EP0813613A1 - Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible - Google Patents
Procede de fabrication de fils en acier - fils de forme et application a une conduite flexibleInfo
- Publication number
- EP0813613A1 EP0813613A1 EP96906800A EP96906800A EP0813613A1 EP 0813613 A1 EP0813613 A1 EP 0813613A1 EP 96906800 A EP96906800 A EP 96906800A EP 96906800 A EP96906800 A EP 96906800A EP 0813613 A1 EP0813613 A1 EP 0813613A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wire
- steel
- equal
- hrc
- shaped wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
Definitions
- the present invention relates to elongated elements of great length, such as steel wires for reinforcing flexible pipes intended for the transport of effluent under pressure.
- the invention relates to a method of manufacturing these reinforcing threads. the wires obtained by the process and the flexible pipes which include such reinforcing wires in their structure.
- the flexible tube comprises at least one of the following armor plies: a carcass for resistance to external pressure in wires or profiles laid at an angle close to 90 ° relative to the axis, a resistance ply to the internal pressure (called vault) placed with an angle greater than 55 °, the elongated elements of the carcass and the vault preferably being staplable wires. and at least one layer of tensile strength armor laid with an angle of less than 55 °.
- the vault and the tensile armor are replaced by two layers of symmetrical armor reinforced at an angle of about 55 °, or by two pairs of layers reinforced at 55 °, or by a set of at least at least two plies, the winding angle of at least one ply being less than 55 ° and the winding angle of at least one other ply being greater than 55 °.
- the steel of the wires making up the armor must be chosen in such a way that these wires, given their cross-section, provide the mechanical resistance necessary in service, at the same time as they resist corrosion, in particular in certain cases in the presence from H-, S.
- These steel wires can have profiles, that is to say various straight sections, substantially flat or flat, in U, in T, in Z, with or without hooking means on a neighboring or circular wire.
- H ⁇ S (or rather the HS ion) is an inhibitor of recombination of the hydrogen atoms produced by reduction of the protons on the surface of the steel. These hydrogen atoms enter the metal and recombine there, thus causing two types of deterioration •
- NACE standards have been planned to evaluate the aptitude of a structural steel element to be used in the presence of H ⁇ S
- the steels must undergo a test on a representative sample, under stress in HS medium with a pH of 2.8 to 3.4 (NACE Test Method TM 0177 relating to the effects of stress cracking. commonly known as "Sulfide Stress Corrosion Cracking" or SSCC), to be considered as usable in the manufacture of metallic structures which must resist the effects of stress corrosion in the presence of F S
- HIC Hydro-induced cracking effects
- the armouring wires of hoses are made with soft or semi-hard carbon-manganese steels (0.15 to 0.50% carbon) having a fer ⁇ te-per te structure, to which heat treatment is applied after cold forming of the wire rod suitable annealing to bring the hardness to the accepted value, if necessary.
- the NACE 0175 standard defines that such carbon-manganese steels are compatible with an H-, S medium if they have a hardness less than or equal to 22 HRC II has thus been verified that armouring wires as described above above, made of carbon-manganese steel and having a fer ⁇ te-perhte structure, can be manufactured by cold forming followed by annealing so as to satisfy the traditional NACE criteria.
- the steels and the production methods used to make the armouring wires for the hoses must be such that the forming wire can be produced in very large continuous lengths, of the order of several hundred meters or several kilometers.
- the wire thus manufactured is wound on spools for its subsequent use to produce the armor plies of the hoses.
- the specified properties of the steel in particular the resistance to 1 ⁇ 9 S, a heat treatment is to be expected after welding. But it is important, in order not to excessively overload the manufacturing costs, that this heat treatment after welding makes it possible to achieve the goal set in a sufficiently short time, a few minutes if possible. preferably less than 30 minutes.
- the object of the present invention is to describe a process for obtaining an elongated element of great length intended for the manufacture of flexible tube, the elongated element having optimized mechanical characteristics as well as, in an application according to the invention , good resistance to H ⁇ S.
- the present invention relates to a process for manufacturing a steel form wire, this wire being very long and suitable for being used as the armor wire of a hose.
