EP0827538A1 - Nouveaux variants de l'apolipoproteine a-i - Google Patents

Nouveaux variants de l'apolipoproteine a-i

Info

Publication number
EP0827538A1
EP0827538A1 EP96916216A EP96916216A EP0827538A1 EP 0827538 A1 EP0827538 A1 EP 0827538A1 EP 96916216 A EP96916216 A EP 96916216A EP 96916216 A EP96916216 A EP 96916216A EP 0827538 A1 EP0827538 A1 EP 0827538A1
Authority
EP
European Patent Office
Prior art keywords
apoa
nucleic acid
variant
sequence
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96916216A
Other languages
German (de)
English (en)
Inventor
Gerd Assmann
Patrick Benoit
Eric Bruckert
Patrice Denefle
Nicolas Duverger
Jean-Charles Fruchart
Gérald Luc
Gérard Turpin
Harald Funke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Pierre et Marie Curie Paris 6
Institut Pasteur de Lille
Aventis Pharma SA
Original Assignee
Universite Pierre et Marie Curie Paris 6
Rhone Poulenc Rorer SA
Institut Pasteur de Lille
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Pierre et Marie Curie Paris 6, Rhone Poulenc Rorer SA, Institut Pasteur de Lille filed Critical Universite Pierre et Marie Curie Paris 6
Publication of EP0827538A1 publication Critical patent/EP0827538A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/775Apolipopeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/022Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from an adenovirus

