EP0828080A2 - Pompe à effet visqueux - Google Patents

Pompe à effet visqueux Download PDF

Info

Publication number
EP0828080A2
EP0828080A2 EP97111700A EP97111700A EP0828080A2 EP 0828080 A2 EP0828080 A2 EP 0828080A2 EP 97111700 A EP97111700 A EP 97111700A EP 97111700 A EP97111700 A EP 97111700A EP 0828080 A2 EP0828080 A2 EP 0828080A2
Authority
EP
European Patent Office
Prior art keywords
gas
cylindrical
pump
cylindrical components
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97111700A
Other languages
German (de)
English (en)
Other versions
EP0828080A3 (fr
Inventor
Armin Conrad
Heinrich Lotz
Carsten Dr. Reese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP0828080A2 publication Critical patent/EP0828080A2/fr
Publication of EP0828080A3 publication Critical patent/EP0828080A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps

Definitions

  • the invention relates to a gas friction pump according to the preamble of the first Claim.
  • Gas friction pumps of various types are used to convey gases known. Their mode of operation is based on the transmission of impulses from moving Walls on the gas particles. In this way a gas flow is made into the desired one Direction generated.
  • Gas friction pumps operating in a pressure range work in which the free path length of the gas molecules is large compared to geometric dimensions of the pump, i.e. in the molecular flow area, are called molecular pumps.
  • the first gas friction pump of this type was presented by Gaede [1].
  • a Technical modification of the Gaedeschen pump while maintaining the basic principle is a development of Siegbahn [2].
  • Siegbahn is a moving wall rotating disc used.
  • the gas friction pumps of the Gaede, Siegbahn and Holweck type are for the area of application in the pressure area adjoining the top is well suited. she can be used separately in this printing area as well as in Series connected with a turbomolecular pump. This last combination of Turbomolecular pump and friction pump is an elegant way the working range of a turbomolecular pump after higher discharge pressures to move there.
  • Gas friction pumps according to Gaede and Siegbahn show their construction no possibility of being redesigned for a higher pumping speed, without questioning their basic function. Besides, they are specific disadvantages, for example the fact that the friction pump after Siegbahn the gas is pumped against the centrifugal force which reduce their effectiveness in practical use.
  • the object of the invention is a gas friction pump for the molecular flow area to imagine which compared to the conventional constructions has a significantly higher pumping speed and its working range is molecular Flow area does not leave.
  • the geometric dimensions of the pump should be be comparable to conventional constructions and in combination can be operated with a turbomolecular pump.
  • Claims 2 to 10 represent further design options of the Invention.
  • the invention enables the parallel arrangement of the conveying spaces the same space requirement the pumping speed compared to conventional constructions to multiply, the working area being the molecular flow area does not leave. This is important to the characteristic pump switches such as. maintain a high pressure ratio.
  • Special structures in the Input area of the pump, as represented in claims 3 to 6 lead to a high conductance in this area and contribute to the fact that the Gas flow as freely as possible from the suction opening into the coaxial delivery rooms can reach.
  • the shape of the stator components can be designed according to claim 7 be that it has a minimal footprint and rational manufacturing methods allowed.