- the method comprises the following steps:
- a long form wire is manufactured by rolling or drawing from a steel comprising the following elements:
- a heat treatment comprising at least one operation of quenching the shaped wire under determined conditions to obtain an HRC hardness greater than or equal to 32 and preferably greater than or equal to 35, and which can advantageously reach or exceed 50, - the structure of the steel of the shaped wire thus obtained being predominantly martensitic-bainitic.
- the quantity of ferrite will preferably be small, in particular less than or equal to 10%, and advantageously less than or equal to 1%.
- the carbon content C can be greater than or equal to 0.08%, preferably greater than or equal to 0.12% and the steel can comprise at most 0.4 of Si.
- the forming wire can be manufactured by cold forming, in particular by rolling or drawing from a machine wire.
- the wire rod could be hot rolled with controlled cooling, for example of the STELMOR type, so as to lead to values of Rm lower than 850 MPa.
- Rm the tensile strength Rm of the wire will preferably also be less than 850 MPa, either after rolling or after a softening annealing in order to facilitate the operations of handling the elongated element, before or during the operations. quenching.
- the process thus normally includes a preliminary step of hot forming, either of a machine wire subsequently transformed into a forming wire by cold forming, or directly of the forming wire.
- the wire thus formed when hot has a predominantly ferritic-pearlitic structure, but which may include hard zones, such as martensite.
- the steel before any subsequent cold forming and / or quenching operation, the steel must have a rupture limit Rm of less than 850 MPa, this property being able to be obtained either directly after hot forming or by treatment. annealing-softening.
- the quenching operation can be carried out continuously in the process.
- the process may include, in addition to said quenching, an expansion heat treatment. In this case, the HRC hardness limitation which must be greater than or equal to 32, and preferably greater than or equal to 35, must be observed after the stress relief treatment.
- the relaxation treatment can be carried out in a bundle in an oven.
- the quenching and the said stress relief treatment can be carried out on the scroll, preferably in line, which allows the manufacture of very long wires necessary for the production of the armor plies of the hoses.
- the carbon content C can be less than or equal to 0.45%, preferably less than or equal to 35%, and 1 steel comprises at least one of the following two alloying elements, in small quantity
- the steel contains a little dispersoid, such as vanadium, titanium or niobium. in particular for low carbon steels, the carbon content can be equal to or greater than 0.05%
- the vanadium content can be limited to a low value so as to avoid too long an annealing time after welding , preferably the content of v nadium will be less than or equal to 0.10%
- the carbon content of 1 steel can be greater than or equal to 0.4%, while remaining less than 0.8%, and correspond to a standard carbon-manganese steel, hard or mid -hard, classic in tréfile ⁇ e or cable ⁇ e without addition of alloying element such as Cr or Mo
- the steel may possibly contain a small amount of dispersoid, such as one can commonly find in commercial steels
- Such steels can be included in the steel range FM40 to FM80. according to AFNOR standard
- the quenching heat treatment may include passing the steel grade of the wire through an austenitization oven at a temperature above the point AC3, then in a zone of quenching in a drasticite fluid suitable for both the steel grade and the size of the wires, the temperature and the residence time being adapted according to the grade to obtain a grain size between the indices 5 and 12, and advantageously between the indices 8 and 11, according to standard NF 04102.
- the structure obtained after quenching can be predominantly martensitic with a percentage between 0 and 50 % of bainite lower or predominantly of bainite lower with a percentage between 0 and 50% of martensite.
- the bainite is in the lower bainite state and not the upper bainite.
- the structure may contain only a small amount of ferrite.
- the production process can end with the quenching operation, preferably followed by an expansion treatment.
- the temperatures of the stress relief treatment can be:
- the speed being adapted to the section of the wire so as to obtain the hardness according to the present invention, greater than or equal to 32 HRC.
- the wire thus obtained may not be able to resist H-, S under certain operating conditions, but it can be used very advantageously as armouring wire for flexible conduits thanks to its excellent optimized mechanical properties. , in particular by the combination of a high mechanical strength and a ductility higher than that which can be obtained with known methods.
- the rupture limit Rm can reach 1000 to 1600 MPa, equal to or greater than that of the most resistant armor wires currently known, and the elongation at break can be greater than 5%, possibly greater than 10% and possibly exceeding 15% in some cases. Whereas for known steel wires having a level of resistance comparable to the work hardened state, these have an elongation at break not exceeding 5%.