Definitions

  • the present invention relates to a new variant of apolipoprotein A-I. It also relates to any nucleic acid coding for this new variant. It also relates to the use of these proteins or nucleic acids for therapeutic purposes. More particularly, the invention relates to a new variant of apolipoprotein A-I comprising in particular a mutation in position 151.
  • Apolipoprotein A-I is the major constituent of high density lipoproteins (HDL), which are macromolecular complexes composed of cholesterol, phospholipids and triglycerides.
  • ApoA-1 is a protein made up of 243 amino acids, synthesized in the form of a preproprotein with 267 residues, having a molecular mass of 28,000 daltons.
  • the prepro form of apoA-1 is synthesized in humans by both the liver and the intestine. This form of protein is then cleaved into proprotein which is secreted in the plasma.
  • proapoA-1 is then transformed into mature protein (243 amino acids) by the action of a calcium-dependent protease.
  • ApoA-1 has a structural role and an active role in lipoprotein metabolism: apoA-1 is in particular a cofactor of lecithin cholesterol acyltransferase (LCAT), responsible for the esterification of plasma cholesterol.
  • LCAT lecithin cholesterol acyltransfera
  • the level of cholesterol in the HDL fraction and the plasma concentration of apoA-1 are negative risk factors for the development of atherosclerosis in humans.
  • Epidemiological studies have indeed shown an inverse correlation between HDL cholesterol and apoA-1 concentrations and the incidence of cardiovascular disease (EG Miller et al. Lancet, 1977: 965-968).
  • longevity is associated with high HDL cholesterol.
  • the protective role of apoA-1 has been demonstrated in a model of transgenic mice expressing human apolipoprotein AI (Rubin et al. Nature).
  • the infusion of HDL in rabbits induces a regression of lesions (Badimon et al. J. Clin. Invest. 85, 1234-41, 1990).
  • the gene encoding apoA-1 has been cloned and sequenced (Sharpe et al., Nucleic Acids Res. 12 (9) (1984) 3917). This 1863 bp gene comprises 4 exons and 3 introns.
  • the cDNA encoding apoA-1 has also been described (Law et al., PNAS 81 (1984) 66). This cDNA comprises 840 bp (see SEQ ID No. 1).
  • various natural variants have been described in the prior art, the differences from which are compared to the wild protein are given in the table below.
  • the present invention stems from the discovery of a new series of variants of the apolipoprotein AI.
  • This series of variants presents in particular a substitution of the arginine residue at position 151 by a cysteine residue.
  • the apoA-1 variant according to the invention has remarkable therapeutic properties. In particular, it has particularly important anti-atherogenic protective properties.
  • the presence of this variant prevents the development of any atherosclerosis, testifying to a very powerful protective role, specific to this mutated apoA-1.
  • a cysteine on the apoA-1 leads to the formation of dimers and other complexes linked by a disulfide bridge.
  • This apoA-1 is found in free form in plasma, linked in dimer to itself or associated with apolipoprotein A-ll which is another important protein associated with HDL and which also has a cysteine in its sequence.
  • the loss of charge linked to arginine at position 151 leads to the visualization of this mutant by electroisofocusing of the plasma proteins followed by an immunological revelation of apoA-1.
  • this new protein according to the invention offers an important therapeutic advantage in the treatment and prevention of cardiovascular pathologies.
  • a first subject of the invention therefore relates to a series of variants of human apolipoprotein AI comprising a cysteine at position 151.
  • the amino acid sequence of the reference apoA-1 is described in the literature (Cf Law above). .
  • This sequence, including the prepro region (residues 1 to 24), is presented on the sequence SEQ ID No. 1.
  • a characteristic of the variants according to the invention therefore resides in the presence of a cysteine in position 151 of apoA- l mature (corresponding to position 175 on the sequence SEQ ID No. 1), in substitution for arginine present in the reference sequence.
  • a preferred variant according to the invention comprises the peptide sequence SEQ ID No. 2, and, even more preferably, the peptide sequence comprised between residues 68 to 267 of the sequence SEQ ID No. 1, the residue 175 being substituted by a cysteine .
  • the variants according to the invention are represented in particular by apoA-1 Paris, that is to say an apoA-1 having a cysteine in position 151 relative to the native apoA-1.
  • the variants according to the invention can also carry other structural modifications with respect to the reference apolipoprotein A-I, and in particular other mutations, deletions and / or additions.
  • the variants of the invention also include other mutations leading to the replacement of residues by cysteines.
  • another particular variant combines the mutations present in the variant apoA-l Paris and apoA-l milano.
  • Other mutations may also be present affecting residues which do not significantly modify the properties of apoA-1.
  • the activity of these variants can be verified in particular by a cholesterol efflux test.
  • the variants according to the invention can be obtained in different ways. They can first of all be chemically synthesized, using the techniques of a person skilled in the art using peptide synthesizers. They can also be obtained from the reference apoA-1, by mutation (s). Advantageously, they are recombinant proteins, that is to say obtained by expression in a cellular host of a corresponding nucleic acid as described below.
  • the variants according to the invention can be in monomeric form or in the form of a dimer.
  • the presence of a cysteine at least in the sequence of the variants of the invention in fact allows the production of dimers by disulfide bond.
  • They may be homodimers, that is to say dimers comprising two variants according to the invention (example: diApoA-l Paris); or heterodimers, that is to say dimers comprising a variant according to the invention and another molecule having a free cysteine (example: ApoA-1 Paris: ApoAII).
  • the nucleic acid of the present invention can be a deoxyribonucleic acid (DNA) or a ribonucleic acid (RNA).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • the DNAs it may be a complementary DNA (cDNA), a genomic DNA (gDNA), a hybrid sequence or a synthetic or semi-synthetic sequence. It may also be a chemically modified nucleic acid, for example with a view to increasing its resistance to nucleases, its penetration or cellular targeting, its therapeutic efficacy, etc.
  • These nucleic acids can be of human, animal, plant, bacterial, viral, synthetic, etc. origin. They can be obtained by any technique known to those skilled in the art, and in particular by screening of banks, by chemical synthesis, or also by mixed methods including chemical or enzymatic modification of sequences obtained by screening of banks.
  • the nucleic acid is a cDNA or a gDNA.
  • the nucleic acid according to the invention comprises the sequence SEQ ID No. 2. Even more preferably, it comprises the sequence SEQ ID No. 10.
  • the nucleic acid according to the invention advantageously comprises a promoter region for functional transcription in the target cell or organism, as well as a region located at 3 ′, which specifies a transcriptional end signal and a polyadenylation site. All of these elements constitute the expression cassette.
  • the promoter region it may be the promoter region naturally responsible for the expression of the apoA-1 gene or an ApoA-1 variant when the latter is likely to function in the cell or organism concerned. They can also be regions of different origin (responsible for the expression of other proteins, or even synthetic).
  • they may be promoter sequences of eukaryotic or viral genes.
  • they may be promoter sequences originating from the genome of the target cell.
  • promoters any promoter or derived sequence stimulating or repressing the transcription of a gene in a specific way or not, inducible or not, strong or weak. They may in particular be ubiquitous promoters (promoter of the HPRT, PGK genes, vimentin, ⁇ -actin, tubulin, etc.), promoters of therapeutic genes (for example the promoter of the MDR, CFTR, Factor VIII genes, etc.) tissue-specific promoters (promoter of the pyruvate kinase gene, villin, intestinal fatty acid binding protein, smooth muscle ⁇ -actin, etc.) or promoters responding to a stimulus (steroid hormone receptor, acid receptor retinoic, etc.).
  • ubiquitous promoters promoter of the HPRT, PGK genes, vimentin, ⁇ -actin, tubulin, etc.
  • promoters of therapeutic genes for example the promoter of the MDR, CFTR, Factor VIII genes, etc.
  • tissue-specific promoters promoter of
  • promoter sequences originating from the genome of a virus such as for example the promoters of the E1A and MLP genes of adenovirus, the CMV early promoter, the RSV LTR promoter, etc.
  • these promoter regions can be modified by adding activation or regulatory sequences, or allowing tissue-specific or majority expression.
  • the nucleic acid may also include a signal sequence directing the product synthesized in the secretory pathways of the target cell.
  • This signal sequence may be the natural signal sequence of apoA-1, but it may also be any other functional signal sequence, or an artificial signal sequence.
  • the nucleic acid according to the invention can be used to produce the recombinant ApoA-1 variants by expression in a recombinant host cell, or directly as a drug in gene or cell therapy applications.
  • the nucleic acid is advantageously incorporated into a plasmid or viral vector, which can be autonomous or integrative replication. This vector is then used to transfect or infect a selected cell population. The transfected or infected cells thus obtained are then cultured under conditions allowing expression of the nucleic acid, and the recombinant apoA-1 variant according to the invention is isolated.
  • the cellular hosts which can be used for the production of the variants of the invention by the recombinant route are both eukaryotic and prokaryotic hosts.
  • suitable eukaryotic hosts there may be mentioned animal cells, yeasts, or fungi.
  • yeasts mention may be made of yeasts of the genus Saccharomyces, Kluyveromyces, Pichia, Schwanniomyces, or Hansenula.
  • animal cells mention may be made of COS, CHO, C127, NIH-3T3 cells, etc.
  • the mushrooms there may be mentioned more particularly Aspergillus ssp. or Trichoderma ssp.
  • prokaryotic hosts it is preferred to use the following bacteria E.coli, Bacillus, or Streptomyces. The variant thus isolated can then be packaged for its therapeutic use.
  • the nucleic acid according to the invention is used directly as a medicament, in gene or cell therapy applications.
  • it can be used as it is, by injection at the site to be treated or incubation with cells for their administration.
  • naked nucleic acids can penetrate cells without any particular vector. Nevertheless, it is preferred in the context of the present invention to use an administration vector, making it possible to improve (i) the efficiency of cell penetration, (ii) targeting (iii) extra- and intracellular stability.
  • the present invention therefore relates to a vector comprising a nucleic acid as defined above.
  • vectors can be used. They can be viral or non-viral vectors.
  • the vector of the invention is a viral vector.
  • viral vectors are based on the natural properties of transfection of viruses. It is thus possible to use adenoviruses, herpes viruses, retroviruses, associated adeno viruses or even vaccinia virus. These vectors are particularly effective in terms of transfection.
  • adenoviruses of type 2 or 5 Ad 2 or Ad 5
  • Ad 2 or Ad 5 adenoviruses of animal origin
  • adenoviruses of animal origin mention may be made of adenoviruses of canine, bovine, murine origin,
  • the adenovirus of animal origin is a canine adenovirus, more preferably an adenovirus
  • CAV2 Manhattan strain or A26 / 61 (ATCC VR-800) for example.
  • adenoviruses of human or canine or mixed origin are used.
  • the defective adenoviruses of the invention comprise ITRs, a sequence allowing the encapsidation and the nucleic acid of interest.
  • the E1 region at least is non-functional.
  • the viral gene considered can be made non-functional by any technique known to a person skilled in the art, and in particular by total suppression, substitution, partial deletion, or addition of one or more bases in the gene or genes considered. Such modifications can be obtained in vitro (on isolated DNA) or in situ, for example, by means of genetic engineering techniques, or by treatment with mutagenic agents.
  • regions can also be modified, and in particular the region E3 (WO95 / 02697), E2 (W094 / 28938), E4 (W094 / 28152, W094 / 12649, WO95 / 02697) and L5 (WO95 / 02697).
  • a recombinant adenovirus having a deletion of all or part of the E1 and E4 regions is used in the context of the present invention. This type of vector indeed offers particularly advantageous security properties.
  • the defective recombinant adenoviruses according to the invention can be prepared by any technique known to those skilled in the art (Levrero et al., Gene 101 (1991) 195, EP 185 573; Graham, EMBO J. 3 (1984) 2917). In particular, they can be prepared by homologous recombination between an adenovirus and a plasmid carrying, inter alia, the nucleic acid or the cassette of the invention. Homologous recombination occurs after co-transfection of said adenovirus and plasmid in an appropriate cell line.
  • the cell line used must preferably (i) be transformable by said elements, and (ii), contain the sequences capable of complementing the part of the genome of the defective adenovirus, preferably in integrated form to avoid the risks of recombination.
  • a line mention may be made of the human embryonic kidney line 293 (Graham et al., J. Gen. Virol. 36 (1977) 59) which contains in particular, integrated into its genome, the left part of the genome an Ad5 adenovirus (12%).
  • Other lines have been described in applications No. WO 94/26914 and WO95 / 02697.
  • AAV adeno-associated viruses
  • the defective recombinant AAVs according to the invention can be prepared by co-transfection, in a cell line infected with a human helper virus (for example an adenovirus), of a plasmid containing the nucleic acid or the cassette of the invention bordered two inverted repeat regions (ITR) of AAV, and a plasmid carrying the packaging genes (rep and cap genes) of AAV.
  • a human helper virus for example an adenovirus
  • ITR inverted repeat regions
  • Recombinant AAV products are then purified by conventional techniques (see in particular WO95 / 06743).
  • retroviruses are integrative viruses, selectively infecting dividing cells. They therefore constitute vectors of interest for cancer applications.
  • the retrovirus genome essentially comprises two LTRs, an encapsidation sequence and three coding regions (gag, pol and env).
  • the gag, pol and env genes are generally deleted, in whole or in part, and replaced by a heterologous nucleic acid sequence of interest.
  • These vectors can be produced from different types of retroviruses such as in particular MoMuL ("murine moloney leukemia virus”; also designated MoMLV), MSV ("murine moloney sarcoma virus"), HaSV ("harvey sarcoma virus”); SNV (“splee necrosis virus”); RSV ("rous sarcoma virus”) or the Friend virus.
  • a plasmid comprising in particular the LTRs, the packaging sequence and the nucleic acid or the cassette is constructed, then used to transfect a cell line called d packaging, capable of providing trans retroviral functions deficient in the plasmid.
  • d packaging a cell line called d packaging
  • the packaging lines are therefore capable of expressing the gag, pol and env genes.
  • PA317 (US4,861,719); the PsiCRIP line (WO90 / 02806) and the line
  • the recombinant retroviruses may include modifications at the level of the LTRs to suppress transcriptional activity, as well as extended encapsidatio sequences, comprising a part of the gag gene (Bender et al., J. Virol. 61
  • adenovirus or a retrovirus defective recombinant indeed have particularly advantageous properties for the transfer of genes coding for apolipoproteins.
  • the adenoviral vectors according to the invention are particularly advantageous for direct administration in vivo of a purified suspension, or for the ex vivo transformation of cells, in particular autologous, with a view to their implantation.
  • the adenoviral vectors according to the invention also have significant advantages, such as in particular their very high infection efficiency, making it possible to carry out infections from small volumes of viral suspension.
  • the invention preferably relates to a defective recombinant adenovirus comprising, inserted into its genome, a DNA coding for a variant of apolipoprotein A-I as defined above.
  • a line producing retroviral vectors containing the sequence coding for the ApoA-1 variant is used for implantation in vivo.
  • the lines which can be used for this purpose are in particular the cells PA317 (US4,861,719), PsiCrip (WO90 / 02806) and GP + envAm-12 (US5,278,056), modified to allow the production of a retrovirus containing a nucleic sequence coding for a variant of ApoA-1 according to the invention.
  • the vector used is a chemical vector.
  • the vector according to the invention can indeed be a non-viral agent capable of promoting the transfer and expression of nucleic acids in eukaryotic cells.
  • Chemical or biochemical vectors represent an interesting alternative to natural viruses, in particular for reasons of convenience, safety and also by the absence of theoretical limit as regards the size of the DNA to be transfected.
  • These synthetic vectors have two main functions, to compact the nucleic acid to be transfected and to promote its cellular fixation as well as its passage through the plasma membrane and, where appropriate, the two nuclear membranes.
  • the non-viral vectors all have polycationic charges.
  • cationic polymers of polylysine type (LKLK) n, (LKKL) n, polyethylene immine and DEAE dextran or else cationic lipids or lipofectants are the most advantageous. They have the property of condensing DNA and promoting its association with the cell membrane. Among the latter, mention may be made of lipopolyamines (lipofectamine, transfectam, etc.) and various cationic or neutral lipids (DOTMA, DOGS, DOPE, etc.).
  • lipopolyamines lipofectamine, transfectam, etc.
  • DOTMA cationic or neutral lipids
  • the invention also relates to any cell genetically modified by insertion of a nucleic acid coding for a variant of apolipoprotein AI as defined above.
  • these are mammalian cells capable of being administered or implanted in vivo. They may in particular be fibroblasts, myoblasts, hepatocytes, keratinocytes, endothelial, epithelial, glial cells, etc.
  • the cells are preferably of human origin.
  • these are autologous cells, that is to say cells taken from a patient, modified ex vivo by a nucleic acid according to the invention in to give them therapeutic properties, then re-administered to the patient.
  • the cells according to the invention can come from primary cultures. These can be removed by any technique known to those skilled in the art, then cultured under conditions allowing their proliferation. As regards more particularly fibroblasts, these can be easily obtained from biopsies, for example according to the technique described by Ham [Methods Cell.Biol. 21a (1980) 255]. These cells can be used directly for the insertion of the nucleic acid of the invention (by means of a viral or chemical vector), or preserved, for example by freezing, for the establishment of autologous libraries, with a view to 'further use. The cells according to the invention can also be secondary cultures, obtained for example from pre-established banks (see for example EP 228458, EP 289034, EP 400047, EP 456640).
  • the cells in culture can in particular be infected with the recombinant viruses of the invention to give them the capacity to produce a variant of the biologically active apoA-1.
  • the infection is carried out in vitro according to techniques known to those skilled in the art. In particular, according to the type of cells used and the number of copies of virus per cell desired, a person skilled in the art can adapt the multiplicity of infection and possibly the number of infection cycles carried out. It is understood that these steps must be carried out under conditions of appropriate sterility when the cells are intended for administration in vivo.
  • the doses of recombinant virus used for infection of the cells can be adapted by a person skilled in the art according to the aim sought.
