol.
- the saponification can be carried out in an acidic as well as in a basic environment.
- the saponification can be carried out in a stirred tank, with either acid or base catalysis being carried out in a manner known per se.
- the saponification can be carried out in a fixed bed reactor which contains a basic ion exchanger.
- the reactors used preferably contain a rectification attachment in order to separate the system H 2 ⁇ / HCOOH / C ⁇ -C 4 alkanol / formic acid ester.
- the formic acid is separated off from the reaction mixture by customary methods, for example by distilling off the lower-boiling constituents of the reaction mixture.
- the separated formic acid preferably in the form of an aqueous solution, is preferably used for the synthesis of hydro- xylammonium formate and / or for the synthesis of cyclohexanone oxime, so that formic acid is circulated.
- methanol is used in the esterification and is obtained in the saponification
- methyl formate which has a very low boiling point, can be distilled off overhead, methanol removed as a side stream, while the aqueous formic acid remains in the bottom and can preferably be recycled for the synthesis of hydroxylamine.
- This process has the advantage that the recovered formic acid is free of by-products, especially of other organic impurities ("TOC" total organic carbon). Since the by-products are removed, the accumulation of undesired by-products is avoided in a circular manner.
- TOC organic impurities
- caprolactam is prepared by Beckmann rearrangement of cyclohexanone oxime in the presence of a C ⁇ -C 4 -carboxylic acid such as formic acid, acetic acid, propionic acid or butyric acid, preferably formic acid and acetic acid, particularly preferably formic acid.
- a C ⁇ -C 4 -carboxylic acid such as formic acid, acetic acid, propionic acid or butyric acid, preferably formic acid and acetic acid, particularly preferably formic acid.
- the molar ratio of cyclohexanone oxime to carboxylic acid is preferably selected in the range from 1: 1 to 1:30, preferably from 1: 1 to 1:10.
- the cyclohexanone oxime is usually used as a C 4 -C 4 carboxylic acid solution, the concentration of the generally aqueous carboxylic acid solution generally being in the range from 10 to 70% by weight, preferably from 15 to 50% by weight.
- the same carboxylic acid which is used as the solvent for the rearrangement is particularly preferably used, formic acid being particularly preferred.
- the temperature is generally chosen in the range from 50 to 150, preferably from 70 to 120 ° C.
- the pressure is generally selected in the range from 100 to 1000, preferably from 100 to 200 kPa.
- the pH value is freely established; the use of buffers is usually not necessary.
- the rearrangement can otherwise be carried out according to methods known per se, ie optionally continuously or discontinuously, in one or more stages, preferably in multiple stages.
- the residence time is generally 2 to 10, preferably 3 to 6 hours.
- cyclohexanone oxime which has been prepared by one of the processes according to the invention described above and is documented in the subclaims.
- the C 1 -C 4 -carboxylic acid used at the beginning of the rearrangement is distilled off from the reaction mixture, and it is preferably used again for the rearrangement of the cyclohexanone oxime.
- the caprolactam produced according to the invention can be worked up by methods known per se, such as extraction of the crude lactam with a solvent, for example by the processes described in the following documents: EP-B 22,261, DE-A 37 35 054, US 28 13 858, EP-B 411 455.
- the caprolactam produced according to the invention serves as a starting material for the production of polycaprolactam and corresponding copolymers.
- the process according to the invention for the preparation of cyclohexanone oxime has the advantage that it works without the accumulation of salt. Furthermore, the carboxylic acids used can be circulated. A further advantage lies in the rearrangement of the oxime with a carboxylic acid, since the disposal of ammonium sulfate, as in the usual processes of the prior art, is also avoided.
- 50 g of the catalyst thus treated were 25 wt. In 1250 ml. -% formic acid suspended and treated with H 2 at 40 ° C (so-called "activation").
- the total amount of exhaust gas was 99.8 l.
- Cyclohexanone and hydroxylamine were mixed in a 2 liter stirred tank reactor. Hydroxylamine was added as a hydroxylammonium formate solution.
