EP0812383B1 - Moteur a combustion interne de type moteur a pistons alternatifs a rapport volumetrique variable - Google Patents

Moteur a combustion interne de type moteur a pistons alternatifs a rapport volumetrique variable Download PDF

Info

Publication number
EP0812383B1
EP0812383B1 EP96902207A EP96902207A EP0812383B1 EP 0812383 B1 EP0812383 B1 EP 0812383B1 EP 96902207 A EP96902207 A EP 96902207A EP 96902207 A EP96902207 A EP 96902207A EP 0812383 B1 EP0812383 B1 EP 0812383B1
Authority
EP
European Patent Office
Prior art keywords
gear
engine
internal combustion
crankshaft
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96902207A
Other languages
German (de)
English (en)
Other versions
EP0812383A1 (fr
Inventor
Siegfried Franz Leithinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TK Design AG
Original Assignee
TK Design AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TK Design AG filed Critical TK Design AG
Publication of EP0812383A1 publication Critical patent/EP0812383A1/fr
Application granted granted Critical
Publication of EP0812383B1 publication Critical patent/EP0812383B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/048Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable crank stroke length

Definitions

  • the present invention relates to an internal combustion engine of the reciprocating engine type with a variable compression ratio according to the preamble of the claim.
  • the combustion engines in use today are very predominant of the type of the reciprocating engine. With the compression ratio on such Reciprocating engine is the ratio between the remaining combustion chamber, when the piston is at top dead center and the total cylinder volume, when the piston is at bottom dead center.
  • the combustion processes are in such reciprocating piston engines or more generally in internal combustion engines very complex and are influenced by several parameters. This applies to gasoline engines same as for diesel engines or those that use other fuels operate.
  • This is how the intimacy of the mixing of the Fuel-air mixture matters as well as the exact time and the way its ignition in the course of the piston movement.
  • the pressure curve during the Combustion plays an important role, as does its timing in and of itself. If an engine is running under high load, the combustion pressures are higher than at idle. If the engine is running quickly, there is considerably less time available for combustion than with a low number of tours.
  • the improved fuels especially the improved gasoline types and the better ones Materials enable higher combustion temperatures and pressures and therefore resulted compared to a trend towards a higher compression ratio in modern engines earlier. Compression also plays a role in the combustion of the fuel mixture and thus play a decisive role in the efficiency of an engine.
  • the maximum compression finds its limit on knock resistance by the fuel mixture if the compression is too high, it ignites itself and thus uncontrolled burns insert at the wrong time. The engine knocks and is damaged.
  • the present invention is based on the knowledge that when optimizing the combustion processes the compression is optimized to a fixed ratio that however, their variable adaptation to the operating states is not taken into account when optimizing is left.
  • the selected fixed compression ratio forms in today's engine technology always a finely chosen compromise across the range of operating conditions of the motor. The higher the compression, the higher the power density or the liter output of the engine, but the more problematic the knock resistance and the stress of the parts and therefore the lifespan of the engine.
  • variable compression offers considerable fuel savings potential.
  • the design effort for variable compression has so far been too great for implementation in series production.
  • a disadvantage of the above-mentioned solution with a secondary chamber is also that the combustion chamber is no longer compact when the compression is low, which has a disadvantageous effect on the combustion processes and the exhaust gas behavior.
  • Another proposal for the implementation of a variable compression comes from Louis Damblanc from Paris in accordance with his German Reich Patent No. 488'059 dated December 5, 1929.
  • An eccentric connecting rod bearing bush placed on the crank pin can be adjusted from the crankshaft by means of a differential gear.
  • This differential gear includes a shaft that runs concentrically to the crankshaft inside.
  • An internally toothed wheel is driven by the crankshaft and drives three internal satellite gearwheels, which are distributed around its inner circumference and are mounted on bolts on a disk which acts as a toothed sector and are approximately three times smaller in diameter, all of which mesh with a central gearwheel, which is located on said one , through the inside of the crankshaft shaft.