  • the conditions described above for administration in vivo can be applied to infection in vitro. For infection by retroviruses, it is also possible to co-cultivate the cells which it is desired to infect with cells producing retroviruses. recombinants according to the invention. This makes it possible to dispense with the purification of retrovirus
  • an implant comprising mammalian cells genetically modified by insertion of a nucleic acid as defined above, and an extracellular matrix.
  • the implants according to the invention comprise 10 ⁇ to 10 " O cells. More preferably, they comprise 10 ⁇ to 10 ⁇ _
  • the cells can also be cells producing recombinant viruses containing inserted in their genome a nucleic acid such as defined above.
  • the extracellular matrix comprises a gelling compound and optionally a support allowing the anchoring of the cells.
  • gelling agents are used for the inclusion of cells in a matrix having the constitution of a gel, and to promote the anchoring of the cells on the support, if necessary.
  • Different cell adhesion agents can therefore be used as gelling agents, such as in particular collagen, gelatin, glycosaminoglycans, fibronectin, lectins, etc.
  • collagen is used. It can be collagen of human, bovine or murine origin. More preferably, type I collagen is used.
  • compositions according to the invention advantageously comprise a support allowing the anchoring of the cells.
  • anchoring designates any form of biological and / or chemical and / or physical interaction resulting in the adhesion and / or fixing of the cells on the support.
  • the cells can either cover the support used, or penetrate inside this support, or both.
  • a solid, non-toxic and / or biocompatible support In particular, polytetrafluoroethylene (PTFE) fibers or a support of biological origin (coral, bone, collagen, etc.) can be used.
  • PTFE polytetrafluoroethylene
  • the implants according to the invention can be implanted at different sites in the body.
  • the implantation can be carried out in the peritoneal cavity, in the subcutaneous tissue (suprapubic region, iliac or inguinal fossa, etc.), in an organ, a muscle, a tumor, the central nervous system , or under a mucous membrane.
  • the implants according to the invention are particularly advantageous in that they make it possible to control the release of the apoA-1 variant in the body: This is first of all determined by the multiplicity of infection and by the number of cells implanted. Then, the release can be controlled either by the withdrawal of the implant, which definitively stops the treatment, or by the use of regulable expression systems, making it possible to induce or repress the expression of the therapeutic genes.
  • nucleic acids thus constitute a new drug in the treatment and prevention of cardiovascular pathologies (atherosclerosis, restenosis, etc.).
  • the invention relates to any pharmaceutical composition comprising a variant of apolipoprotein A-I and / or a nucleic acid and / or a vector and / or a genetically modified cell as described above.
  • the present invention thus provides a new means for the treatment or prevention of pathologies linked to dyslipoproteinemias, in particular in the field of cardiovascular affections such as myocardial infarction, angina, sudden death, restenosis, cardiac decompensation and cerebrovascular accidents. More generally, this approach offers a very promising therapeutic intervention for each case where a genetic or metabolic deficit of apolipoprotein AI can be corrected.
  • Fig 2 Construction of phage M 13 carrying the patient's exon 4.
  • Fig 3 Construction of the vector carrying mutated PXL2116.
  • Fig 4 Studies of turbidimetry as a function of temperature.
  • Fig 5 Gel filtration profiles.
  • Fig 6 Fluorescence of tryptophans and concentration of phospholipids by fraction for the different complexes.
  • the ApoA-l Paris variant was identified and isolated from a patient selected because of his particular lipid profile. More specifically, the patient presented the following lipid balance (nature of the sample: serum).
  • Triglycerides 2.82 mmol / l 0.74-1.71
  • Fig 1 Restriction map of the plasmid PXL2116
  • Fig 2 Construction of the phage M 13 carrying the patient's exon 4.
  • Fig 3 Construction of the vector carrying mutated PXL2116.
  • Fig 4 Studies of turbidimetry as a function of temperature. 4a: turbidimetry of the association of different ApoAl and DPMC in the absence of GndHCI (- “-: control; - * -: recombinant; - * -: plasma; - D-: Paris.).
  • Fig 5 relative fluorescence of the Superose 6 PG fractions. (- ⁇ -: POPC / Al Paris; -D-: POPC / Al recombinant; -- ⁇ - POPC / Al plasma.)
  • Fig 6 Fluorescence of tryptophans and concentration of phospholipids for the POPC / Al Paris complex (-B-: relative fluorescence; -D-: phospholipids).
  • Apolipoprotein A-I 0.50 g / 1 1.20-2.15
  • Apolipoprotein B 1.38 g / l 0.55-1.30
  • the plasma is prepared by slow centrifugation of the blood at 4 ° C (2000 g, 30 minutes).
  • the high density lipoproteins are prepared by sequential ultracentrifugation at the density of 1.063-1.21 g / ml (Havel, J. Clin. Invest. 34: 1345-54, 1955).
  • the fraction containing the HDLs is then dialyzed against 10 mM Tris-HCl buffer, 0.01% sodium azide, at pH 7.4.
  • the dialyzed HDL fraction is defatted in a diethyl ether / ethanol mixture (3/1, v / v) and the protein concentration is estimated by the Lowry method (Lowry et al., J. Biol. Chem., 193: 265- 75, 1951).
  • the proteins of the HDL fration migrate on a polyacrylamide gel in the presence of SDS in a non-reducing condition. This migration makes it possible to highlight the size of the different proteins of the patient's HDLs.
  • this analysis reveals the presence of proteins of higher molecular weights corresponding to dimers of apoA-1 and the complexes apoA-1 and apoA-11. The presence of apoA-1 and apoA-11 in these complexes was verified by a specific immunological revelation. 19
  • mutated apoA-1 directly from the plasma was carried out according to the following protocol (Menzel, HJ, and Utermann, G., Electroforesis, 7: 492-495, 1986): twenty microliters of plasma are delipidated overnight with the ethanol / ether mixture and resuspended in a deposition buffer. A 5 ⁇ l aliquot undergoes electrophoresis on an isoelectric focusing gel (pH 4-6.5, Pharmolyte), and the proteins are then transferred to a nylon membrane. The bands corresponding to apoA-1 are detected by an immunological reaction using anti-human apoA-1 antibodies.
  • Detection of mutated apoA-1 can also be done from HDL proteins.
  • the dialyzed HDL fraction is defatted in a diethyl ether / ethanol mixture (3/1, v / v) and the protein concentration is estimated by the Lowry method (Lowry et al., J. Biol. Chem., 193: 265- 75, 1951).
  • About 100 ⁇ g of proteins are electrophoresed on an isoelectric focusing gel (pH 4-6.5, Pharmolyte), and the proteins are then revealed by staining with Coomassie blue.
  • This technique makes it possible to demonstrate that the most important isoforms of the apoA-1 of the patient with the mutation are displaced towards the anode, which corresponds to a difference in charge of -1 compared to the charge of apoA-l normal.
  • the patient's genomic DNA was isolated from whole blood according to the technique of Madisen et al. (Amer. J. Med. Genêt, 27: 379-390, 1987).
  • the apoA-1 gene was then amplified by the PCR technique. To this end, the amplification reactions were carried out on 1 ⁇ g of purified genomic DNA introduced into the following mixture:
  • 10X buffer 100 mM Tris-HCI pH 8.3; 500 mM KCI; 15 mM MgCI2; 0.1% (w / v) gelatin
  • dNTP dATP, dGTP, dCTP, dTTP
  • the primers used for the amplification are the following:
  • the primers Sq5490 and Sq5491 amplify a fragment of 508 bp corresponding to exons 2 and 3 of the apoA-1 gene and the primers Sq5492 and Sq5493 amplify a fragment of 664 bp corresponding to exon 4 of this gene.
  • the amplification products (two PCR fragments of 508 and 664 bp) were then sequenced.
  • a first method was used, consisting in direct sequencing using the PCR fragment sequencing kit (Amersham).
  • the primers used for sequencing are the PCR primers, but they can also be primers internal to the fragments (see primers S4, S6 and S8 below).
  • a second sequencing technique was also implemented which consisted in cloning the PCR fragments into an M13 mp28 vector.
  • the double-stranded DNA of M13 was cleaved by EcoRV and then dephosphorylated.
  • the PCR fragments were treated with Klenow, phosphorylated and ligated to the vector M13.
  • the white areas were then removed and the simple DNA 21
  • RNA strand amplified and then purified on the Catalyst was sequenced by a fluorescent primer -20 (PRISM dye primer kit and protocol No. 401386, Applied Biosystem) or by primers internal to the fragments after orientations thereof.
  • the fluorescent dideoxynucleotide technique is then used (DyeDeoxyTerminator kit and protocol No. 401388, Applied Biosystem)
  • a mutation C-> T at the first base of the codon coding for aa 151 which then codes for a cysteine was found in part of the clone sequences. This mutation is therefore present in the heterozygous state in the selected patient.
  • ApoAl Paris has a point mutation located in the sequence of exon 4 of the patient's apoAl gene.
  • the strategy for constructing the expression vector consists in substituting, in an apoAl expression vector (the vector pXL2116, FIG. 1), the region corresponding to exon 4 originating from the patient's gene.
  • Exon 4 was produced by PCR from the purified DNA of the patient's cells and inserted at the EcoRV site of the polylinker of phage M13mp28 (FIG. 2).
  • Mutagenesis by replacement of a fragment of apo A1 by a fragment from M13 carrying the mutation is envisaged.
  • - Bsu361 has in M13 and in pXL2116 a unique restriction site upstream of the mutation.
  • histidine-rich polypeptide whose nucleotide sequence has been cloned 5 'to apo A1 will therefore also be synthesized.
  • the M13 made double strand is digested with Bsu361 / BamHI and the product of digestion is deposited on gel.
  • the insert thus generated is recovered in sufficient quantity and does indeed have a size of 1Db.
  • digestion is carried out by Xhol which recognizes two restriction sites inside the Bsu361 / BamHI fragment.
  • the optimal amounts of vector and insert for ligation have been evaluated at 50 ng of vector for 15 ng of insert.
  • the DH5a strains are transformed with the products of the following three ligations:
  • the competent cells are also transformed with pUC19 in order to test the efficiency of the transformation.
  • Chloramphenicol selection of BL21 strains
  • Ampicillin selection of strains that have integrated the plasmid
  • the plasmid DNA obtained by purification on each of the 48 clones is digested with the enzyme NdeI.
  • the ligation is that expected since the size of the plasmid is correct, that is to say equal to that of pXL2116.
  • Clone 8 therefore carries the correctly mutated px12116 plasmid.
  • This example describes a process for producing recombinant apoAl variants. This process was carried out in a bacterium. Other expression systems can be used for this purpose (yeasts, animal cells, etc.).
  • the expression of the plasmid within the bacterium was placed under the control of the T7 promoter and terminator.
  • Isopropyl-b-thiogalactopyranoside (IPTG) inducer of the lactose operon, induces in this system the synthesis of T7 TARN polymerase which then specifically binds to the T7 promoter and starts the transcription of the gene for the recombinant protein.
  • IPTG Isopropyl-b-thiogalactopyranoside
  • inducer of the lactose operon induces in this system the synthesis of T7 TARN polymerase which then specifically binds to the T7 promoter and starts the transcription of the gene for the recombinant protein.
  • the RNA polymerase is stopped by the T7 terminator, which prevents the transcriptional flow from overflowing downstream of the sequence of interest.
  • Rifampicin is an antibiotic that inhibits the endogenous RNA polymerase activity of E. coli. It therefore inhibits the synthesis of bacterial proteins, that is to say both proteases, which limits the degradation of the protein of interest; and contaminating bacterial proteins, which enhances the expression of the protein of interest.
  • the strain used for the expression is Escherichia coli BL21 DE3 pLys S.
  • the plasmid DNA is introduced into E. coli by transformation according to conventional techniques.
  • the culture is stored in the form of a frozen suspension at ⁇ 20 ° C., in the presence of 25% glycerol, and aliquoted in 500 ⁇ l fractions.
  • a preculture is initiated by the addition of a few drops of frozen suspension in 10 ml of M9 ampicillin medium, then incubated overnight at 37 ° C.
  • the 1 liter erlens are seeded from the preculture and placed in a shaker at 37 ° C until an OD of between 0.5 and 1 at 610 nm is obtained.
  • IPTG Bochem ref Q-1280
  • rifampicin Sigma
  • the cells are recovered by centrifugation (15 minutes, 8000 rpm) and the expression is checked by electrophoresis under denaturing conditions on a 15% acrylamide gel and by immunoblotting.
  • This example describes an efficient method for purifying the recombinant apoAl variants according to the invention. It is understood that other methods can be used.
  • the bacterial pellet After centrifugation of the culture, the bacterial pellet is resuspended with gentle stirring in lysis buffer in the presence of protease inhibitors and ⁇ -mercaptoethanol.
  • ⁇ -mercaptoethanol is a reducing agent cleaving the disulfide bridges formed between two cysteine residues. No disulfide bridge is formed in the cytoplasm of E.coli, the presence of a reducing agent is however necessary once the proteins have been extracted. Indeed, the addition of ⁇ mercaptoethanol in the lysis buffer makes it possible to avoid the formation of bridges between the cysteine residues of the bacterial proteins and those of the recombinant proteins.
  • Cell lysis is obtained by 3 times 5 minutes of sonication in ice (Vibracells sonics material, pulsed mode, output control 5), it is followed by centrifugation at 10,000 rpm (1 hour, 4 ° C on Beckman J2-21 M / E, JA10 rotor) to remove cellular debris.
  • a protein assay is carried out on the supernatant by the Bradford colorimetric method.
  • nucleic acids are removed by centrifugation at 10,000 rpm (1 hour, 4 ° C. on Beckman J2-21 M / E, rotor JA10), and the protein concentration of the supernatant is evaluated by colorimetric assay.
  • the aim of this step is the elimination of EDTA, a molecule which interferes with the conditions required for affinity chromatography.
  • the Tris-acryl GF 05 support (Sepracor) was chosen.
  • This gel allows the separation of molecules whose Molecular Mass (MM) is between 300 and 2500 daltons, and the exclusion of molecules of MM greater than 2500 daltons, including proteins.
  • This gel also has the advantage of having good resistance to pressure, which makes it possible to work at high flow rate without modifying the resolution.
  • the chromatography of the bacterial lysate is carried out in pH8 phosphate buffer. The protein concentration in the exclusion volume is determined, and optionally adjusted to 4 mg / ml by dilution in the pH8 phosphate buffer.
  • This step can be replaced by dialysis against 2 X 10 liters of PBS.
  • the protein solution is then placed in the presence of 25 mM Hecameg, this detergent promoting the next stage of purification by reducing protein-protein interactions.
  • Ni2 + nickel ions
  • NTA Nitrilo Acetic Acid
  • the binding capacity of the agarose NiNTA gel is 2 mg of protein per 1 ml of gel. This gel is balanced in pH8 buffer supplemented with 25 mM Hecameg. The contaminating bacterial proteins are not retained at pH8, or eliminated at pH6, and the protein of interest is recovered at pH5. These steps are carried out in the presence of 25 mM hecameg.
  • fractions are combined according to the concentration and purity of the eluted protein. These characteristics are analyzed by electrophoresis (PAGE-SDS 15%).
  • the sample is dialyzed (Spectra / Por membrane MWCO 12-14000 daltons) at 4 ° C for 5 hours then overnight, against 2 times 10 liters of 2 mM PBS EDTA buffer. A protein assay is finally performed.
  • Example 6 Physico-chemical properties of the recombinant apoA-l Paris and normal apoA-l.
  • the measurement of the absorbance of the DMPC vesicles at 325 nm in the presence of apoA-1 is a measurement of the formation of small discoid proteolipid complexes.
  • the analysis of temperature variation between 19-28 ° C shows us a decrease in absorbance around the transition temperature of phospholipids (23 ° C), witnessing the formation of complexes.
  • FIG. 4 shows the comparison of the formation of these complexes with the recombinant apoA-Inormalale and apoA-1 Paris, as well as native apoA-1.
  • the decrease in turbidimetry of the DMPC vesicles after incubation of the apoA-1 was monitored at given temperature as a function of time in the presence or absence of GdnHDL.
  • the time constant (1 / t1 / 2 which corresponds to 50% decrease in the initial turbidimetry) is evaluated as a function of 1 / T (temperature in Kelvin).
  • the association speed is rapid for the native apoA-l, lower for the recombinant apoA-l, in particular apoA-l Paris.
  • the addition of GdnHDL increases the protein-lipid association. This is very important for the recombinant apoA-l, in particular apoA-l Paris.
  • the fluorescence emission spectrum of tryptophans in the different apoA-1 was measured at wavelengths between 300 and 400 nm (excitation at 295 nm). The emission maximums are indicated in Table 1 below for the apoA-1 and for the apoA-1 / cholesterol / POPC complexes. The maximum fluorescence emission of tryptophans in the different apoA-1 and complexes are identical, indicating that the tryptophans are in the same environment in the three proteins.
  • Complexes with apoA-1 and POPC were prepared by the cholate technique.
  • the complexes were separated from the free apoA-1 by gel filtration chromatography on a Superose 6PG column and their compositions analyzed.
  • the gel filtration profiles are indicated in FIG. 5.
  • a single homogeneous peak is obtained for the complexes made with the native apoA-1 while with the recombinant apoA-1, heterogeneous populations are observed.
  • the free apoA-1 are eluted in fractions 20 to 24.
  • the phospholipid concentrations and the fluorescence of the tryptophans by fractions for the different complexes are indicated in FIG. 6.
  • a cDNA coding for a variant according to the invention containing the mutation Arg -> Cys in position 151 of the mature ApoAl is obtained by PCR.
  • Alm1 ATC GAT ACC GCC ATG AAA GCT GCG GTG CTG (SEQ ID n ° 11),
  • the primers Alm1 and Alm4 respectively introduce Clal sites in 5 'and SalI in 3' of the cDNA while the primers Alm2 and 33
  • the ClaI / SalI fragment which contains the mutated cDNA is then introduced by the same restriction sites into the shuttle vector pXL-RSV-LPL which contains the LPL cDNA under the control of an LTR-RSV promoter and with a site bovine growth hormone polyadenylation, replenishment of the LPL cDNA (FR9406759). Any other shuttle vector can obviously be used.
  • the resulting vector is then linearized and cotransfected in 293 to obtain recombinant adenoviruses.
  • the adenoviruses thus obtained can be amplified on plaques, purified (in particular by cesium chloride) and then stored frozen, for example in glycerol. For their therapeutic use, they can be combined with any pharmaceutically acceptable vehicle.
  • the defective recombinant adenoviruses according to the invention can be administered according to different modes, and in particular by intravenous injection. Preferably, they are injected at the portal vein.
  • the doses of virus used for the injection can be adapted according to different parameters, and in particular according to the mode of administration used, the pathology concerned or the duration of the treatment sought.
  • the recombinant viruses according to the invention are formulated and administered in the form of doses of between 10 4 and 10 14 pfu / ml.
  • AAVs and 34 AAVs and 34
  • adenovirus doses of 10 * 3 to 10 * 10 pfu / ml can also be used.
  • pfu plaque forming unit
  • the term pfu corresponds to the infectious power of a suspension of virions, and is determined by infection of an appropriate cell culture, and measures, generally after 48 hours, the number of plaques of infected cells. The techniques for determining the pfu titer of a viral solution are well documented in the literature.
  • NAME RHONE-POULENC RORER S.A.
  • SEQ ID NO: 1 ATG AAA GCT GCG GTG CTG ACC TTG GCC GTG CTC TTC CTG ACG GGG AGC 48 Met Lys Ala Ala Val Leu Thr Leu Ala Val Leu Phe Leu Thr Gly Ser 1 5 10 15 36
  • GGC GGC GCC AGA CTG GCC GAG TAC CAC GCC AAG GCC ACC GAG CAT CTG 672 Gly Gly Ala Arg Leu Ala Glu Tyr His Ala Lys Ala Thr Glu His Leu 210 215 220