- the reaction was carried out by first adding excess NH 2 OH (20 mol%) to the cyclohexanone in order to implement it completely. After the cyclohexanone oxime formed had been separated off (as the upper phase in a phase separator), the lower phase (with the unreacted NH 2 OH) was fed back into the stirred tank reactor together with fresh hydroxylammonium formate solution.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Other In-Based Heterocyclic Compounds (AREA)
- Catalysts (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19520271A DE19520271A1 (de) | 1995-06-02 | 1995-06-02 | Verfahren zur Herstellung von Cyclohexanonoxim und Caprolactam |
| DE19520271 | 1995-06-02 | ||
| PCT/EP1996/002240 WO1996038407A1 (de) | 1995-06-02 | 1996-05-24 | Verfahren zur herstellung von cyclohexanonoxim und caprolactam |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0828707A1 true EP0828707A1 (de) | 1998-03-18 |
Family
ID=7763514
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP96917419A Withdrawn EP0828707A1 (de) | 1995-06-02 | 1996-05-24 | Verfahren zur herstellung von cyclohexanonoxim und caprolactam |
Country Status (12)
| Country | Link |
|---|---|
| EP (1) | EP0828707A1 (cs) |
| JP (1) | JPH11506440A (cs) |
| KR (1) | KR19990022175A (cs) |
| CN (1) | CN1186484A (cs) |
| AU (1) | AU6000196A (cs) |
| BR (1) | BR9608960A (cs) |
| CZ (1) | CZ359197A3 (cs) |
| DE (1) | DE19520271A1 (cs) |
| EA (1) | EA199700443A1 (cs) |
| PL (1) | PL323676A1 (cs) |
| TW (1) | TW342383B (cs) |
| WO (1) | WO1996038407A1 (cs) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1091763C (zh) * | 1999-07-26 | 2002-10-02 | 巴陵石化鹰山石油化工厂 | 一种防止磷酸羟胺肟化法制造己内酰胺的无机液中羟胺分解的方法 |
| CN102626645B (zh) * | 2012-03-27 | 2013-11-27 | 长沙理工大学 | 氟石膏在酮肟Beckmann重排中的应用 |
| CN109453820A (zh) * | 2018-11-27 | 2019-03-12 | 中国天辰工程有限公司 | 一种液相贝克曼重排催化剂及其制备方法和应用 |
| CN115819344A (zh) * | 2023-01-13 | 2023-03-21 | 神马实业股份有限公司 | 液相贝克曼重排生产己内酰胺同时副产硫酸酯的工艺方法 |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2721199A (en) * | 1953-12-15 | 1955-10-18 | Du Pont | Production of amides or lactams from oximes |
| NL301053A (cs) * | 1963-11-27 | |||
| US4105575A (en) * | 1976-10-12 | 1978-08-08 | Imc Chemical Group, Inc. | Partial resolution of pentaerythritol waste liquors |
| DE4311420A1 (de) * | 1993-04-07 | 1994-10-13 | Basf Ag | Hydrierungskatalysator auf der Basis eines mit feinteiligem Schwefel partiell vergifteten Platinmetalls |
-
1995
- 1995-06-02 DE DE19520271A patent/DE19520271A1/de not_active Withdrawn
-
1996
- 1996-05-24 WO PCT/EP1996/002240 patent/WO1996038407A1/de not_active Ceased
- 1996-05-24 PL PL96323676A patent/PL323676A1/xx unknown
- 1996-05-24 JP JP8536165A patent/JPH11506440A/ja active Pending
- 1996-05-24 BR BR9608960A patent/BR9608960A/pt not_active Application Discontinuation
- 1996-05-24 CZ CZ973591A patent/CZ359197A3/cs unknown
- 1996-05-24 CN CN96194378A patent/CN1186484A/zh active Pending
- 1996-05-24 EP EP96917419A patent/EP0828707A1/de not_active Withdrawn
- 1996-05-24 KR KR1019970708654A patent/KR19990022175A/ko not_active Withdrawn
- 1996-05-24 AU AU60001/96A patent/AU6000196A/en not_active Abandoned
- 1996-05-24 EA EA199700443A patent/EA199700443A1/ru unknown