- the method may include, after the quenching heat treatment, optionally supplemented by a treatment of expansion, a final heat treatment of tempering under determined conditions to obtain a hardness greater than or equal to 20 HRC and less than or equal to 35 HRC
- the conditions of the final tempering heat treatment can be adapted so as to obtain a hardness less than or equal to 28 HRC, compatible with the operating conditions which may provide for an atmosphere at a pH close to 3
- a steel according to the present invention does not exhibit any blistering or cracking in the HIC tests, and furthermore does not exhibit cracking when '' it is subjected to tests according to standard NACE 0177 (SSCC) with a tensile stress at least equal to 60% of the elastic limit and which can reach approximately 90% of the latter.
- SSCC standard NACE 0177
- the final income can be made at the parade, online or separate.
- the final income can be made in a bundle in an oven
- the tempering temperature can be at most equal to a temperature about 10 ° C to 30 ° C lower than the ACl temperature at the start of austenitization of the steel, in order to avoid excessive coalescence of carbide which can lead a decrease in characteristics.
- the wire is wound on a spool so that it can be subsequently mounted on a spiral or armeuse for the manufacture of armor of the flexible pipe.
- the steel grade can be optimized as a function of the process for forming the form wire from the wire rod - Wire forming by cold processing
- this method of implementing the invention makes it possible to obtain interesting results by choosing a low-alloy steel, or carbon steel
- the content of alloying elements, while being low, must be sufficient to obtain after quenching a predominantly martensitic or bainitic structure with little ferrite (it is thus possible, in the most favorable cases, to obtain a structure containing nearly 100 % martensite and commonly, at least 90% martensite and bainite).
- the content of alloying elements must be limited to relatively low values.
- the invention thus makes it possible to produce a shaped wire having, after quenching, a predominantly martensitic or bainitic structure in a relatively homogeneous manner throughout the thickness of the wire. despite the increased thickness of the wire.
- the cold forming comprising at least two successive stages of cold transformation, an intermediate heat treatment operation is carried out between the first and the last cold transformation step
- the intermediate operation heat treatment can be performed between a preliminary drawing operation and the start of rolling, or between two successive rolling passes.
- Such an intermediate intermediate heat treatment can be carried out in various known ways in metallurgy, so as to lower the mechanical strength, preferably below 850 MPa, and to regain the ductility allowing cold transformation
- the invention also relates to a wire of constant cross-sectional shape and of great length, suitable for use as armor wire of a flexible pipe, said wire being made from a steel comprising the following elements
- the carbon content C can be greater than or equal to 0.08%, preferably greater than or equal to 0.12%, and the steel can comprise at most 0.4 of Si. steel of the martensitic bainitic type tempered, the tempering being able to be more or less pronounced, in particular such as a stress relieving, so that the wire obtained has the ductility necessary for its later use as armor wire, or as a quality income making the wire suitable for use in the presence of H2S.
- the bainitic martensitic structure is predominantly martensitic with a percentage of between 0 and 50% of lower bainite or predominantly of lower bainite with a percentage of between 0 and 50% of martensite.
- the structure may contain only a small amount of ferrite.
- the wire can have a hardness greater than 20 HRC.
- the size of the austenitic grain is between the indices 5 and 12, and advantageously between the indices 8 and 11 1. according to standard NF 04102.
- the shaping wire can have a section having at least one of the following general shapes: U, T, Z, rectangular or round.
- the section of the form wire can have a width L and a thickness e, and have the following proportions: L / e greater than 1 and less than 7.
- the thickness can vary between 1 mm and 20 mm, being able to reach 30 mm.
- the profile of the shaped wire may include means for hooking with an adjacent wire.
- the carbon content C can be less than or equal to 0.45%
- the steel comprises at least one of the following two alloying elements, in small quantity:
- the carbon content of the steel can be greater than or equal to 0.4%, while remaining less than 0.8%. and correspond to a standard carbon-manganese hard or semi-hard steel. conventional in wire drawing or cable making, without the addition of an alloying element such as Cr or Mo. with possibly a small amount of dispersoid.
- Such steels can be included in the range of steel FM40 to FM80, according to the AFNOR standard.
- the shaped wire according to the invention can have an HRC hardness greater than or equal to 32. preferably greater than or equal to 35.