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

La présente invention concerne des variants de l'apolipoprotéine A-I humaine comprenant une cystéine en position 151, les acides nucléiques correspondants et les vecteurs les contenant. Elle concerne également des compositions pharmaceutiques comprenant ces éléments et leur utilisation, notamment en thérapie génique.

Description

NOUVEAUX VARIANTS DE L'APOLIPOPROTEINE A-I
La présente invention concerne un nouveau variant de l'apolipoprotéine A-I. Elle concerne aussi tout acide nucléique codant pour ce nouveau variant. Elle concerne également l'utilisation de ces protéine ou acides nucléiques dans un but thérapeutique. Plus particulièrement, l'invention concerne un nouveau variant de l'apolipoprotéine A-I comportant notamment une mutation en position 151.
L'apolipoprotéine A-I (apoA-l) est le constituant majeur des lipoprotéines de haute densité (HDL), qui sont des complexes macromoléculaires composés de cholestérol, phospholipides et de triglycérides. L'apoA-l est une protéine constituée de 243 acides aminés, synthétisée sous la forme d'une préproprotéine de 267 résidus, ayant une masse moléculaire de 28.000 daltons. La forme prépro de l'apoA-l est synthétisée chez l'homme à la fois par le foie et l'intestin. Cette forme de protéine est ensuite clivée en proprotéine qui est sécrétée dans le plasma. Dans le compartiment vasculaire, la proapoA-l est alors transformée en protéine mature (243 acides aminés) par action d'une protéase calcium dépendante. L'apoA-l a un rôle de structure et un rôle actif dans le métabolisme des lipoprotéines: l'apoA-l est notamment un cofacteur de la lécithine cholestérol acyltransférase (LCAT), responsable de l'estérification du cholestérol plasmatique.
Le niveau de cholestérol contenu dans la fraction HDL et la concentration plasmatique de l'apoA-l sont des facteurs de risque négatifs pour le développement de l'athérosclérose chez l'homme. Les études épidémiologiques ont en effet démontré une corrélation inverse entre les concentrations de cholestérol HDL et d'apoA-l et l'incidence des maladies cardio-vasculaires (E. G. Miller et al. Lancet, 1977:965-968). En revanche, une longévité serait associée avec un taux de cholestérol HDL élevé. Récemment, le rôle protecteur de l'apoA-l a été démontré dans un modèle de souris transgéniques exprimant l'apolipoprotéine A-I humaine (Rubin et al. Nature). De même, l'infusion des HDL chez le lapin induit une régression des lésions (Badimon et al. J. Clin. Invest. 85, 1234-41 , 1990). Différents mécanismes ont été proposés pour expliquer l'effect protecteur des HDL, et notamment un rôle des HDL dans le transport inverse du cholestérol (Fruchart et al. Circulation, 87: 22-27, 1993) et une action antiioxydant des HDL (Forte T., Current Opinion in Lipidology, 5: 354-364, 1994)).
Le gène codant pour l'apoA-l a été clone et séquence (Sharpe et al., Nucleic Acids Res. 12(9) (1984) 3917). Ce gène, d'une longueur de 1863 pb, comprend 4 exons et 3 introns. L'ADNc codant pour l'apoA-l a également été décrit (Law et al., PNAS 81 (1984) 66). Cet ADNc comprend 840 pb (Cf SEQ ID n° 1 ). Outre la forme sauvage de l'apoA-l, différents variants naturels ont été décrits dans l'art antérieur, dont les différences par rapport à la protéine sauvage sont données dans le tableau ci-après.
Variant: Mutation Variant Mutation
Milano Arg173Cys Norway Glu136Lys
Marburg Lys1 O70 Pro165Arg
Munster2B Ala158Glu Pro3His
Giessen Pro143Arg ArglOLeu
Munster3A Asp103Asn Gly26Arg
Munster3B Pro4Arg Asp89Glu
Munster3C Pro3Arg Lys107Met
Munster3D Asp213Gly Glu139Gly
Munster4 Glu198Lys Glu147Val
Yame Asp13Tyr Ala158Glu
Asp213Gly Glu169Gln Arg177His La présente invention découle de la mise en évidence d'une nouvelle série de variants de l'apolipoprotéine A-I. Cette série de variant présente en particulier une substitution du résidu arginine en position 151 par un résidu cystéine. Le variant d'apoA-l selon l'invention présente des propriétés thérapeutiques remarquables. En particulier, il possède des propriétés de protection anti-athérogène particulièrement importantes. Ainsi, dans une situation de niveaux extrêmement bas de cholestérol dans la fraction HDL, associée à une hypertriglycéridémie, la présence de ce variant prévient le développement de toute athérosclérose, témoignant d'un rôle protecteur très puissant, spécifique à cette apoA-l mutée. En outre, la présence d'une cystéine sur l'apoA-l selon l'invention entraîne la formation de dimères et d'autres complexes reliés par un pont disulfure. Cette apoA-l se retrouve sous forme libre dans le plasma, liée en dimère à elle-même ou associée avec l'apolipoprotéine A-ll qui est une autre protéine importante associée au HDL et qui possède aussi une cystéine dans sa séquence. Par ailleurs, la perte de la charge liée à l'arginine en position 151 entraîne la visualisation de ce mutant par électroisofocalisation des protéines plasmatiques suivi d'une révélation immunologique de l'apoA-l.
Compte tenu de ses propriétés anti-athérogènes particulièrement remarquables, cette nouvelle protéine selon l'invention offre un avantage thérapeutique important dans le traitement et la prévention des pathologies cardiovasculaires.
Un premier objet de l'invention concerne donc une série de variants de l'apolipoprotéine A-I humaine comprenant une cystéine en position 151. La séquence d'acides aminés de l'apoA-l de référence est décrite dans la littérature (Cf Law précitée). Cette séquence, incluant la région prepro (résidus 1 à 24), est présentée sur la séquence SEQ ID n° 1. Une caractéristique des variants selon l'invention réside donc dans la présence d'une cystéine en position 151 de l'apoA-l mature (correspondant à la position 175 sur la séquence SEQ ID n° 1), en substitution de l'arginine présente dans la séquence de référence. Un variant préféré selon l'invention comprend la séquence peptidique SEQ ID n° 2, et, encore plus préférentiellement, la séquence peptidique comprise entre les résidus 68 à 267 de la séquence SEQ ID n° 1, le résidu 175 étant substitué par une cystéine.
Les variants selon l'invention sont représentés notamment par l'apoA-l Paris, c'est-à-dire une apoA-l présentant une cystéine en position 151 par rapport à l'apoA-l native. Les variants selon l'invention peuvent également porter d'autres modifications structurales par rapport à l'apolipoprotéine A-I de référence, et notamment d'autres mutations, délétions et/ou additions. Selon un mode particulier, les variants de l'invention comprennent également d'autres mutations conduisant au remplacement de résidus par des cystéines. Ainsi, un autre variant particulier combine les mutation présentes dans le variant apoA-l Paris et apoA-l milano. D'autres mutations peuvent également être présentes affectant des résidus ne modifiant pas de manière significative les propriétés de l'apoA-l. L'activité de ces variants peut être vérifiée notamment par un test d'efflux du cholestérol.
Les variants selon l'invention peuvent être obtenus de différentes façons. Ils peuvent tout d'abord être synthétisés chimiquement, grâce aux techniques de l'homme du métier utilisant des synthétiseurs de peptides. Ils peuvent également être obtenus à partir de l'apoA-l de référence, par mutation(s). Avantageusement, il s'agit de protéines recombinantes, c'est-à- dire obtenues par expression dans un hôte cellulaire d'un acide nucléique correspondant comme décrit plus loin.
Comme indiqué plus haut, les variants selon l'invention peuvent se trouver sous forme monomérique ou sous forme de dimère. La présence d'une cystéine au moins dans la séquence des variants de l'invention permet en effet la réalisation de dimères par liaison disulfure. Il peut s'agir d'homodimères, c'est à dire de dimères comprenant deux variants selon l'invention (exemple : diApoA-l Paris); ou d'hétérodimères, c'est à dire de dimères comprenant un variant selon l'invention et une autre molécule possédant une cystéine libre (exemple :ApoA-l Paris:ApoAII).
Un autre objet de l'invention réside dans un acide nucléique codant pour un variant d'apolipoprotéine A-I tel que défini ci-avant. L'acide nucléique de la présente invention peut être un acide désoxyribonucléique (ADN) ou un acide ribonucléique (ARN). Parmi les ADN, il peut s'agir d'un ADN complémentaire (ADNc), d'un ADN génomique (ADNg), d'une séquence hybride ou d'une séquence synthétique ou semi-synthétique. Il peut en outre s'agir d'un acide nucléique modifié chimiquement, par exemple en vue d'augmenter sa résistance aux nucléases, sa pénétration ou son ciblage cellulaires, son efficacité thérapeutique, etc. Ces acides nucléiques peuvent être d'origine humaine, animale, végétale, bactérienne, virale, synthétique, etc. Ils peuvent être obtenus par toute technique connue de l'homme du métier, et notamment par criblage de banques, par synthèse chimique, ou encore par des méthodes mixtes incluant la modification chimique ou enzymatiqe de séquences obtenues par criblage de banques.
Avantageusement, l'acide nucléique est un ADNc ou un ADNg.
Préférentiellement, l'acide nucléique selon l'invention comprend la séquence SEQ ID n° 2. Encore plus préférentiellement, il comprend la séquence SEQ ID n° 10.
L'acide nucléique selon l'invention comprend avantageusement une région promotrice de la transcription fonctionnelle dans la cellule ou l'organisme cible, ainsi qu'une région située en 3', et qui spécifie un signal de fin transcriptionnelle et un site de polyadénylation. L'ensemble de ces éléments constitue la cassette d'expression. Concernant la région promotrice, il peut s'agir de la région promotrice naturellement responsable de l'expression du gène de l'apoA-l ou d'un variant de l'ApoA-l lorsque celle-ci est susceptible de fonctionner dans la cellule ou l'organisme concernés. Il peut également s'agir de régions d'origine différente (responsables de l'expression d'autres protéines, ou même synthétiques). Notamment, il peut s'agir de séquences promotrices de gènes eucaryotes ou viraux. Par exemple, il peut s'agir de séquences promotrices issues du génome de la cellule cible. Parmi les promoteurs eucaryotes, on peut utiliser tout promoteur ou séquence dérivée stimulant ou réprimant la transcription d'un gène de façon spécifique ou non, inductible ou non, forte ou faible. Il peut s'agir en particulier de promoteurs ubiquitaires (promoteur des gènes HPRT, PGK, vimentine, α-actine, tubuline, etc), de promoteurs de gènes thérapeutiques (par exemple le promoteur des gènes MDR, CFTR, Facteur VIII, etc) de promoteurs spécifiques de tissus (promoteur du gène pyruvate kinase, villine, protéine intestinale de liaison des acides gras, α-actine du muscle lisse, etc) ou encore de promoteurs répondant à un stimulus (récepteur des hormones steroïdes, récepteur de l'acide rétinoïque, etc). De même, il peut s'agir de séquences promotrices issues du génome d'un virus, tel que par exemple les promoteurs des gènes E1A et MLP d'adénovirus, le promoteur précoce du CMV, le promoteur du LTR du RSV, etc. En outre, ces régions promotrices peuvent être modifiées par addition de séquences d'activation, de régulation, ou permettant une expression tissu-spécifique ou majoritaire.
Par ailleurs, l'acide nucléique peut également comporter une séquence signal dirigeant le produit synthétisé dans les voies de sécrétion de la cellule cible. Cette séquence signal peut être la séquence signal naturelle de l'apoA-l, mais il peut également s'agir de toute autre séquence signal fonctionnelle, ou d'une séquence signal artificielle.
L'acide nucléique selon l'invention peut être utilisé pour produire les variants d'ApoA-l recombinants par expression dans une cellule hôte recombinée, ou directement comme médicament dans des applications de thérapie génique ou cellulaire. Pour la production de variants recombinants selon l'invention, l'acide nucléique est avantageusement incorporé à un vecteur plasmidique ou viral, qui peut être à réplication autonome ou intégratif. Ce vecteur est ensuite utilisé pour transfecter ou infecter une population cellulaire choisie. Les cellules transfectées ou infectées ainsi obtenues sont alors cultivées dans des conditions permettant l'expression de l'acide nucléique, et le variant d'apoA-l recombinant selon l'invention est isolé. Les hôtes cellulaires utilisables pour la production des variants de l'invention par voie recombinante sont aussi bien des hôtes eucaryotes que procaryotes. Parmi les hôtes eucaryotes qui conviennent, on peut citer les cellules animales, les levures, ou les champignons. En particulier, s'agissant de levures, on peut citer les levures du genre Saccharomyces, Kluyveromyces, Pichia, Schwanniomyces, ou Hansenula. S'agissant de cellules animales, on peut citer les cellules COS, CHO, C127, NIH-3T3, etc. Parmi les champignons, on peut citer plus particulièrement Aspergillus ssp. ou Trichoderma ssp. Comme hôtes procaryotes, on préfère utiliser les bactéries suivantes E.coli, Bacillus, ou Streptomyces. Le variant ainsi isolé peut être ensuite conditionné en vue de son utilisation thérapeutique.
Selon un mode particulièrement intéressant, l'acide nucléique selon l'invention est utilisé directement à titre de médicament, dans des applications de thérapie génique ou cellulaire. A cet égard, il peut être utilisé tel quel, par injection au niveau du site à traiter ou incubation avec des cellules en vue de leur administration. Il a en effet été décrit que les acides nucléiques nus pouvaient pénétrer dans les cellules sans vecteur particulier. Néanmoins, on préfère dans le cadre de la présente invention utiliser un vecteur d'administration, permettant d'améliorer (i) l'efficacité de la pénétration cellulaire, (ii) le ciblage (iii) la stabilité extra- et intracellulaires.
Selon un mode particulier, la présente invention concerne donc un vecteur comprenant un acide nucléique tel que défini ci-avant. Différents types de vecteurs peuvent être utilisés. Il peut s'agir de vecteurs viraux ou non viraux.
Dans un mode préféré, le vecteur de l'invention est un vecteur viral.
L'utilisation de vecteurs viraux repose sur les propriétés naturelles de transfection des virus. Il est ainsi possible d'utiliser les adénovirus, les herpès virus, les rétrovirus les virus adéno associés ou encore le virus de la vaccine. Ces vecteurs s'avèrent particulièrement performants sur le plan de la transfection.
S'agissant plus particulièrement d'adénovirus, différents sérotypes, dont la structure et les propriétés varient quelque peu, ont été caractérisés.
Parmi ces sérotypes, on préfère utiliser dans le cadre de la présente invention les adénovirus humains de type 2 ou 5 (Ad 2 ou Ad 5) ou les adénovirus d'origine animale (voir demande W094/26914). Parmi les adénovirus d'origine animale utilisables dans le cadre de la présente invention on peut citer les adénovirus d'origine canine, bovine, murine,
(exemple : Mav1, Beard et al., Virology 75 (1990) 81), ovine, porcine, aviaire ou encore simienne (exemple : SAV). De préférence, l'adénovirus d'origine animale est un adénovirus canin, plus préférentiellement un adénovirus
CAV2 [souche manhattan ou A26/61 (ATCC VR-800) par exemple]. De préférence, on utilise dans le cadre de l'invention des adénovirus d'origine humaine ou canine ou mixte.
Préférentiellement, les adénovirus défectifs de l'invention comprenent les ITR, une séquence permettant l'encapsidation et l'acide nucléique d'intérêt. Encore plus préférentiellement, dans le génome des adénovirus de l'invention, la région E1 au moins est non fonctionnelle. Le gène viral considéré peut être rendu non fonctionnel par toute technique connue de l'homme du métier, et notamment par suppression totale, substitution, délétion partielle, ou addition d'une ou plusieurs bases dans le ou les gènes considérés. De telles modifications peuvent être obtenues in vitro (sur de l'ADN isolé) ou in situ, par exemple, au moyens des techniques du génie génétique, ou encore par traitement au moyen d'agents mutagènes. D'autres régions peuvent également être modifiées, et notamment la région E3 (WO95/02697), E2 (W094/28938), E4 (W094/28152, W094/12649, WO95/02697) et L5 (WO95/02697). Selon un mode particulièrement préféré, on utilise dans le cadre de la présente invention un adénovirus recombinant présentant une délétion de tout ou partie des régions E1 et E4. Ce type de vecteur offre en effet des propriétés de sécurité particulièrement avantageuses.
Les adénovirus recombinants défectifs selon l'invention peuvent être préparés par toute technique connue de l'homme du métier (Levrero et al., Gène 101 (1991) 195, EP 185 573; Graham, EMBO J. 3 (1984) 2917). En particulier, ils peuvent être préparés par recombinaison homologue entre un adénovirus et un plasmide portant entre autre l'acide nucléique ou la cassette de l'invention. La recombinaison homologue se produit après co-transfection desdits adénovirus et plasmide dans une lignée cellulaire appropriée. La lignée cellulaire utilisée doit de préférence (i) être transformable par lesdits éléments, et (ii), comporter les séquences capables de complémenter la partie du génome de l'adénovirus défectif, de préférence sous forme intégrée pour éviter les risques de recombinaison. A titre d'exemple de lignée, on peut mentionner la lignée de rein embryonnaire humain 293 (Graham et al., J. Gen. Virol. 36 (1977) 59) qui contient notamment, intégrée dans son génome, la partie gauche du génome d'un adénovirus Ad5 (12 %). D'autres lignées ont été décrites dans les demandes n° WO 94/26914 et WO95/02697.