  • the advantages of the gas friction pump according to the invention become particularly clear, when combined with a turbomolecular pump.
  • the parallel Arrangement of the funding rooms and the design of the entrance area such a high pumping speed is available that it is possible that the the gas emitted to the turbomolecular pump on its fore-vacuum side in full Scope can be taken over without losses and up to molecular flow can be further promoted and compressed to the gas outlet. It will possible to work the turbomolecular pump by up to two orders of magnitude expand towards higher pressures.
  • the work area can be expanded further by one or more additional gas friction pumps take place, which are on the fore-vacuum side of the connected arrangement according to the invention and operated with this in series will.
  • the gas friction pump is in a housing 1 with a suction opening 2 and gas outlet opening 3 shown.
  • the shaft 4 With the shaft 4, they are coaxial with each other arranged cylindrical components 5 connected via a component 10.
  • the wave 4, the component 10 and the cylindrical components 5 form the rotor unit. drive and storage of this rotor unit are not shown here, since they are known per se Constructions can be derived and for the basic idea of the invention have no meaning.
  • the stator element consists of several cylindrical components 6 arranged coaxially to each other, each of which surrounded cylindrical components 5 of the rotor element.
  • the components 6 of the Stator element are provided with spiral conveyor channels 7, which through Web 8 are separated from each other.
  • These delivery channels are the outer ones or inner smooth surfaces of the cylindrical components 5 arranged opposite and designed in such a way that the resulting coaxial conveying spaces 9 form parallel pumping spaces which draw the gas from the intake opening 2 pump to gas outlet 3.
  • the parallel gas flows will end the funding areas e.g. through suitable openings 12 in the stator parts again merged and fed to the gas outlet opening 3.
  • Fig. 2 shows another embodiment.
  • the cylindrical components 5 the rotor element with conveyor channels 7, and the cylindrical components 6 of the stator element have a smooth surface.
  • the component 10, which connects the cylindrical components 5 to each other, is with Opening 11 provided which the connection between the suction opening 2 and produce the delivery rooms 9.
  • the supporting parts 13 of this component can be designed so that they form a gas-promoting structure with the openings 11.
  • Fig. 3 shows, for example, that the gas-producing structure is at an angle to the intake opening 2 standing blades 14 can exist and
  • Fig. 4 shows the gas-producing Structure consisting of oblique holes 15.
  • Fig. 5 shows an embodiment of the cylindrical components, which with delivery channels are provided. These are shaped so that they are meandering Have structure. There are one component on the inside and one on the outside Delivery channels 7 and webs 8 arranged against each other. This leads to an optimal one Space utilization and enables a more compact with the same pumping speed Construction.
  • Fig. 6 shows an example of how the gas friction pump according to the invention with a door bomolecular pump 20 can be combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
EP97111700A 1996-08-10 1997-07-10 Pompe à effet visqueux Withdrawn EP0828080A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19632375 1996-08-10
DE19632375A DE19632375A1 (de) 1996-08-10 1996-08-10 Gasreibungspumpe