- 1996-05-30 TW TW085106432A patent/TW342383B/zh active
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9638407A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH11506440A (ja) | 1999-06-08 |
| BR9608960A (pt) | 1999-05-04 |
| TW342383B (en) | 1998-10-11 |
| CN1186484A (zh) | 1998-07-01 |
| AU6000196A (en) | 1996-12-18 |
| CZ359197A3 (cs) | 1998-04-15 |
| WO1996038407A1 (de) | 1996-12-05 |
| EA199700443A1 (ru) | 1998-06-25 |
| KR19990022175A (ko) | 1999-03-25 |
| MX9708928A (es) | 1998-03-31 |
| DE19520271A1 (de) | 1996-12-05 |
| PL323676A1 (en) | 1998-04-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE69621491T2 (de) | Verfahren zur Herstellung von Epsilon-Caprolactam | |
| DE2455617B2 (de) | Verfahren zur herstellung von butandiol und/oder tetrahydrofuran ueber die zwischenstufe des gamma-butyrolactons | |
| CH494733A (de) | Verfahren zur Herstellung von p-Aminophenol | |
| DE69101337T2 (de) | Verfahren zur Herstellung von Anilin hoher Reinheit. | |
| DE4205633A1 (de) | Verfahren zur reinigung von cyclohexanon | |
| EP0007972B1 (de) | Verfahren zur Herstellung von Dichlorhydrazobenzolen durch katalytische Hydrierung von Monochlornitrobenzolen | |
| EP1132132A1 (de) | Verfahren zur Rückgewinnung von Katalysor-Übergangsmetallen aus salzhaltigen Reaktionsgemischen | |
| EP2935210A1 (de) | Verfahren zur herstellung von gereinigtem caprolactam aus der beckmann-umlagerung von cyclohexanonoxim | |
| EP0089564B1 (de) | Verfahren zur Herstellung von aromatischen Hydroxycarbonsäuren | |
| EP0828707A1 (de) | Verfahren zur herstellung von cyclohexanonoxim und caprolactam | |
| DE2418569A1 (de) | Verfahren zur herstellung von dl-weinsaeure | |
| EP0648748B1 (de) | Verfahren zur Herstellung von 5-Acetoacetylaminobenzimidazolon-2 | |
| DE2508247C3 (de) | Verfahren zur Herstellung von Cyclohexanonoxim | |
| EP0204917B1 (de) | Verfahren zur Aufarbeitung von Cyclohexanol, Cyclohexanon sowie Cyclohexylhydroperoxid enthaltenden Reaktionsgemischen | |
| EP0796833B1 (de) | Verfahren zur Herstellung von beta-Naphthol | |
| DE2915395C2 (de) | Verfahren zur Herstellung eines Salzes der Brenztraubensäure | |
| EP0599214B1 (de) | Verfahren zur kontinuierlichen Herstellung von aromatischen Aldehyden | |
| DE3327268C2 (de) | Verfahren zur Herstellung von N-Formyl-L-asparaginsäureanhydrid | |
| DE69014683T2 (de) | Verfahren zur Herstellung von Lithium-Diphenylphosphino-phenyl-m-sulfonat. | |
| EP0664285B1 (de) | Verfahren zur Herstellung von 1-Amino-1-methyl-3(4)-cyano-cyclohexan | |
| EP0571864B1 (de) | Verfahren zur Herstellung von alpha,beta-ungesättigten Carbonsäuren | |
| DE2429627A1 (de) | Verfahren zur herstellung von 3-ketoglutarsaeure durch carboxylieren von aceton in glyme | |
| EP0285835A2 (de) | Verfahren zur Direkthydrierung von Butterfett | |
| CH412871A (de) | Verfahren zur Herstellung von Cyclohexancarbonsäure | |
| DE68901996T2 (de) | Verfahren zur herstellung von pyruvat. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19971113 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| 17Q | First examination report despatched |
Effective date: 19990630 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 19991111 |