- the wire thus obtained may not be able to withstand 1 ⁇ -, S under certain operating conditions, but it can be used very advantageously as armouring wire for flexible pipes thanks to its excellent optimized mechanical properties, in particular by the combination of high mechanical strength and superior ductility to that which can be obtained with known methods.
- the breaking limit Rm can reach 1000 to 1600 MPa., Preferably greater than or equal to 1200 MPa.
- Such a wire can advantageously be used to make the armor of hoses intended for the transport of weakly corrosive crude oil ("sweet crude”). degassed oil (“dead oil”) or water.
- the process for producing such a wire can end in a quenching operation, preferably followed by an expansion treatment.
- the shaped wire according to the invention can have an HRC hardness greater than or equal to 20, preferably less than or equal to 35.
- the wire thus obtained can have properties of resistance to H ? S under the operating conditions described above, in particular following HIC tests in very acidic medium (pH close to 2.8 or 3).
- the mechanical resistance Rm can be of the order of 700 to 900 MPa under a pH close to 3 and can reach at least 1100 MPa with a higher pH.
- the stress applied in the SSCC tests according to NACE. with a pH close to 2.8. can be at least 400 MPa and can reach 600 MPa. In the case where the SSCC tests are carried out with a pH higher than 3, the admissible stresses can be higher, being able to reach approximately 90% of the elastic limit.
- the method according to the invention makes it possible to produce steel wires of martensite type.
- tempered bathite the structure of which has extremely fine carbide nodules in a state of very great dispersion in a ferrite matrix produced by tempering of a martensite-bainite structure. It is interesting to compare this steel with other steels already proposed or used to make armor wires intended for the same use, such as steels obtained by spheroidization treatment from a hardened ferrite-pearlite structure, these steels also comprising carbide elements in a ferritic matrix.
- the spheroidized carbide elements of these steels are considerably less fine and less dispersed than in the case of the steel according to the invention, which makes it possible to clearly identify the difference between the two types of material.
- the superior properties of shaped wire according to the invention in terms of mechanical resistance and compatibility with H2S, compared to the wires of the prior art, in particular spheroidized steel. may be related to having a much finer and more dispersed nodular structure.
- the invention has in particular the advantage that from the same batches of wire rod and by carrying out the same quenching operations, possibly relaxation, it is possible to produce, depending on the needs, either very steel wires mechanically resistant but not sometimes having the required properties of resistance to H 9 S, ie H ⁇ S resistant threads even under the most severe conditions.
- the production range ends with the quenching operation, preferably followed by expansion.
- the manufacturing range is continued by an additional stage of final income.
- the invention can be applied to a flexible tube for the transport of an effluent comprising H S, the tube being able to comprise at least one layer of reinforcements of reinforcement at the pressure and / or at the traction comprising son of form according to the invention.
- 15 mm diameter circular section wires were produced from a chromium-molybdenum type steel conforming to grade 30CD4 of the AFNOR standard (equivalent to the ASTM 4130 standard in correspondence with the number UNS G41300).
- the steel used has the following composition:
- the quenching operation was carried out at the parade at a speed of 1.8 m / minute with high frequency induction heating at 980 ° C-1000 ° C, then quenching in oil.
- the stress relief treatment was carried out in the oven for 2 hours at 180 ° C.
- the grain size corresponds to an index 8 of standard NF 04.102.
- the welds performed by induction or resistance heating, with axial compression, supplemented by tempering treatments of less than 5 minutes satisfy the SSC NACE TM 0177 test under uni-axial tension of 400 MPa.
- the post-welding tempering temperatures should be higher than that of the metal tempering treatment and lower than the start austenitization temperature ACl. preferably 20 to 30 ° C lower than AC l.
- a wire was made having a T section (height 14 mm, width 25 mm). After a process of quenching at the runway and a treatment of relaxation, the wire has a hardness of 40 HRC.
- Shaped wires have been produced from a chromium-molybdenum type steel conforming to grade 12CD4 defined by the AFNOR standard comprising:
- the wires after tempering treatment adjusted so as to obtain 24 HRC, passed the tests according to the NACE TM 0177 procedure (Method A) under 500 MPa of stress.
- the tempering was carried out at the speed of 15 m / minute by medium frequency induction heating at different powers leading to the following mechanical characteristics as a function of the temperature measured at the output of the heating coil: T coil output (° C) 680,700 710
- the wire obtained has a hardness of 27.5 HRC.