Publications (2)

Publication Number Publication Date
EP0828080A2 true EP0828080A2 (fr) 1998-03-11
EP0828080A3 EP0828080A3 (fr) 1998-10-14

Family

ID=7802360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97111700A Withdrawn EP0828080A3 (fr) 1996-08-10 1997-07-10 Pompe à effet visqueux

Country Status (4)

Country Link
US (1) US5893702A (fr)
EP (1) EP0828080A3 (fr)
JP (1) JP3971821B2 (fr)
DE (1) DE19632375A1 (fr)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9810872D0 (en) * 1998-05-20 1998-07-22 Boc Group Plc Improved vacuum pump
DE19846188A1 (de) 1998-10-07 2000-04-13 Leybold Vakuum Gmbh Reibungsvakuumpumpe mit Stator und Rotor
DE19930952A1 (de) * 1999-07-05 2001-01-11 Pfeiffer Vacuum Gmbh Vakuumpumpe
US6508631B1 (en) * 1999-11-18 2003-01-21 Mks Instruments, Inc. Radial flow turbomolecular vacuum pump
GB9927493D0 (en) * 1999-11-19 2000-01-19 Boc Group Plc Improved vacuum pumps
DE10114585A1 (de) * 2001-03-24 2002-09-26 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE10149366A1 (de) 2001-10-06 2003-04-17 Leybold Vakuum Gmbh Axial fördernde Reibungsvakuumpumpe
JP3961273B2 (ja) * 2001-12-04 2007-08-22 Bocエドワーズ株式会社 真空ポンプ
GB0229355D0 (en) 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement
FR2854933B1 (fr) * 2003-05-13 2005-08-05 Cit Alcatel Pompe moleculaire, turbomoleculaire ou hybride a vanne integree
ITTO20030420A1 (it) * 2003-06-05 2004-12-06 Varian Spa Metodo per la realizzazione di statori per pompe da vuot0 e statori cosi' ottenuti
GB0424199D0 (en) * 2004-11-01 2004-12-01 Boc Group Plc Vacuum pump
GB0614928D0 (en) * 2006-07-27 2006-09-06 Boc Group Plc Molecular Drag Pumping Mechanism
JP4935509B2 (ja) * 2007-06-05 2012-05-23 株式会社島津製作所 ターボ分子ポンプ
DE102007044945A1 (de) * 2007-09-20 2009-04-09 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102008063131A1 (de) 2008-12-24 2010-07-01 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
US8152442B2 (en) * 2008-12-24 2012-04-10 Agilent Technologies, Inc. Centripetal pumping stage and vacuum pump incorporating such pumping stage
GB2474507B (en) 2009-10-19 2016-01-27 Edwards Ltd Vacuum pump
JP5763660B2 (ja) * 2010-09-28 2015-08-12 エドワーズ株式会社 排気ポンプ
DE202011002809U1 (de) 2011-02-17 2012-06-12 Oerlikon Leybold Vacuum Gmbh Statorelement sowie Hochvakuumpumpe
DE102011112691A1 (de) 2011-09-05 2013-03-07 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102011119506A1 (de) 2011-11-26 2013-05-29 Pfeiffer Vacuum Gmbh Schnell drehender Rotor für eine Vakuumpumpe
EP2620649B1 (fr) 2012-01-27 2019-03-13 Edwards Limited Pompe à vide de transfert gazeux
GB2498816A (en) 2012-01-27 2013-07-31 Edwards Ltd Vacuum pump
DE102012003680A1 (de) * 2012-02-23 2013-08-29 Pfeiffer Vacuum Gmbh Vakuumpumpe
US10487422B2 (en) 2012-05-31 2019-11-26 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from colored recycled pet
US11045979B2 (en) 2012-05-31 2021-06-29 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
US10532495B2 (en) 2012-05-31 2020-01-14 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
US10538016B2 (en) 2012-05-31 2020-01-21 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US9636860B2 (en) 2012-05-31 2017-05-02 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US9630353B2 (en) 2012-05-31 2017-04-25 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US8597553B1 (en) 2012-05-31 2013-12-03 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
US10695953B2 (en) 2012-05-31 2020-06-30 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
WO2014050648A1 (fr) 2012-09-26 2014-04-03 エドワーズ株式会社 Rotor et pompe à vide équipée de ce rotor
DE102012110691A1 (de) * 2012-11-08 2014-05-08 Pfeiffer Vacuum Gmbh Vorrichtung zur kinetischen Energiespeicherung
DE102013207269A1 (de) * 2013-04-22 2014-10-23 Pfeiffer Vacuum Gmbh Statorelement für eine Holweckpumpstufe, Vakuumpumpe mit einer Holweckpumpstufe und Verfahren zur Herstellung eines Statorelements für eine Holweckpumpstufe
EP3205884B1 (fr) * 2016-02-12 2020-11-11 Enrichment Technology Company Ltd. Zweigniederlassung Deutschland Système de rotor à vide auto-pompant
US10751915B2 (en) 2016-11-10 2020-08-25 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring systems and methods
EA201991807A1 (ru) 2017-01-30 2019-12-30 Аладдин Мэньюфэкчеринг Корпорейшн Способы для изготовления объемной непрерывной нити из окрашенного вторичного полиэтилентерефталата
WO2018161021A1 (fr) 2017-03-03 2018-09-07 Mohawk Industries, Inc. Procédé de fabrication de filament de tapis continu gonflant
KR20200054236A (ko) 2017-09-15 2020-05-19 알라딘 매뉴펙쳐링 코포레이션 벌크형 연속적인 카펫 필라멘트를 제조하기 위한 폴리에틸렌 테레프탈레이트 착색 방법 및 시스템
US11242622B2 (en) 2018-07-20 2022-02-08 Aladdin Manufacturing Corporation Bulked continuous carpet filament manufacturing from polytrimethylene terephthalate