Ensuite, les adénovirus qui se sont multipliés sont récupérés et purifiés selon les techniques classiques de biologie moléculaire, comme illustré dans les exemples. Concernant les virus adéno-associés (AAV), il s'agit de virus à ADN d taille relativement réduite, qui s'intègrent dans le génome des cellules qu'il infectent, de manière stable et site-spécifique. Ils sont capables d'infecter u large spectre de cellules, sans induire d'effet sur la croissance, l morphologie ou la différenciation cellulaires. Par ailleurs, ils ne semblent pa impliqués dans des pathologies chez l'homme. Le génome des AAV a été clone, séquence et caractérisé. Il comprend environ 4700 bases, et contient à chaque extrémité une région répétée inversée (ITR) de 145 bases environ, servant d'origine de réplication pour le virus. Le reste du génome est divisé en 2 régions essentielles portant les fonctions d'encapsidation : la partie gauche du génome, qui contient le gène rep impliqué dans la réplication virale et l'expression des gènes viraux; la partie droite du génome, qui contient le gène cap codant pour les protéines de capside du virus.
L'utilisation de vecteurs dérivés des AAV pour le transfert de gènes in vitro et in vivo a été décrite dans la littérature (voir notamment WO 91/18088;
WO 93/09239; US 4,797,368, US5.139,941 , EP 488 528). Ces demandes décrivent différentes constructions dérivées des AAV, dans lesquelles les gènes rep et/ou cap sont délétés et remplacés par un gène d'intérêt, et leur utilisation pour transférer in vitro (sur cellules en culture) ou in vivo (directement dans un organisme) ledit gène d'intérêt. Les AAV recombinants défectifs selon l'invention peuvent être préparés par co-transfection, dans un lignée cellulaire infectée par un virus auxiliaire humain (par exemple un adénovirus), d'un plasmide contenant l'acide nucléique ou la cassette de l'invention bordée de deux régions répétées inversées (ITR) d'AAV, et d'un plasmide portant les gènes d'encapsidation (gènes rep et cap) d'AAV. Les
AAV recombinants produits sont ensuite purifiés par des techniques classiques (voir notamment WO95/06743).
Concernant les virus de l'herpès et les rétrovirus, la construction de vecteurs recombinants a été largement décrite dans la littérature : voir notamment Breakfield et al., New Biologist 3 (1991) 203; EP 453242, EP178220, Bemstein et al. Genêt. Eng. 7 (1985) 235; McCormic BioTechnology 3 (1985) 689, etc. En particulier, les rétrovirus sont des viru intégratifs, infectant sélectivement les cellules en division. Ils constituen donc des vecteurs d'intérêt pour des applications cancer. Le génome de rétrovirus comprend essentiellement deux LTR, une séquenc d'encapsidation et trois régions codantes (gag, pol et env). Dans les vecteur recombinants dérivés des rétrovirus, les gènes gag, pol et env son généralement délétés, en tout ou en partie, et remplacés par une séquenc d'acide nucléique hétérologue d'intérêt. Ces vecteurs peuvent être réalisés partir de différents types de rétrovirus tels que notamment le MoMuL ("murine moloney leukemia virus"; encore désigné MoMLV), le MSV ("murin moloney sarcoma virus"), le HaSV ("harvey sarcoma virus"); le SNV ("splee necrosis virus"); le RSV ("rous sarcoma virus") ou encore le virus de Friend.
Pour construire des rétrovirus recombinants comportant l'acid nucléique ou la cassette de l'invention, un plasmide comportant notammen les LTR, la séquence d'encapsidation et l'acide nucléique ou la cassette es construit, puis utilisé pour transfecter une lignée cellulaire dit d'encapsidation, capable d'apporter en trans les fonctions rétrovirale déficientes dans le plasmide. Généralement, les lignées d'encapsidation son donc capables d'exprimer les gènes gag, pol et env. De telles lignée d'encapsidation ont été décrites dans l'art antérieur, et notamment la ligné
PA317 (US4.861.719); la lignée PsiCRIP (WO90/02806) et la ligné
GP+envAm-12 (WO89/07150). Par ailleurs, les rétrovirus recombinant peuvent comporter des modifications au niveau des LTR pour supprime l'activité transcriptionnelle, ainsi que des séquences d'encapsidatio étendues, comportant une partie du gène gag (Bender et al., J. Virol. 61
(1987) 1639). Les rétrovirus recombinants produits sont ensuite purifiés pa des techniques classiques.
Pour la mise en oeuvre de la présente invention, il est tou particulièrement avantageux d'utiliser un adénovirus ou un rétroviru recombinant défectif. Ces vecteurs possèdent en effet des propriétés particulièrement intéressantes pour le transfert de gènes codant pour des apolipoprotéines. Les vecteurs adénoviraux selon l'invention sont particulièrement avantageux pour une administration directe in vivo d'une suspension purifiée, ou pour la transformation ex vivo de cellules, notamment autologues, en vue de leur implantation. De plus, les vecteurs adénoviraux selon l'invention présentent en outre des avantages importants, tels que notamment leur très haute efficacité d'infection, permettant de réaliser des infections à partir de faibles volumes de suspension virale.
A cet égard, l'invention concerne préférentiellement un adénovirus recombinant défectif comprenant, inséré dans son génome, un ADN codant pour un variant de l'apolipoprotéine A-I tel que défini ci-avant.
Selon un autre mode particulièrement avantageux de mise en oeuvre de l'invention, on utilise une lignée productrice de vecteurs rétroviraux contenant la séquence codant pour le variant de l'ApoA-l, pour une implantation in vivo. Les lignées utilisables à cet effet sont notamment les cellules PA317 (US4.861.719), PsiCrip (WO90/02806) et GP+envAm-12 (US5,278,056), modifiées pour permettre la production d'un rétrovirus contenant une séquence nucléique codant pour un variant de l'ApoA-l selon l'invention.
Selon un autre aspect de l'invention, le vecteur utilisé est un vecteur chimique. Le vecteur selon l'invention peut en effet être un agent non viral capable de promouvoir le transfert et l'expression d'acides nucléiques dans des cellules eucaryotes. Les vecteurs chimiques ou biochimiques représentent une alternative intéressante aux virus naturels en particulier pour des raisons de commodité, de sécurité et également par l'absence de limite théorique en ce qui concerne la taille de l'ADN à transfecter. Ces vecteurs synthétiques ont deux fonctions principales, compacter l'acide nucléique à transfecter et promouvoir sa fixation cellulaire ainsi que son passage à travers la membrane plasmique et, le cas échéant, les deux membranes nucléaires. Pour pallier à la nature polyanionique des acides nucléiques, les vecteurs non viraux possèdent tous des charges polycationiques.
Parmi les vecteurs synthétiques développés, les polymères cationiques de type polylysine, (LKLK)n, (LKKL)n, polyéthylène immine et DEAE dextran ou encore les lipides cationiques ou lipofectants sont les plus avantageux. Ils possèdent la propriété de condenser l'ADN et de promouvoir son association avec la membrane cellulaire. Parmi ces derniers, on peut citer les lipopolyamines (lipofectamine, transfectam, etc) et différents lipides cationiques ou neutres (DOTMA, DOGS, DOPE, etc). Plus récemment, il a été développé le concept de la transfection ciblée, médiée par un récepteur, qui met à profit le principe de condenser l'ADN grâce au polymère cationique tout en dirigeant la fixation du complexe à la membrane grâce à un couplage chimique entre le polymère cationique et le ligand d'un récepteur membranaire, présent à la surface du type cellulaire que l'on veut greffer. Le ciblage du récepteur à la transferrine, à l'insuline ou du récepteur des asialogiycoprotéines des hépatocytes a ainsi été décrit.
L'invention concerne également toute cellule modifiée génétiquement par insertion d'un acide nucléique codant pour un variant de l'apolipoprotéine A-I tel que défini précédemment. Il s'agit avantageusement de cellules mammifères, susceptibles d'être administrées ou implantées in vivo. Il peut s'agir en particulier de fibroblastes, myoblastes, hépatocytes, kératinocytes, cellules endothéliales, épithéliales, gliales, etc. Les cellules sont préférentiellement d'origine humaine. De manière particulièrement avantageuse, il s'agit de cellules autologues, c'est-à-dire prélevée à partir d'un patient, modifiées ex vivo par un acide nucléique selon l'invention en vue de leur conférer des propriétés thérapeutiques, puis réadministrées au patient.
Les cellules selon l'invention peuvent être issues de cultures primaires. Celles-ci peuvent être prélevées par toute technique connue de l'homme du métier, puis mises en culture dans des conditions permettant leur prolifération. S'agissant plus particulièrement de fibroblastes, ceux-ci peuvent être aisément obtenus à partir de biopsies, par exemple selon la technique décrite par Ham [Methods Cell.Biol. 21a (1980) 255]. Ces cellules peuvent être utilisées directement pour l'insertion de l'acide nucléique de l'invention (au moyen d'un vecteur viral ou chimique), ou conservées, par exemple par congélation, pour l'établissement de banques autologues, en vue d'une utilisation ultérieure. Les cellules selon l'invention peuvent également être des cultures secondaires, obtenues par exemple à partir de banques préétablies (voir par exemple EP 228458, EP 289034, EP 400047, EP 456640).
Les cellules en culture peuvent en particulier être infectées par les virus recombinants de l'invention pour leur conférer la capacité de produire un variant de l'apoA-l biologiquement actif. L'infection est réalisée in vitro selon des techniques connues de l'homme du métier. En particulier, selon le type de cellules utilisé et le nombre de copies de virus par cellule désiré, l'homme du métier peut adapter la multiplicité d'infection et éventuellement le nombre de cycles d'infection réalisé. Il est bien entendu que ces étapes doivent être effectuées dans des conditions de stérilité appropriées lorsque les cellules sont destinées à une administration in vivo. Les doses de virus recombinant utilisées pour l'infection des cellules peuvent être adaptées par l'homme du métier selon le but recherché. Les conditions décrites ci-avant pour l'administration in vivo peuvent être appliquées à l'infection in vitro. Pour l'infection par des rétrovirus, il est également possible de co-cultiver les cellules que l'on désire infecter avec des cellules productrices des rétrovirus recombinants selon l'invention. Ceci permet de s'affranchir de la purification des rétrovirus.
Un autre objet de l'invention concerne un implant comprenant des cellules de mammifères génétiquement modifiées par insertion d'un acide nucléique tel que défini ci-avant, et une matrice extracellulaire. Préférentiellement, les implants selon l'invention comprennent 10^ à 10"O cellules. Plus préférentiellement, ils en comprennent 10^ à 10^_ Les cellules peuvent également être des cellules productrices de virus recombinants contenant inséré dans leur génome un acide nucléique tel que défini ci- avant.
Plus particulièrement, dans les implants de l'invention, la matrice extracellulaire comprend un composé gélifiant et éventuellement un support permettant l'ancrage des cellules.
Pour la préparation des implants selon l'invention, différents types de gélifiants peuvent être employés. Les gélifiants sont utilisés pour l'inclusion des cellules dans une matrice ayant la constitution d'un gel, et pour favoriser l'ancrage des cellules sur le support, le cas échéant. Différents agents d'adhésion cellulaire peuvent donc être utilisés comme gélifiants, tels que notamment le collagène, la gélatine, les glycosaminoglycans, la fibronectine, les lectines, etc. De préférence, on utilise dans le cadre de la présente invention du collagène. Il peut s'agir de collagène d'origine humaine, bovine ou murine. Plus préférenciellement, on utilise du collagène de type I.
Comme indiqué ci-avant, les compositions selon l'invention comprennent avantageusement un support permettant l'ancrage des cellules. Le terme ancrage désigne toute forme d'interaction biologique et/ou chimique et/ou physique entraînant l'adhésion et/ou la fixation des cellules sur le support. Par ailleurs, les cellules peuvent soit recouvrir le support utilisé, soit pénétrer à l'intérieur de ce support, soit les deux. On préfère utiliser dans le cadre de l'invention un support solide, non toxique et/ou bio-compatible. En particulier, on peut utiliser des fibres de polytétrafluoroéthylène (PTFE) ou un support d'origine biologique (corail, os, collagène, etc).
Les implants selon l'invention peuvent être implantés en différents sites de l'organisme. En particulier, l'implantation peut être effectuée au niveau de la cavité péritonéale, dans le tissu sous-cutané (région sus- pubienne, fosses iliaques ou inguinales, etc), dans un organe, un muscle, une tumeur, le système nerveux central, ou encore sous une muqueuse. Les implants selon l'invention sont particulièrement avantageux en ce sens qu'ils permettent de contrôler la libération du variant d'apoA-l dans l'organisme : Celle-ci est tout d'abord déterminée par la multiplicité d'infection et par le nombre de cellules implantées. Ensuite, la libération peut être contrôlée soit par le retrait de l'implant, ce qui arrête définitivement le traitement, soit par l'utilisation de systèmes d'expression régulables, permettant d'induire ou de réprimer l'expression des gènes thérapeutiques.
En raison des propriétés anti-athérogènes particulièrement remarquables des variants de l'invention, les acides nucléiques constituent ainsi un nouveau médicament dans le traitement et la prévention des pathologies cardiovasculaires (athérosclérose, resténose, etc).
L'invention concerne à cet effet tout composition pharmaceutique comprenant un variant de l'apolipoprotéine A-I et/ou un acide nucléique et/ou un vecteur et/ou une cellule génétiquement modifiée tels que décrits ci- avant.
La présente invention offre ainsi un nouveau moyen pour le traitement ou la prévention des pathologies liées aux dyslipoprotéinémies, en particulier dans le domaine des affections cardiovasculaires comme l'infarctus du myocarde, l'angor, la mort subite, la resténose, la décompensation cardiaque et les accidents cérébro-vasculaires. Plus généralement, cette approche offre un moyen d'intervention thérapeutique très prometteur pour chaque cas où un déficit d'ordre génétique ou métabolique de l'apolipoprotéine A-I peut être corrigé.
La présente invention sera décrite plus en détail à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.
Liste des figures
Fig 1 : Carte de restriction du plasmide PXL2116
Fig 2 : Construction du phage M 13 portant l'exon 4 du patient.
Fig 3 : Construction du vecteur portant PXL2116 muté. Fig 4 : Etudes de turbidimétrie en fonction de la température.
Fig 5 : Profils de gel filtration.
Fig 6 : Fluorescence des tryptophanes et concentration en phospholipides par fraction pour les différents complexes.
Exemples
Exemple 1 - Mise en évidence d'un variant ApoAl
Le variant ApoA-l Paris a été identifié et isolé à partir d'un patient sélectionné en raison de son bilan lipidique particulier. Plus précisément, le patient présentait le bilan lipidique suivant (nature du prélèvement : sérum).
Normales
Cholestérol total 4.59 mmol/l 4.54-6.97
Triglycérides 2.82 mmol/l 0.74-1.71
HDL-cholestérol 0.25 mmol/l 0.88-1.60
LDL-cholestérol 3.06 mmol/l 2.79-4.85 17/1
: Liste des figures
Fig 1 : Carte de restriction du plasmide PXL2116 Fig 2 : Construction du phage M 13 portant l'exon 4 du patient. Fig 3 : Construction du vecteur portant PXL2116 muté. Fig 4 : Etudes de turbidimétrie en fonction de la température. 4a: turbidimétrie de l'association de différentes ApoAl et de DPMC en absence de GndHCI (-«- : témoin ; -* - : recombinante ; - *- : plasmatique ; - D- : Paris.).
4b: turbidimétrie de l'association de différentes ApoAl et de DPMC en présence de GndHCI (-β- : témoin ; -- - : recombinante ; --Φ-- : plasmatique ; -D- : Paris.).
4c: turbidimétrie de l'association de l'ApoAl Paris et de DPMC (-B- : en absence de GndHCI ; -D- : en présence de GndHCI (0.5M)).
4d: turbidimétrie de l'association de l'ApoAl recombinante et de DPMC (-B- : en absence de GnHCI ; -D- : en présence de GnHCI (0.5M)).
4e: turbidimétrie de l'association de l'ApoAl plasmatique et de DPMC (-m- : en absence de GndHCI ; -D- : en présence de GndHCI (0.5M)).
4f : effet de GndHCI (0.5M) sur l'association ApoAl / DPMC (*• : en absence de GndHCI ; -D- : en présence de GndHCI)
Fig 5 : fluorescence relative des fractions de Superose 6 PG.(-β- : POPC/Al Paris ; -D- : POPC/Al recombinante ; --Φ- POPC/Al plasmatique.)
Fig 6 : 6a : Fluorescence des tryptophanes et concentration en phospholipides pour le complexe POPC/Al Paris (-B- : fluorescence relative ; -D- : phospholipides).
6b : Fluorescence des tryptophanes et concentration en phospholipides pour le complexe POPC/Al recombinante(-B- : fluorescence relative ; -D- : phospholipides).
RÈGLE 26 18
Apolipoprotéine A-I 0.50 g/1 1.20-2.15
Apolipoprotéine B 1.38 g/l 0.55-1.30
Phenotype apoE: 3/3