- Tempering in the oven for about 4 hours was carried out at temperatures of 510 ° C, 525 ° C and 540 ° C to obtain the hardnesses of 26, 24 and 22 HRC respectively.
- SSCC type stress corrosion tests according to NACE TM 0177 standard could reach a duration of 720 hours without the appearance of rupture or cracking. In one case, the stress reached 90% of the elastic limit, i.e.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatment Of Steel (AREA)
- Wire Processing (AREA)
- Ropes Or Cables (AREA)
- Heat Treatment Of Articles (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Fencing (AREA)
- Electric Cable Installation (AREA)
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9503093 | 1995-03-10 | ||
FR9503093A FR2731371B1 (fr) | 1995-03-10 | 1995-03-10 | Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible |
PCT/FR1996/000363 WO1996028575A1 (fr) | 1995-03-10 | 1996-03-08 | Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0813613A1 true EP0813613A1 (fr) | 1997-12-29 |
EP0813613B1 EP0813613B1 (fr) | 1999-09-15 |
Family
ID=9477109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96906800A Expired - Lifetime EP0813613B1 (fr) | 1995-03-10 | 1996-03-08 | Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible |
Country Status (11)
Country | Link |
---|---|
US (1) | US5922149A (fr) |
EP (1) | EP0813613B1 (fr) |
JP (1) | JP4327247B2 (fr) |
AT (1) | ATE184657T1 (fr) |
AU (1) | AU715625B2 (fr) |
BR (1) | BR9607231A (fr) |
DE (1) | DE69604279D1 (fr) |
DK (1) | DK0813613T3 (fr) |
FR (1) | FR2731371B1 (fr) |
NO (1) | NO321040B1 (fr) |
WO (1) | WO1996028575A1 (fr) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2753206B1 (fr) * | 1996-09-09 | 1998-11-06 | Inst Francais Du Petrole | Procede de fabrication de fils en acier auto-trempant, fils de forme et application a une conduite flexible |
FR2775050B1 (fr) * | 1998-02-18 | 2000-03-10 | Inst Francais Du Petrole | Conduite flexible pour une utilisation statique en ambiance corrosive |
FR2802607B1 (fr) * | 1999-12-15 | 2002-02-01 | Inst Francais Du Petrole | Conduite flexible comportant des armures en acier bas carbone |
JP3585034B2 (ja) | 2000-12-14 | 2004-11-04 | 日産自動車株式会社 | 高強度レース及びその製造方法 |
FR2866352B3 (fr) * | 2004-02-12 | 2005-12-16 | Trefileurope | Fil de forme en acier trempe-revenu pour conduites en mer |
FR2945099B1 (fr) | 2009-05-04 | 2011-06-03 | Technip France | Procede de fabrication d'une conduite tubulaire flexible de grande longueur |
EP2494247B1 (fr) | 2009-10-28 | 2016-12-07 | National Oilwell Varco Denmark I/S | Tuyau flexible et procédé de production d'un tuyau flexible |
MY159722A (en) | 2009-12-15 | 2017-01-31 | Nat Oilwell Varco Denmark Is | An unbonded, flexible pipe |
CA2785256C (fr) | 2009-12-28 | 2018-02-27 | National Oilwell Varco Denmark I/S | Tuyau flexible a structure non liee |
EP2569566A4 (fr) | 2010-05-12 | 2017-06-14 | National Oilwell Varco Denmark I/S | Tuyau flexible à structure non liée |
FR2960556B3 (fr) | 2010-05-31 | 2012-05-11 | Arcelormittal Wire France | Fil de forme en acier a hautes caracteristiques mecaniques resistant a la fragilisation par l'hydrogene |
WO2012006998A1 (fr) | 2010-07-14 | 2012-01-19 | Nkt Flexibles I/S | Tuyau souple sans liaison |
EP2665959B1 (fr) | 2011-01-20 | 2017-12-27 | National Oilwell Varco Denmark I/S | Tuyau armé flexible |
BR112013018149A2 (pt) | 2011-01-20 | 2020-07-28 | National Oilwell Varco Denmark I / S | tubo flexível |
US10001228B2 (en) | 2011-06-17 | 2018-06-19 | National Oilwell Varco Denmark I/S | Unbonded flexible pipe |
CA2866401A1 (fr) | 2012-03-13 | 2013-09-19 | Kristian Glejbol | Element de renforcement pour tuyau flexible non lie |
EP2825803B1 (fr) | 2012-03-13 | 2020-05-27 | National Oilwell Varco Denmark I/S | Tuyau flexible non encollé, doté d'une couche contenant des fibres optiques |