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2730297A (en) * 1950-04-12 1956-01-10 Hartford Nat Bank & Trust Co High-vacuum molecular pump
DE1010235B (de) * 1955-04-22 1957-06-13 Arthur Pfeiffer Fa Molekularpumpe
DE2526164A1 (de) * 1975-06-12 1976-12-30 Leybold Heraeus Gmbh & Co Kg Turbomolekularvakuumpumpe mit zumindest teilweise glockenfoermig ausgebildetem rotor
JPS60139098U (ja) * 1984-02-24 1985-09-13 セイコ−精機株式会社 組合せ型軸流分子ポンプ
JPS61145394A (ja) * 1984-12-18 1986-07-03 Tokuda Seisakusho Ltd 分子ポンプ
JPH0765592B2 (ja) * 1986-02-22 1995-07-19 守彦 木俣 タ−ボ分子ポンプ
JPS62261696A (ja) * 1986-05-08 1987-11-13 Mitsubishi Electric Corp タ−ボ分子ポンプ装置
NL8602052A (nl) * 1986-08-12 1988-03-01 Ultra Centrifuge Nederland Nv Hoogvacuumpomp.
JPH046593U (fr) * 1990-04-25 1992-01-21
ATE117410T1 (de) * 1990-07-06 1995-02-15 Cit Alcatel Zweite stufe für mechanische vakuumpumpeinheit und lecküberwachungssystem zur anwendung dieser einheit.
JPH05248386A (ja) * 1992-03-04 1993-09-24 Osaka Shinku Kiki Seisakusho:Kk ねじ溝型真空ポンプ
US5733104A (en) * 1992-12-24 1998-03-31 Balzers-Pfeiffer Gmbh Vacuum pump system
GB9525337D0 (en) * 1995-12-12 1996-02-14 Boc Group Plc Improvements in vacuum pumps
GB9609281D0 (en) * 1996-05-03 1996-07-10 Boc Group Plc Improved vacuum pumps

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
JPH1077990A (ja) 1998-03-24
JP3971821B2 (ja) 2007-09-05
US5893702A (en) 1999-04-13
DE19632375A1 (de) 1998-02-19
EP0828080A3 (fr) 1998-10-14

Similar Documents

Publication Publication Date Title
EP0828080A2 (fr) Pompe à effet visqueux
EP2295812B1 (fr) Récipient repliable
DE3919529C2 (de) Vakuumpumpe
DE3728154C2 (de) Mehrstufige Molekularpumpe
EP1252445B1 (fr) Pompe turbo-moléculaire
WO1993023672A1 (fr) Pompe a friction a vide a gaz
EP0408792B1 (fr) Pompe à effet visqueux avec au moins un étage hélicoidal à côté du refoulement
DE3932228A1 (de) Turbovakuumpumpe
EP0675289B1 (fr) Pompe à friction
EP2461040B1 (fr) Pompe à vide et la connexion de l'arbre avec le piston rotatif
EP1067290B1 (fr) Pompe à vide
EP3112688B2 (fr) Pompe à vide à débit partagé et système à vide doté d'une pompe à débit partagé
DE3722164C2 (de) Turbomolekularpumpe
EP0363503B1 (fr) Etage de pompage pour une pompe à vide élevé
EP2039941B1 (fr) Pompe à vide
EP2933497A2 (fr) Pompe à vide
EP1119709B1 (fr) Pompe a vide a friction avec stator et rotor
DE10008691B4 (de) Gasreibungspumpe
EP3032107B1 (fr) Pompe turbomoleculaire
WO2003031823A1 (fr) Pompe a vide rotative a refoulement axial
EP3267040B1 (fr) Pompe turbomoléculaire
DE19756837C2 (de) Molekular- und Viskositätspumpe
EP1541871B1 (fr) Etage d' une pompe à canal latéral
EP4227538A1 (fr) Pompe à vide avec une ouverture d'entrée s'étendant axialement sur un élément de pompe
EP2886870A1 (fr) Pompe à vide avec géométrie d'admission perfectionnée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19981201

AKX Designation fees paid

Free format text: AT CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20020228

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020711