De manière inattendue, ce patient ne présentait aucun signe d'athérosclérose malgré une concentration d'HDL extrêmement faible et une hypertriglycéridémie. Ceci a conduit les demandeurs à rechercher l'origine de cette protection.
Isolement des HDL contenant l'apoA-l Paris à partir du plasma.
Après une nuit à jeun, du sang est prélevé chez les sujets portant le gène de l'apoA-l Paris. Le plasma est préparé par centrifugation lente du sang à 4°C (2000 g, 30 minutes). Les lipoprotéines de haute densité sont préparées par ultracentrifugation séquentielle à la densité de 1.063-1.21 g/ml (Havel, J. Clin. Invest. 34: 1345-54, 1955). La fraction contenant les HDL est ensuite dialysée contre du tampon Tris-HCI 10 mM, azide de sodium 0,01 %, au pH 7,4.
Mise en évidence des dimères d'apoA-l Paris.
La fraction HDL dialysée est délipidée dans un mélange diethylether/ ethanol (3/1 , v/v) et la concentration de protéines est estimée par la méthode de Lowry (Lowry et al., J. Biol. Chem., 193:265-75, 1951). Les protéines de la fration HDL subissent une migration sur un gel de polyacrylamide en présence de SDS en condition non réductrice. Cette migration permet de mettre en évidence la taille des différentes protéines des HDL du patient. Outre la présence des protéines correspondantes aux apoA-l et apoA-ll de tailles normales, cette analyse révèle la présence de protéines de plus hauts poids moléculaires correspondant à des dimères d'apoA-l et des complexes apoA-l et apoA-ll. La présence des apoA-l et apoA-ll dans ces complexes a été vérifiée par une révélation immunologique spécifique. 19
Mise en évidence de la différence de charge de l'apoA-l mutée
La détection de l'apoA-l mutée directement à partir du plasma a été réalisée selon le protocole suivant (Menzel, H. J., and Utermann, G., Electroforesis, 7: 492-495, 1986): vingt microlitres de plasma sont délipidés toute une nuit avec le mélange éthanol/ether et resuspendu dans un tampon de dépôt. Un aliquot de 5 μl subit une électrophorèse sur un gel de focusing isoelectrique (pH 4-6,5, Pharmolyte), et les protéines sont ensuite transférées sur une membrane de nylon. Les bandes correspondantes à l'apoA-l sont détectées par une réaction immunologique à l'aide d'anticorps anti-apoA-l humaine.
La détection de l'apoA-l mutée peut se faire aussi à partir des protéines HDL. La fraction HDL dialysée est délipidée dans un mélange diethylether/ ethanol (3/1 , v/v) et la concentration de protéines est estimée par la méthode de Lowry (Lowry et al., J. Biol. Chem., 193:265-75, 1951). Environ 100 μg de protéines subissent une électrophorèse sur un gel de focusing isoelectrique (pH 4-6,5, Pharmolyte), et les protéines sont ensuite révélées par coloration au bleu de Coomassie. Cette technique permet de mettre en évidence que les isoformes les plus importantes des apoA-l du patient ayant la mutation sont déplacées vers l'anode, ce qui correspond à une différence de charge de -1 par rapport à la charge d'apoA-l normale.
Exemple 2 - Identification du gène et de la mutation
L'ADN génomique du patient a été isolé du sang total selon la technique de Madisen et al. (Amer. J. Med. Genêt, 27: 379-390, 1987). Le gène de l'apoA-l a ensuite été amplifié par la technique de PCR. A cet effet, les réactions d'amplification ont été réalisées sur 1 μg d'ADN génomique purifié introduit dans le mélange suivant :
- 10 μl de tampon 10X (100 mM Tris-HCI pH 8,3; 500 mM KCI; 15 mM MgCI2; 0,1 % (w/v) gélatine) 20
- 10 μl de dNTP (dATP, dGTP, dCTP, dTTP) 2mM
- 20 pmol de chaque amorce
- 2,5 U de Taq polymérase (Perkin-Elmer)
- qsp 100 μl H2O.
Les amorces utilisées pour l'amplification sont les suivantes :
Sq5490 : 5'-AAGGCACCCCACTCAGCCAGG-3' (SEQ ID n° 3)
Sq5491 : 5'-TTCAACATCATCCCACAGGCCTCT-3' (SEQ ID n° 4)
Sq5492 : 5'-CTGATAGGCTGGGGCGCTGG-3' (SEQ ID n° 5)
Sq5493 : 5'-CGCCTCACTGGGTGTTGAGC-3' (SEQ ID n° 6)
Les amorces Sq5490 et Sq5491 amplifient un fragment de 508 pb correspondant aux exons 2 et 3 du gène de l'apoA-l et les amorces Sq5492 et Sq5493 amplifient un fragment de 664 pb correspondant à l'exon 4 de ce gène.
Les produits d'amplification (deux fragments PCR de 508 et 664 pb) ont ensuite été séquences. Pour cela, une première méthode à été utilisée, consistant à séquencer directement en utilisant le kit de séquençage de fragments PCR (Amersham). Les amorces utilisées pour le séquençage sont les amorces PCR, mais il peut également s'agir d'amorces internes aux fragments (Cf amorces S4, S6 et S8 ci-dessous).
Une deuxième technique de séquençage a également été mise en oeuvre qui a consisté à cloner les fragments PCR dans un vecteur M13 mp28. L'ADN double brin du M13 a été clivé par EcoRV puis déphosphorylé. les fragment PCR ont été traités à la Klenow, phosphorylés et ligués au vecteur M13. Les plages blanches ont ensuite été prélevées et l'ADN simple 21
brin amplifié puis purifié sur le Catalyst (Applied Biosystem) a été séquence par une amorce -20 fluorescente (Kit PRISM dye primer et protocole n° 401386, Applied Biosystem) ou par des amorces internes aux fragments après orientations de ceux-ci. La technique des didéoxynucléotides fluorescent est alors utilisée (Kit DyeDeoxyTerminator et protocole n° 401388, Applied Biosystem)
S8 5'-TGGGATCGAGTGAAG GACCTG-3' (SEQ IDn°7)
S4 5'-CGCCAGAAGCTGCACCAGCTG-3' (SEQIDn°8)
S6 5'-GCGCTGGCGCAGCTCGTCGCT-3'(SEQIDn°9)
Les séquences issues de plusieurs clones ont ensuite été compilées et comparées à la séquence de l'ApoAl. La séquence des acides aminé 148 à 154 de l'ApoAl mature est donnée ci dessous (correspondant aux résidus 172-178 sur la séquence SEQ ID n° 1).
ATG CGC GAC CGC GCG CGC GCC Met Arg Asp Arg Ala Arg Ala 151
Une mutation C->T en première base du codon codant pour l'aa 151 qui code alors pour une cystéine (cf séquence SEQ ID n° 2 ci-dessous) a été retrouvée dans une partie des clones séquences. Cette mutation est donc présente à l'état hétérozygote chez le patient sélectionné.
ATG CGC GAC TGC GCG CGC GCC
Met Arg Asp Cys Ala Arg Ala
151
L'ensemble du cDNA codant pour le variant apoA-l Paris selon l'invention a été séquence. Une partie de cette séquence est présentée sur la SEQ ID n° 10. 22
Exemple 3 : Construction d'un vecteur d'expression plasmidique (pXL2116mute)
L'apoAl Paris présente une mutation ponctuelle située sur la séquence de l'exon 4 du gène de l'apoAl du patient. La stratégie de construction du vecteur d'expression consiste a substituer, dans un vecteur d'expression de l'apoAl (le vecteur pXL2116, figure 1) la région correspondant a l'exon 4 provenant du gène du patient.
3.1. Utilisation de l'exon 4 du patient clone dans M13
L'exon 4 a été produit par PCR à partir de l'ADN purifié des cellules du patient et inséré au niveau du site EcoRV du polylinker du phage M13mp28 (figure 2).
Une mutagénèse par remplacement d'un fragment de l'apo Al par un fragment issu de M13 portant la mutation est envisagée. Il nous reste donc à choisir les enzymes appropriées aux deux vecteurs de manière à ce qu'elles génèrent des extrémités cohésives pour le vecteur issu de pXL2116 digéré et pour l'insert issu de M13 double brin digéré.
3.2. Choix des enzymes de restriction
- Bsu361 possède dans M13 et dans pXL2116 un site unique de restriction en amont de la mutation.
- La digestion par BamHI, possédant un site de restriction unique à l'extrémité 3' de l'apo Al du fait de la technique de clonage, et possédant un site de restriction dans le polylinker de M13, nous permet :
1) une ligation du vecteur provenant de pXL2116 et de l'insert provenant de M13 23
2) et ce en incorporant un fragment de polylinker qui nous sera utile pour vérifier par digestion enzymatique l'insertion du fragment muté provenant de M 13.
Il est à noter que la présence de ce fragment de polylinker n'altère en rien la séquence codante de l'apo Al puisque celui-ci est situé après le codon stop.
Le polypeptide riche en histidine dont la séquence nucléotidique a été clonée en 5' de l'apo Al sera donc aussi synthétisé.
3.3. Construction du vecteur (figure 3).
- Le M13 rendu double brin est digéré par Bsu361/BamHI et le produit de la digestion est déposé sur gel. L'insert ainsi généré est récupéré en quantité suffisante et présente bien une taille de 1Db.
- Le pXL2116 est digéré par les mêmes enzymes mais non purifié.
De façon à éviter la religation des produits de la digestion, une digestion est effectuée par Xhol qui reconnaît deux sites de restriction à l'intérieur du fragment Bsu361 /BamHI.
En effet, une déphosphosylation a été d'abord tentée mais a donné de très mauvais résultats sur boîte et aucun clone positif sur 24 testés.
Les quantités de vecteur et d'insert optimales pour la ligation ont été évaluées à 50ng de vecteur pour 15ng d'insert.
Les souches DH5a sont transformées avec les produits des trois ligations suivantes :
- vecteur digéré par Bsu361 et BamHI sans ligase (témoin négatif de ligation) 24
- produit de la digestion + ligase
- produit de la digestion + insert + ligase
Les cellules compétentes sont aussi transformées avec le pUC19 afin de tester l'efficacité de la transformation.
Les résultats des cellules transformées sur boîte de milieu LB
Chloramphénicol (sélection des souches BL21) Ampicilline (sélection des souches ayant intégré le plasmide) sont reproduits ci-dessous.
RESULTATS OBTENUS SUR BOITE DE PETRI
TRANSFORMATION DH5a+ RESULTATS INTERPRETATION
PUC19 200 clones Témoin de transformation vecteur (-(-fragment) 0 clone Digestion parfaite, pas de plasmide recircularisé vecteur (+fragment) + ligase 160 clones Bruit de fond très important : stratégie de digestion supplémentaire peu efficace vecteur (+fragment) + ligase 120 clones « Effet de diminution » de + insert la ligase souvent constaté. Les bactéries ne sont pas obligatoirement transformés avec une séquence mutée correcte
48 clones sont réisolés à partir de la boîte 4.
De manière à repérer les clones positifs (c'est-à-dire ayant inséré le fragment muté de M13), l'ADN plasmidique obtenu par purification sur chacun des 48 clones est digéré par l'enzyme Ndel.
Si l'insert provenant de M13 a bien été inséré, on verra sur gel deux fragments : une de 4,5kb et un de 1kb.
Si un autre événement de ligation s'est produit, on obtiendra soit plusieurs bandes, soit simplement un plasmide linéarisé (cas général). 25
D'après le résultat du gel, les clones 7,8,13,16,26 semblent être corrects. On sélectionne le clone qui donne un résultat net.
De manière à vérifier totalement la séquence du clone sélectionné, on procède à six digestions enzymatiques.
La présence du polylinker donc de l'insert est ainsi vérifiée mais l'événement de ligation doit être aussi vérifié.
De toute évidence, la ligation est celle attendue puisque la taille du plasmide est correcte, c'est-à-dire égale à celle du pXL2116.
Sauf événement de mutation très rare, la séquence de l'apoAl nouvellement clonée devrait être exacte.
Le clone 8 porte donc le plasmide px12116 muté correctement.
Exemple 4 : Expression de variants apoAl recombinants
Cet exemple décrit un procède de production de variants apoAl recombinants. Ce procède a ete réalise dans une bactérie. D'autres systèmes d'expression sont utilisables a cet effet (levures, cellules animales, etc).
4.1. Principe
L'expression du plasmide au sein de la bactérie a été placée sous le contrôle des promoteur et terminateur T7. L'isopropyl-b- thiogalactopyranoside (IPTG), inducteur de l'opéron lactose, induit dans ce système la synthèse de TARN polymérase T7 qui se fixe ensuite spécifiquement sur le promoteur T7 et démarre la transcription du gène de la protéine recombinante. L'ARN polymérase est stoppée par le terminateur T7, ce qui évite que le flux transcriptionnel ne déborde en aval de la séquence d'intérêt. 26
La rifampicine est un antibiotique inhibant l'activité ARN polymérase endogène d'E.coli . Elle inhibe donc la synthèse des protéines bactériennes, c'est-à-dire à la fois des protéases, ce qui limite les dégradations de la protéine d'intérêt; et des protéines bactériennes contaminantes, ce qui amplifie l'expression de la protéine d'intérêt.
4.2. Protocole
La souche utilisée pour l'expression est Escherichia coli BL21 DE3 pLys S. L'ADN plasmidique est introduit dans E. coli par transformation selon les techniques classiques. La culture est conservée sous forme de suspension congelée à - 20°C, en présence de 25% de glycérol, et aliquotée par fractions de 500 μl.
Une préculture est initiée par l'addition de quelques gouttes de suspension congelée dans 10 ml de milieu M9 ampicilline, puis incubée sur la nuit à 37°C. Les erlens de 1 litre sont ensemencés à partir de la préculture et placés dans un shaker à 37°C jusqu'à obtenir une DO comprise entre 0,5 et 1 à 610 nm. L'IPTG (Bachem ref Q-1280) est alors ajouté à une concentration finale de 1 mM. Après 15 minutes d'incubation à 37°C, la rifampicine (Sigma) est ajoutée à une concentration finale de 100 μg/ml. Puis, après 1 heure de culture, les cellules sont récupérées par centrifugation (15 minutes, 8000 rpm) et l'expression est vérifiée par électrophorèse en conditions dénaturantes sur un gel d'acrylamide à 15% et par immunoblot.
Les résultats obtenus montrent que la protéine mutée s'exprime selon un bon taux d'expression et que celle-ci est effectivement révélée par les anticorps polyclonaux anti-apoAI.
Exemple 5 : Purification des variants apoAl recombinants 27
Cet exemple décrit une méthode efficace permettant de purifier les variants apoAl recombinants selon l'invention. Il est entendu que d'autres procèdes peuvent être utilises.
Les protéines étant exprimées dans le cytoplasme d'E. coli, leur extraction nécessite, dans un premier temps, d'effectuer une lyse cellulaire suivie d'une élimination des acides nucléiques.
5.1. Lyse bactérienne
Après centrifugation de la culture, le culot bactérien est resuspendu sous agitation douce dans du tampon de lyse en présence d'inhibiteurs de protéases et de β-mercaptoéthanol.
Le β-mercaptoéthanol est un réducteur clivant les ponts disulfure formés entre deux résidus cystéine. Il ne se forme aucun pont disulfure dans le cytoplasme de E.coli , la présence d'un agent réducteur s'avère toutefois nécessaire une fois les protéines extraites. En effet l'addition de β mercaptoéthanol dans le tampon de lyse permet d'éviter la formation de ponts entre les résidus cystéine des protéines bactériennes et ceux des protéines recombinantes.
La lyse cellulaire est obtenue par 3 fois 5 minutes de sonication dans la glace (Vibracells sonics material, mode pulsed, output control 5), elle est suivie par une centrifugation à 10000 rpm (1 heure, 4°C sur Beckman J2-21 M/E, rotor JA10) permettant d'éliminer les débris cellulaires. Un dosage protéique est réalisé sur le surnageant par la méthode colorimétrique de Bradford.
5.2. Précipitation des acides nucléiques
Elle est réalisée sur le surnageant de lyse par une solution de sulfate de streptomycine à 10%, à raison de 10 ml pour 10 g de protéines, sous 28
agitation magnétique douce 1 heure à 4°C. Les acides nucléiques sont éliminés par centrifugation à 10000 rpm (1 heure, 4°C sur Beckman J2-21 M/E, rotor JA10), et la concentration en protéines du surnageant est évaluée par dosage colorimétrique.
A l'issu de ces deux étapes on obtient une solution protéique de concentration connue regroupant l'ensemble des protéines intracellulaires dont la protéine d'intérêt. Celle-ci est purifiée par des techniques chromatographiques.
--> Chromatographie par filtration sur gel
--> Chromatographie d'affinité
5.3. Chromatographie par filtration sur gel
Le but de cette étape est l'élimination de l'EDTA, molécule interférant avec les conditions requises pour la chromatographie d'affinité. Pour cela le support Tris-acryl GF 05 (Sepracor) a été retenu. Ce gel permet la séparation des molécules dont la Masse Moléculaire (MM) est comprise entre 300 et 2500 daltons, et l'exclusion des molécules de MM supérieure à 2500 daltons, dont les protéines. Ce gel présente d'autre part l'intérêt de posséder une bonne résistance à la pression, ce qui permet de travailler à débit élevé sans modifier la résolution. La chromatographie du lysat bactérien est réalisée en tampon phosphate pH8. La concentration protéique dans le volume d'exclusion est déterminée, et éventuellement ajustée à 4 mg/ml par dilution dans le tampon phosphate pH8.
Cette étape peut être remplacée par une dialyse contre 2 X 10 litres de PBS. La solution protéique est ensuite mise en présence d'Hecameg 25 mM, ce détergent favorisant l'étape suivante de purification par diminution des interactions protéine-protéine.
5.4. Chromatographie d'affinité 29
Principe
La présence de 6 résidus histidine consécutifs associés à la protéine recombinante lui confère une affinité particulièrement élevée pour les ions nickel (Ni2+) (15). Ces ions Ni2+ sont fixés à une matrice d'agarose par l'intermédiaire de l'Acide Nitrilo Acétique (NTA). Entre l'imidazole des histidine et les ions nickel se produit une liaison de chélation métallique; cette liaison est plus forte qu'une liaison ionique et moins forte qu'une liaison covalente.
Protocole
La capacité de fixation du gel NiNTA agarose (Qiagen) est de 2 mg de protéine pour 1 ml de gel. Ce gel est équilibré dans du tampon pH8 additionné d'Hecameg 25 mM. Les protéines bactériennes contaminantes sont non retenues à pH8, ou éliminées à pH6, et la protéine d'intérêt est récupérée à pH5. Ces étapes sont réalisées en présence d'hecameg 25 mM.