WO2013152770A1 (fr) | 2012-04-12 | 2013-10-17 | National Oilwell Varco Denmark I/S | Procédé de fabrication d'un tuyau flexible non collé et tuyau flexible non collé |
ES2891948T3 (es) * | 2012-05-25 | 2022-02-01 | Gary M Cola Jr | Microtratamiento y microestructura de aleación basada en hierro que contiene carburo |
DK177627B1 (en) | 2012-09-03 | 2013-12-16 | Nat Oilwell Varco Denmark Is | An unbonded flexible pipe |
WO2015097349A1 (fr) * | 2013-12-24 | 2015-07-02 | Arcelormittal Wire France | Fil laminé à froid en acier à haute résistance à la fatigue et à la fragilisation par l'hydrogène et renfort de conduites flexibles l'incorporant |
JP2015212412A (ja) * | 2014-04-18 | 2015-11-26 | 株式会社神戸製鋼所 | 熱間圧延線材 |
WO2016120366A1 (fr) | 2015-01-30 | 2016-08-04 | Nv Bekaert Sa | Fil d'acier à haute résistance à la traction |
EP3050978B1 (fr) | 2015-01-30 | 2020-09-02 | Technip France | Structure tubulaire flexible avec élément d'acier |
WO2017133789A1 (fr) | 2016-02-05 | 2017-08-10 | Nv Bekaert Sa | Traitement thermomécanique |
SG11201806071SA (en) * | 2016-03-07 | 2018-08-30 | Nippon Steel & Sumitomo Metal Corp | High-strength flat steel wire excellent in hydrogen induced cracking resistance |
FR3094652B1 (fr) * | 2019-04-08 | 2021-03-05 | Technip France | Procédé de fabrication d’un fil d’armure d’une ligne flexible de transport de fluide et fil d’armure et ligne flexible issus d’un tel procédé |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5921370B2 (ja) * | 1976-11-02 | 1984-05-19 | 新日本製鐵株式会社 | 耐応力腐食割れ性が優れた高延性高張力線材の製造法 |
CA1332210C (fr) * | 1985-08-29 | 1994-10-04 | Masaaki Katsumata | Tiges en acier a faible teneur en carbone, a grande resistance, et methode de fabrication |
JPH01279710A (ja) * | 1988-04-30 | 1989-11-10 | Nippon Steel Corp | 耐水素誘起割れ特性に優れた高強度鋼線の製造法 |
JPH03274227A (ja) * | 1990-03-24 | 1991-12-05 | Nippon Steel Corp | サワー環境用高強度鋼線の製造方法 |
JPH03281725A (ja) * | 1990-03-30 | 1991-12-12 | Nippon Steel Corp | サワー環境用高強度鋼線の製造方法 |
JPH03281724A (ja) * | 1990-03-30 | 1991-12-12 | Nippon Steel Corp | サワー環境用高強度鋼線の製造方法 |
FR2661194B1 (fr) * | 1990-04-20 | 1993-08-13 | Coflexip | Procede d'elaboration de fils d'acier destines a la fabrication de conduites flexibles, fils d'acier obtenus par ce procede et conduites flexibles renforcees par de tels fils. |
FR2672827A1 (fr) * | 1991-02-14 | 1992-08-21 | Michelin & Cie | Fil metallique comportant un substrat en acier ayant une structure de type martensite revenue ecrouie, et un revetement; procede pour obtenir ce fil. |
-
1995
- 1995-03-10 FR FR9503093A patent/FR2731371B1/fr not_active Expired - Fee Related
-
1996
- 1996-03-08 DK DK96906800T patent/DK0813613T3/da active
- 1996-03-08 US US08/913,222 patent/US5922149A/en not_active Expired - Lifetime
- 1996-03-08 BR BR9607231A patent/BR9607231A/pt not_active IP Right Cessation
- 1996-03-08 JP JP52732496A patent/JP4327247B2/ja not_active Expired - Fee Related
- 1996-03-08 WO PCT/FR1996/000363 patent/WO1996028575A1/fr active IP Right Grant
- 1996-03-08 DE DE69604279T patent/DE69604279D1/de not_active Expired - Lifetime
- 1996-03-08 AT AT96906800T patent/ATE184657T1/de not_active IP Right Cessation
- 1996-03-08 EP EP96906800A patent/EP0813613B1/fr not_active Expired - Lifetime
- 1996-03-08 AU AU50075/96A patent/AU715625B2/en not_active Expired
-
1997
- 1997-09-09 NO NO19974167A patent/NO321040B1/no not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO9628575A1 * |
Also Published As
Publication number | Publication date |
---|---|
DK0813613T3 (da) | 1999-12-20 |
FR2731371A1 (fr) | 1996-09-13 |
NO974167L (no) | 1997-09-09 |
US5922149A (en) | 1999-07-13 |
ATE184657T1 (de) | 1999-10-15 |
WO1996028575A1 (fr) | 1996-09-19 |
BR9607231A (pt) | 1997-11-11 |
JPH11501986A (ja) | 1999-02-16 |
AU715625B2 (en) | 2000-02-03 |