Les fractions (2 ml) éluées à pH5 sont additionnées de:
60 μl de NaOH 1 M (neutralisation)
10 μl de PMSF 0,2M
40 μl d'EDTA 0,1 M
Les fractions sont réunies en fonction de la concentration et de la pureté de la protéine éluée. Ces caractéristiques sont analysées par électrophorèse (PAGE-SDS 15%).
L'élution à pH5 décroche la protéine associée au nickel en agissant sur la liaison Ni2+ - NTA. Il est donc nécessaire de dissocier ce cation de la protéine recombinante. Cette étape est effectuée par compétition grâce à 30
une incubation sous agitation magnétique douce à 4°C pendant 1 heure en présence d'histidine 50 mM.
5.5. Dialyses
Elles permettent d'éliminer l'histidine et le nickel. L'échantillon est dialyse (membrane Spectra/Por MWCO 12-14000 daltons) à 4°C pendant 5 heures puis sur la nuit, contre 2 fois 10 litres de tampon PBS EDTA 2 mM. Un dosage de protéine est finalement effectué.
Ce procède permet d'obtenir la protéine apoAl Paris sous forme purifiée, essentiellement dépourvue de protéines contaminantes.
Exemple 6 : Propriétés physico-chimiques des apoA-l Paris et apoA-l normale recombinantes.
6.1. Mesures de turbidimétrie
6.1.1. Turbidimétrie en fonction de la température
La mesure de l'absorbance des vésicules DMPC à 325 nm en présence d'apoA-l est une mesure de la formation de complexes protéolipidiques discoïdal de petites tailles. L'analyse de variation de température entre 19-28°C nous montre une diminution de l'absorbance autour de la température de transition des phospholipides (23°C), témoin de la formation des complexes. La figure 4 (en présence ou non de GdnHDL pour éviter la formation de dimères) montre la comparaison de la formation de ces complexes avec les apoA-Inormale et apoA-l Paris recombinantes, ainsi que de l'apoA-l native. Ces trois protéines ont des comportements assez proches mais avec pour l'apoA-l Paris, on note une tendance à s'associer avec elle-même pour former des dimères.
6.1.2. Turbidimétrie en fonction du temps 31
La baisse de turbidimétrie des vésicules de DMPC après incubation des apoA-l a été suivie à température donnée en fonction du temps en présence ou non de GdnHDL. La constante du temps (1/t1/2 qui correspond à 50% de baisse de la turbidimétrie initiale) est évaluée en fonction de 1/T (température en Kelvin). La vitesse d'association est rapide pour l'apoA-l native, plus faible pour les apoA-l recombinantes, notamment l'apoA-l Paris. Par ailleurs, l'addition de GdnHDL augmente l'association protéine -lipides. Ceci de façon très importante pour les apoA-l recombinantes, notamment l'apoA-l Paris.
6.2. Spectre d'émission de fluorescence des tryptophanes
Le spectre d'émission de fluorescence des tryptophanes dans les différentes apoA-l a été mesuré aux longueurs d'ondes entre 300 et 400 nm (excitation à 295 nm). Les maximums d'émission sont indiqués à la Table 1 ci-dessous pour les apoA-l et pour les complexes apoA-l/cholestérol/POPC. Les maximums d'émission de fluorescence des tryptophanes dans les différentes apoA-l et complexes sont identiques indiquant que les tryptophanes sont dans le même environnement dans les trois protéines.
Table 1
Produit Maximum d'émission
Al Paris 335
POPC/C/AI Paris 332
Al recombinante 334
POPC/C/AI rec 332
Al plasma 336
POPC/C/AI plasma 333 32
6.3. Isolation et caractérisation des complexes apoA-l/lipides
Des complexes avec l'apoA-l et du POPC ont été préparés par la technique au cholate. Les complexes ont été séparés des apoA-l libres par chromatographie de gel filtration sur une colonne Superose 6PG et leurs compositions analysées. Les profils de gel filtrations sont indiqués sur la figure 5. Un seul pic homogène est obtenu pour les complexes faits avec l'apoA-l native tandis qu'avec les apoA-l recombinantes, des populations hétérogènes sont observées. Les apoA-l libres sont éluées dans les fractions 20 à 24. Les concentrations en phospholipides et la fluorescence des tryptophanes par fractions pour les différents complexes sont indiqués sur la figure 6.
Exemple 7 - Construction d'un vecteur adénoviral pour l'expression de l'ApoAl mutée
Un ADNc codant pour un variant selon l'invention contenant la mutation Arg -> Cys en position 151 de l'ApoAl mature est obtenu par PCR. Les amorces
Alm1 : ATC GAT ACC GCC ATG AAA GCT GCG GTG CTG (SEQ ID n° 11),
Alm2 : ATG GGC GCG CGC GCA GTC GCG CAT CTC CTC (SEQ ID n° 12),
Alm3 : GAG GAG ATG CGC GAC TGC GCG CGC GCC CAT (SEQ ID n° 13)
et Alm4 : GTC GAC GGC GCC TCA CTG GGT GTT GAG CTT (SEQ ID n° 14)
sont utilisées, les amorces Alm1 et Alm4 introduisent respectivement des sites Clal en 5' et Sali en 3' de l'ADNc tandis que les amorces Alm2 et 33
Alm3 qui sont complémentaires introduisent la mutation. Des reactions PCR avec les couples d'amorces AIM1-Alm2 et Alm3-Alm4 sont d'abord pratiqués sur un ADNc de l'ApoAl non muté. Les fragments issus de ces PCR sont ensuite réintroduits dans une troisième PCR en présence des amorces Alm1 et Alm4, ce qui génère un fragment de 822pb qui est ensuite clone dans pCRIl (Invitrogen) pour vérification de sa séquence. Le fragment Clal /Sali qui contient l'ADNc muté est ensuite introduit par les même sites de restriction dans le vecteur navette pXL-RSV-LPL qui contient l'ADNc de la LPL sous contrôle d'un promoteur LTR-RSV et avec un site de polyadénylation de l'hormone de croissance bovine, ensubstitution de l'ADNc de la LPL (FR9406759). Tout autre vecteur navette peut bien évidemment être utilisé. Le vecteur résultant est ensuite linéarisé et cotransfecté dans 293 pour l'obtention d'adénovirus recombinants. Les adénovirus ainsi obtenus peuvent être amplifiés sur plages, purifiés (notamment par chlorure de césium) puis conservés congelés, par exemple dans du glycérol. Pour leur utilisation thérapeutique, ils peuvent être associés à tout véhicule pharmaceutiquement acceptable. Il peut s'agir en particulier de solutions salines (phosphate monosodique, disodique, chlorure de sodium, potassium, calcium ou magnésium, etc, ou des mélanges de tels sels), stériles, isotoniques, ou de compositions sèches, notamment lyophilisées, qui, par addition selon le cas d'eau stérilisée ou de sérum physiologique, permettent la constitution de solutés injectables. Dans leur utilisation pour le traitement des pathologies liées aux dyslipoprotéinémies, les adénovirus recombinants défectifs selon l'invention peuvent être administrés selon différents modes, et notamment par injection intraveineuse. Préférentiellement, ils sont injectés au niveau de la veine porte. Les doses de virus utilisées pour l'injection peuvent être adaptées en fonction de différents paramètres, et notamment en fonction du mode d'administration utilisé, de la pathologie concernée ou encore de la durée du traitement recherchée. D'une manière générale, les virus recombinants selon l'invention sont formulés et administrés sous forme de doses comprises entre 104 et 1014 pfu/ml. Pour les AAV et les 34
adénovirus, des doses de 10*3 à 10*10 pfu/ml peuvent également être utilisées. Le terme pfu ("plaque forming unit") correspond au pouvoir infectieux d'une suspension de virions, et est déterminé par infection d'une culture cellulaire appropriée, et mesure, généralement après 48 heures, du nombre de plages de cellules infectées. Les techniques de détermination du titre pfu d'une solution virale sont bien documentées dans la littérature.
35
LISTE DE SEQUENCES
(1 ) INFORMATIONS GENERALES:
(i) DEPOSANT:
(A) NOM: RHONE-POULENC RORER S.A.
(B) RUE: 20, avenue Raymond ARON
(C) VILLE: ANTONY
(E) PAYS FRANCE
(F) CODE POSTAL: 92165
(i) DEPOSANT:
(A) NOM: UNIVERSITE PIERRE ET MARIE CURIE
(B) RUE:
(C) VILLE:
(E) PAYS- FRANCE
(F) CODE POSTAL:
(i) DEPOSANT:
(A) NOM: INSTITUT PASTEUR DE LILLE
(B) RUE:
(C) VILLE:
(E) PAYS FRANCE
(F) CODE POSTAL:
(ii) TITRE DE L'INVENTION: Nouveaux variants de l'apolipoprotéine A- (iii) NOMBRE DE SEQUENCES: 14
(iv) FORME DECHIFFRABLE PAR ORDINATEUR:
(A) TYPE DE SUPPORT: Tape
(B) ORDINATEUR: IBM PC compatible
(C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS (D) LOGICIEL: Patentln Release #1.0, Version #1.30 (OEB)
(2) INFORMATIONS POUR LA SEQ ID NO: 1 : (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 842 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: double
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADNc •
(iii) HYPOTHETIQUE: NON
(iv) ANTI-SENS: NON
(vi) ORIGINE: (A) ORGANISME: Homo sapiens
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT:1..842 (D) AUTRES INFORMATIONS:/product= "human apo AI cDNA"
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1: ATG AAA GCT GCG GTG CTG ACC TTG GCC GTG CTC TTC CTG ACG GGG AGC 48 Met Lys Ala Ala Val Leu Thr Leu Ala Val Leu Phe Leu Thr Gly Ser 1 5 10 15 36
CAG GCT CGG CAT TTC TGG CAG CAA GAT GAA CCC CCC CAG AGC CCC TGG 96 Gin Ala Arg His Phe Trp Gin Gin Asp Glu Pro Pro Gin Ser Pro Trp 20 25 30 GAT CGA GTG AAG GAC CTG GCC ACT GTG TAC GTG GAT GTG CTC AAA GAC 144 Asp Arg Val Lys Asp Leu Ala Thr Val Tyr Val Asp Val Leu Lys Asp 35 40 45
AGC GGC AGA GAC TAT GTG TCC CAG TTT GAA GGC TCC GCC TTG GGA AAA 192 Ser Gly Arg Asp Tyr Val Ser Gin Phe Glu Gly Ser Ala Leu Gly Lys 50 55 60
CAG CTA AAC CTA AAG CTC CTT GAC AAC TGG GAC AGC GTG ACC TCC ACC 240 Gin Leu Asn Leu Lys Leu Leu Asp Asn Trp Asp Ser Val Thr Ser Thr 65 70 75 80
TTC AGC AAG CTG CGC GAA CAG CTC GGC CCT GTG ACC CAG GAG TTC TGG 288 Phe Ser Lys Leu Arg Glu Gin Leu Gly Pro Val Thr Gin Glu Phe Trp 85 90 95
GAT AAC CTG GAA AAG GAG ACA GAG GGC CTG AGG CAG GAG ATG AGC AAG 336 Asp Asn Leu Glu Lys Glu Thr Glu Gly Leu Arg Gin Glu Met Ser Lys 100 105 110 GAT CTG GAG GAG GTG AAG GCC AAG GTG CAG CCC TAC CTG GAC GAC TTC 384 Asp Leu Glu Glu Val Lys Ala Lys Val Gin Pro Tyr Leu Asp Asp Phe 115 120 125
CAG AAG AAG TGG CAG GAG GAG ATG GAG CTC TAC CGC CAG AAG GTG GAG 432 Gin Lys Lys Trp Gin Glu Glu Met Glu Leu Tyr Arg Gin Lys Val Glu 130 135 140
CCG CTG CGC GCA GAG CTC CAA GAG GGC GCG CGC CAG AAG CTG CAC GAG 480 Pro Leu Arg Ala Glu Leu Gin Glu Gly Ala Arg Gin Lys Leu His Glu 145 150 155 160
CTG CAA GAG AAG CTG AGC CCA CTG GGC GAG GAG ATG CGC GAC CGC GCG 528 Leu Gin Glu' Lys Leu Ser Pro Leu Gly Glu Glu Met Arg Asp Arg Ala- 165 170 175
CGC GCC CAT GTG GAC GCG CTG CGC ACG CAT CTG GCC CCC TAC AGC GAC 576 Arg Ala His Val Asp Ala Leu Arg Thr His Leu Ala Pro Tyr Ser Asp 180 185 190
GAG CTG CGC CAG CGC TTG GCC GCG CGC CTT GAG GCT CTC AAG GAG AAC 624 Glu Leu Arg Gin Arg Leu Ala Ala Arg Leu Glu Ala Leu Lys Glu Asn 195 200 205
GGC GGC GCC AGA CTG GCC GAG TAC CAC GCC AAG GCC ACC GAG CAT CTG 672 Gly Gly Ala Arg Leu Ala Glu Tyr His Ala Lys Ala Thr Glu His Leu 210 215 220
AGC ACG CTC AGC GAG AAG GCC AAG CCC GCG CTC GAG GAC' CTC CGC CAA 720 Ser Thr Leu Ser Glu Lys Ala Lys Pro Ala Leu Glu Asp Leu Arg Gin 225 230 235 240
GGC CTG CTG CCC GTG CTG GAG AGC TTC AAG GTC AGC TTC CTG AGC GCT 768 Gly Leu Leu Pro Val Leu Glu Ser Phe Lys Val Ser Phe Leu Ser Ala 245 250 255
CTC GAG GAG TAC ACT AAG AAG CTC AAC ACC CAG TGA GGCGCCCGCC 814
Leu Glu Glu Tyr Thr Lys Lys Leu Asn Thr Gin * 260 265 37
GCCGCCCCCC TTCCCGGTGC TCAGAATA 842
(2) INFORMATIONS POUR LA SEQ ID NO: 2:
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 21 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: double
(D) CONFIGURATION: linéaire (il) TYPE DE MOLECULE: ADNc (m) HYPOTHETIQUE: NON (iv) ANTI-SENS: NON (vi) ORIGINE:
(A) ORGANISME: Homo sapiens
(i ) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 1..21
(D) AUTRES INFORMATIONS:/product= "variant apo AI cDNA'
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:
ATG CGC GAC TGC GCG CGC GCC 21 Met Arg Asp Cys Ala Arg Ala 1 5
(2) INFORMATIONS POUR LA SEQ ID NO: 3:
(l) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 21 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: Simple (D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc (lx) CARACTERISTIQUE:
(D) AUTRES INFORMATIONS:/product= Sq5490
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3: AAGGCACCCC ACTCAGCCAG G 21
(2) INFORMATIONS POUR LA SEQ ID NO: 4:
(l) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 24 paires de bases
(B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc (ix) CARACTERISTIQUE: (D) AUTRES INFORMATIONS:/product= Sq5491
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4: TTCAACATCA TCCCACAGGC CTCT 24 38
(2) INFORMATIONS POUR LA SEQ ID NO: 5: (1) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 20 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc (ix) CARACTERISTIQUE:
(D) AUTRES INFORMATIONS:/product= Sq5492 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:
CTGATAGGCT GGGGCGCTGG 20
(2) INFORMATIONS POUR LA SEQ ID NO: 6:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 20 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc (ix) CARACTERISTIQUE:
(D) AUTRES INFORMATIONS:/product= Sq5493
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6: CGCCTCACTG GGTGTTGAGC 20
(2) INFORMATIONS POUR LA SEQ ID NO: 7:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 21 paires de bases
(B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc (IX) CARACTERISTIQUE: (D) AUTRES INFORMATIONS:/product= S8
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7: TGGGATCGAG TGAAGGACCT G 21
(2) INFORMATIONS POUR LA SEQ ID NO: 8:
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 21 paires de bases (B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc (ix) CARACTERISTIQUE:
(D) AUTRES INFORMATIONS:/product= S4
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 39
CGCCAGAAGC TGCACCAGCT G 21
(2) INFORMATIONS POUR LA SEQ ID NO: 9:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 21 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADNc (ix) CARACTERISTIQUE:
(D) AUTRES INFORMATIONS:/product= S6
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9: GCGCTGGCGC AGCTCGTCGC T 21
(2) INFORMATIONS POUR LA SEQ ID NO: 10:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 603 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: double (D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADNc (vi) ORIGINE:
(A) ORGANISME: Homo sapiens
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 1..603 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:
CTA AAG CTC CTT GAC AAC TGG GAC AGC GTG ACC TCC ACC TTC AGC AAG 48 Leu Lys Leu Leu AΞD Asn Trp Asp Ser Val Thr Ser Thr Phe Ser Lys 1 5 10 15
CTG CGC GAA CAG CTC GGC CCT GTG ACC CAG GAG TTC TGG GAT AAC CTG 96 Leu Arg Glu Gin Leu Gly Pro Val Thr Gin Glu Phe Trp Asp Asn Leu 20 25 30 GAA AAG GAG ACA GAG GGC CTG AGG CAG GAG ATG AGC AAG GAT CTG GAG 144 Glu Lys Glu Thr Glu Gly Leu Arg Gin Glu Met Ser Lys Asp Leu Glu 35 40 45
GAG GTG AAG GCC AAG GTG CAG CCC TAC CTG GAC GAC TTC CAG AAG AAG 192 Glu Val Lys Ala Lys Val Gin Pro Tyr Leu Asp Asp Phe Gin Lys Lys 50 55 60
TGG CAG GAG GAG ATG GAG CTC TAC CGC CAG AAG GTG GAG CCG CTG CGC 240
Trp Gin Glu Glu Met Glu Leu Tyr Arg Gin Lys Val Glu Pro Leu Arg
65 70 75 80
GCA GAG CTC CAA GAG GGC GCG CGC CAG AAG CTG CAC GAG CTG CAA GAG 288 Ala Glu Leu Gin Glu Gly Ala Arg Gin Lys Leu His Glu Leu Gin Glu 85 90 95
AAG CTG AGC CCA CTG GGC GAG GAG ATG CGC GAC TGC GCG CGC GCC CAT 336 Lys Leu Ser Pro Leu Gly Glu Glu Met Arg Asp Cys Ala Arg Ala His 100 105 110 40
GTG GAC GCG CTG CGC ACG CAT CTG GCC CCC TAC AGC GAC GAG CTG CGC 384 Val Asp Ala Leu Arg Thr His Leu Ala Pro Tyr Ser Asp Glu Leu Arg 115 120 125
CAG CGC TTG GCC GCG CGC CTT GAG GCT CTC AAG GAG AAC GGC GGC GCC 432 Gin Arg Leu Ala Ala Arg Leu Glu Ala Leu Lys Glu Asn Gly Gly Ala 130 135 140 AGA CTG GCC GAG TAC CAC GCC AAG GCC ACC GAG CAT CTG AGC ACG CTC 480 Arg Leu Ala Glu Tyr His Ala Lys Ala Thr Glu His Leu Ser Thr Leu 145 150 155 160
AGC GAG AAG GCC AAG CCC GCG CTC GAG GAC CTC CGC CAA GGC CTG CTG 528 Ser Glu Lys Ala Lys Pro Ala Leu Glu Asp Leu Arg Gin Gly Leu Leu
165 170 175
CCC GTG CTG GAG AGC TTC AAG GTC AGC TTC CTG AGC GCT CTC GAG GAG 571 Pro Val Leu Glu Ser Phe Lys Val Ser Phe Leu Ser Ala Leu Glu Glu 180 185 190
TAC ACT AAG AAG CTC AAC ACC CAG TGA 603
Tyr Thr Lys Lys Leu Asn Thr Gin * 195 200
(2) INFORMATIONS POUR LA SEQ ID NO: 11
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 30 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire (il) TYPE DE MOLECULE: ADNc (ix) CARACTERISTIQUE:
(D) AUTRES INFORMATIONS:/product= alml
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11 : ATCGATACCG CCATGAAAGC TGCGGTGCTG 30
(2) INFORMATIONS POUR LA SEQ ID NO: 12:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 30 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc (ix) CARACTERISTIQUE:
(D) AUTRES INFORMATIONS:/product= alm2
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12:
ATGGGCGCGC GCGCAGTCGC GCATCTCCTC 30
(2) INFORMATIONS POUR LA SEQ ID NO: 13:
(1) CARACTERISTIQUES DE LA SEQUENCE: 41
(A) LONGUEUR: 30 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADNc (ix) CARACTERISTIQUE:
(D) AUTRES INFORMATIONS:/product= alm3 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13:
GAGGAGATGC GCGACTGCGC GCGCGCCCAT 30
(2) INFORMATIONS POUR LA SEQ ID NO: 14:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 30 paires de bases
(B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADNc (ix) CARACTERISTIQUE: (D) AUTRES INFORMATIONS:/product= alm4
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14:
GTCGACGGCG CCTCACTGGG TGTTGAGCTT 30

Claims

42REVENDICATIONS
1. Variant de l'apolipoprotéine A-I humaine comprenant une cystéine en position 151.
2. Variant selon la revendication 1 caractérisé en ce qu'il comprend la séquence peptidique SEQ ID n° 2.
3. Variant selon la revendication 1 ou 2 caractérisé en ce qu'il s'agit de l'apoA-l Paris.
4. Variant selon les revendications 1 à 3 caractérisé en ce qu'il s'agit d'une protéine recombinante.
5. Variant selon l'une des revendications 1 à 4 sous forme de dimère.
6. Variant selon la revendication 5 caractérisé en ce qu'il s'agit d'un homodimère.
7. Acide nucléique codant pour un variant d'apolipoprotéine A-I selon l'une des revendications précédentes.
8. Acide nucléique selon ia revendication 7 caractérisé en ce qu'il s'agit d'un ADNc.
9. Acide nucléique selon la revendication 7 caractérisé en ce qu'il s'agit d'un ADNg.
10. Acide nucléique selon la revendication 7 caractérisé en ce qu'il s'agit d'un ARN.
11. Acide nucléique selon l'une des revendications 7 à 9 caractérisé en ce qu'il comprend la séquence nucléique SEQ ID n° 2.
12. Vecteur comprenant un acide nucléique selon l'une des revendications 7 à 11. 43
13. Vecteur selon la revendication 11 caractérisé en ce qu'il s'agit d'un vecteur viral.
14. Vecteur selon la revendication 11 caractérisé en ce qu'il s'agit d'un vecteur chimique.
15. Adénovirus recombinant défectif comprenant, inséré dans son génome, un ADN codant pour un variant de l'apolipoprotéine A-I selon la revendication 1.
16. Cellule modifiée génétiquement par insertion d'un acide nucléique selon la revendication 7.
17. Implant comprenant des cellules de mammifères génétiquement modifiées par insertion d'un acide nucléique selon la revendication 7 et une matrice extracellulaire.
18. Composition pharmaceutique comprenant un variant de l'apolipoprotéine A-I selon l'une des revendications 1 à 6, et/ou un acide nucléique selon la revendication 7, et/ou un vecteur selon la revendication 12 et/ou une cellule génétiquement modifiée selon la revendication 16.
EP96916216A 1995-05-22 1996-05-20 Nouveaux variants de l'apolipoproteine a-i Withdrawn EP0827538A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9506061 1995-05-22
FR9506061A FR2734568B1 (fr) 1995-05-22 1995-05-22 Nouveaux variants de l'apolipoproteine
PCT/FR1996/000747 WO1996037608A1 (fr) 1995-05-22 1996-05-20 Nouveaux variants de l'apolipoproteine a-i

Publications (1)

Publication Number Publication Date
EP0827538A1 true EP0827538A1 (fr) 1998-03-11

Family

ID=9479241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96916216A Withdrawn EP0827538A1 (fr) 1995-05-22 1996-05-20 Nouveaux variants de l'apolipoproteine a-i

Country Status (16)

Country Link
EP (1) EP0827538A1 (fr)
JP (1) JPH11505712A (fr)
KR (1) KR19990021828A (fr)
AU (1) AU717202B2 (fr)
BR (1) BR9608813A (fr)
CA (1) CA2218759A1 (fr)
CZ (1) CZ291376B6 (fr)
FR (1) FR2734568B1 (fr)
HU (1) HUP9802926A3 (fr)
IL (1) IL118336A0 (fr)
MX (1) MX9708727A (fr)
NO (1) NO975367L (fr)
SK (1) SK156397A3 (fr)
TW (1) TW434260B (fr)
WO (1) WO1996037608A1 (fr)
ZA (1) ZA964097B (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037323A (en) 1997-09-29 2000-03-14 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6518412B1 (en) 1997-09-29 2003-02-11 Jean-Louis Dasseux Gene therapy approaches to supply apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6004925A (en) 1997-09-29 1999-12-21 J. L. Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6046166A (en) 1997-09-29 2000-04-04 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
MXPA02008954A (es) * 2000-03-13 2003-02-12 Amgen Inc Regulacion por apolipoproteina a-1 (apo-a-1) de se°alizacion de celula t.
AU1384302A (en) 2000-11-10 2002-05-21 Proteopharma Aps Apolipoprotein analogues
IL161110A0 (en) 2001-09-28 2004-08-31 Esperion Therapeutics Inc Prevention and treatment of restenosis by local admistration of drug
US7223726B2 (en) * 2002-01-14 2007-05-29 The Regents Of The University Of California Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same
BR0310099A (pt) 2002-05-17 2007-03-20 Esperion Therapeutics Inc método para tratar dislipidemia ou uma doença associada com a dislipidemia
TW201424770A (zh) 2003-02-14 2014-07-01 Childrens Hosp & Res Ct Oak 親脂藥物傳送媒介物及其使用方法
WO2005097206A2 (fr) 2004-04-06 2005-10-20 Cedars-Sinai Medical Center Prevention et traitement des maladies vasculaires avec des vecteurs de virus associes aux adenovirus de recombinaison codant l'apolipoproteine a-i et l'apolipoproteine a-i milano
KR100560102B1 (ko) 2004-06-25 2006-03-13 한국생명공학연구원 프로아포리포단백질 a-ⅰ 변이체와, 이를 포함하는고지혈증 또는 동맥경화증 예방 및 치료제
US20060030525A1 (en) * 2004-07-23 2006-02-09 Xencor, Inc. Apolipoprotein A-I derivatives with altered immunogenicity
KR100725642B1 (ko) * 2006-01-20 2007-06-07 충남대학교산학협력단 저밀도 지단백질에 대해 항산화성을 갖는 펩타이드
CN101489577B (zh) 2006-06-01 2013-10-16 蒙特利尔心脏病学研究所 治疗心瓣膜病的方法和化合物
US8268796B2 (en) 2008-06-27 2012-09-18 Children's Hospital & Research Center At Oakland Lipophilic nucleic acid delivery vehicle and methods of use thereof
RU2604489C2 (ru) * 2008-10-03 2016-12-10 КьюРНА,Инк.,US Лечение заболеваний, связанных с аполипопротеином-а1, путем ингибирования природного антисмыслового транскрипта аполипопротеина-а1
SI2396017T1 (sl) 2009-02-16 2015-12-31 Cerenis Therapeutics Holding Sa Mimika apolipoproteina A-1
HUE042314T2 (hu) 2011-02-07 2019-06-28 Cerenis Therapeutics Holding Sa Lipoprotein komplexek és azok gyártása és alkalmazásai

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9103701D0 (sv) * 1991-12-13 1991-12-13 Kabi Pharmacia Ab Apolipoprotein
FR2704556B1 (fr) * 1993-04-30 1995-07-13 Rhone Poulenc Rorer Sa Virus recombinants et leur utilisation en thérapie génique.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9637608A1 *

Also Published As

Publication number Publication date
JPH11505712A (ja) 1999-05-25
CZ291376B6 (cs) 2003-02-12
NO975367D0 (no) 1997-11-21
SK156397A3 (en) 1998-07-08
ZA964097B (en) 1996-12-06
AU5904896A (en) 1996-12-11
HUP9802926A3 (en) 2001-08-28
CZ367197A3 (cs) 1998-03-18
IL118336A0 (en) 1996-09-12
MX9708727A (es) 1997-12-31
NO975367L (no) 1997-11-21
FR2734568B1 (fr) 1997-06-20
TW434260B (en) 2001-05-16
CA2218759A1 (fr) 1996-11-28
BR9608813A (pt) 1999-02-17
WO1996037608A1 (fr) 1996-11-28
AU717202B2 (en) 2000-03-23
FR2734568A1 (fr) 1996-11-29
KR19990021828A (ko) 1999-03-25
HUP9802926A2 (hu) 1999-03-29

Similar Documents

Publication Publication Date Title
EP0827538A1 (fr) Nouveaux variants de l'apolipoproteine a-i
US6258596B1 (en) Variants of apolipoprotein A-I
CA2176742C (fr) Composition pour la production de produits therapeutiques in vivo
EP0701450B1 (fr) Virus recombinants et leur utilisation en therapie genique
CA2184841C (fr) Adenovirus recombinants codant pour le facteur neurotrophique des cellules gliales (gdnf)
EP0815239A1 (fr) Virus recombinants exprimant la lecithine cholesterol acyltransferase et utilisation en therapie genique
WO1993015198A1 (fr) Polypeptides derives de l'apolipoproteine aiv humaine, leur preparation et leur utilisation
WO1995025803A1 (fr) ADENOVIRUS RECOMBINANTS CODANT POUR LE FACTEUR DE CROISSANCE DES FIBROBLASTES ACIDES (aFGF)
CA2184297C (fr) Virus recombinants codant pour une activite glutamate decarboxylase (gad)
EP0763116B1 (fr) Virus recombinants, preparation et utilisation en therapie genique
EP0750676A1 (fr) Adenovirus recombinants codant pour le facteur neurotrophique derive du cerveau (bdnf)
FR2731229A1 (fr) Therapie genique de l'atherosclerose par production de hdl par les lignees monocytaires
EP0750674A1 (fr) ADENOVIRUS RECOMBINANTS POUR LE FACTEUR DE MATURATION DES CELLULES GLIALES DE TYPE BETA (GMF-$g(b))
FR2726575A1 (fr) Virus recombinants, preparation et utilisation en therapie genique
FR2717823A1 (fr) Virus recombinants, préparation et utilisation en thérapie génique.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 971201

17Q First examination report despatched

Effective date: 20020906

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031209