NO321040B1 (no) | 2006-03-06 |
FR2731371B1 (fr) | 1997-04-30 |
DE69604279D1 (de) | 1999-10-21 |
EP0813613B1 (fr) | 1999-09-15 |
AU5007596A (en) | 1996-10-02 |
JP4327247B2 (ja) | 2009-09-09 |
NO974167D0 (no) | 1997-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0813613B1 (fr) | Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible | |
EP0925380B1 (fr) | Procede de fabrication de fils en acier auto-trempant, fils de forme et application a une conduite flexible | |
EP0478771B1 (fr) | Procede d'elaboration de fils d'acier destines a la fabrication de conduites flexibles, fils d'acier obtenus par ce procede et conduites flexibles renforcees par de tels fils | |
EP2576849B1 (fr) | Procédé de fabrication d'un fil de forme en acier à hautes caractéristiques mécaniques résistant à la fragilisation par l'hydrogène | |
CA2320866C (fr) | Conduite flexible pour une utilisation statique en ambiance corrosive | |
WO2010128238A1 (fr) | Procede de fabrication d'une conduite tubulaire flexible de grande longueur | |
EP3087207B1 (fr) | Fil laminé à froid en acier à haute résistance à la fatigue et à la fragilisation par l'hydrogène et renfort de conduites flexibles l'incorporant | |
EP1778886A1 (fr) | Objet comprenant une partie en acier de construction metallique, cette partie comportant une zone soudee a l'aide d'un faisceau a haute densite d'energie et presentant une excellente tenacite dans la zone fondue ; methode de fabrication de cet objet | |
EP0571521B1 (fr) | Fil metallique comportant un substrat en acier ayant une structure de type martensite revenue ecrouie, et un revetement | |
CA2214012C (fr) | Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible | |
EP1483068B1 (fr) | Procede de fabrication de fil d armure en acier plaque pour conduite tubulaire flexible de transport d hydrocarbures, et conduite ainsi armee | |
WO2001044531A1 (fr) | Conduite flexible comportant des armures en acier bas carbone | |
WO1998057085A1 (fr) | Procede de fabrication d'une conduite flexible | |
FR2866352A3 (fr) | Fil de forme en acier trempe-revenu pour conduites en mer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19971010 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19971215 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990915 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990915 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19990915 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990915 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990915 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990915 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990915 |
|
REF | Corresponds to: |
Ref document number: 184657 Country of ref document: AT Date of ref document: 19991015 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990916 |
|
REF | Corresponds to: |
Ref document number: 69604279 Country of ref document: DE Date of ref document: 19991021 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19991215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19991216 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000621 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
BERE | Be: lapsed |
Owner name: COFLEXIP Effective date: 20000331 Owner name: INSTITUT FRANCAIS DU PETROLE Effective date: 20000331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021129 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: RN Ref country code: FR Ref legal event code: FC |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20070426 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150316 Year of fee payment: 20 Ref country code: FR Payment date: 20150122 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20160307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20160307 |