  • the tooth sector can be adjusted by means of a further gear wheel acting on its circumference.
  • This differential gear is particularly expensive because of the shaft required inside the crankshaft. In any case, this construction for adjusting the compression ratio has not been widely used.
  • the object of the invention is therefore to create an internal combustion engine which has a variable compression ratio by means of an eccentric crank pin and which, therefore, adapted to the current operating states of the engine, can be optimized over its range and thus to an overall increase in engine efficiency and contributes to its smoothness.
  • an internal combustion engine of the reciprocating piston type in which the compression ratio is variable in that the piston stroke can be adjusted because the connecting rod is supported on an eccentric crank pin on the crankshaft side, the eccentric crank pin being adjustable about its axis of rotation while the engine is running by control means, and which is characterized in that the eccentric crank pin is formed by at least two one-piece shells, which are arranged around the crank arm shaft of the crank shaft, and these shells each have a gear segment, which segments also the crank arm shaft Enclose crankshaft, and that the gearwheel formed by these segments runs as an outer wheel in a ring gear of larger diameter, which is mounted concentrically around the crankshaft axis of the crankshaft and is adjustable in its rotational position when the engine is running, in such a way that the outer wheel when rolling in the H ohlrad, if it is in a certain stationary setting position, executes exactly one turn during handling, such that the movement of the effective center of the lower connecting rod bearing always describes an ellipse depending on the setting
  • FIG. 1 the internal combustion engine is shown using a schematic diagram, here on Example of a single cylinder.
  • the whole principle can be easily applied to multi-cylinder Realize engines, regardless of whether the cylinders are in line, V-shaped or in boxer position are arranged to each other.
  • Shown here is a cylinder 10 with an inlet valve 11 and an outlet valve 12 on the cylinder head, and the piston 7 mounted in the cylinder 10, which over the Connecting rod 9 is connected to crankshaft 14.
  • At 8 is the fixed axis of the crankshaft Designated 14.
  • the Crank 25 itself now has a very special crank pin 1 in a conventional one Engine runs the crank pin at right angles to the crank arm rotation level and describes a concentric circle with the engine running. So he has a defined one and therefore always constant distance from the crankshaft axis 8, that is to say Axis 8, which drives the crank.
  • the crank pin according to the Invention in relation to the conventional crank pin axis 2, that is, in relation to the conventional axis 2 of the crank pin, an eccentric 1.
  • This eccentric 1 can be turn the conventional crank pin axis 2.
  • the end of the connecting rod on the crankshaft side 9 encloses this eccentric 1 with the connecting rod bearing, so that the eccentric 1 is rotatable in the connecting rod bearing.
  • this eccentric 1 is constructive shown example solved so that the eccentric crank pin 1 of two shells 26,27 is formed which arranged around the crank arm shaft 15 of the crankshaft 14 enclose it and thus form an eccentric crank pin 1.
  • These shells 26, 27 are each connected to a gear segment 28, 29, which segments 28, 29 also the crank arm shaft 15 enclose the crankshaft 14.
  • the one formed by these segments 28, 29 Gear 3 runs as an external gear 3 in a ring gear 4 of larger diameter, which is mounted concentrically about the crank axis 8 on the crankshaft 14 and rotates freely is adjustable in its rotational position. If the ring gear 4 is stationary, the outer gear leads 3 exactly one turn when rolling inside the ring gear during handling to yourself out.
  • this workpiece which forms the outer wheel 3 and the eccentric 1, is in a) in an elevation and in b) in a plan view of the lower part 27, 29 of the workpiece shown.
  • the gear 3 is round, but cut in half in two segments 28, 29, and these have on their front side the half-shells 26, 27 which are put together form an eccentric 1 with respect to the axis of rotation of the gear 3.
  • These two parts of the Workpiece are around the crank shaft axis, i.e. around the conventional crank pin assembled a crankshaft and the connecting rod is around the now formed Eccentric 1 attached.
  • the lower connecting rod bearing holds the two parts together precisely.
  • Figure 2b shows the lower part of the workpiece in a plan view, the plane "Cut" area is hatched.
  • the workpiece is made of a suitable hardened steel alloy manufactured as it is common for stressed gears. Its inside shows a white metal coating and is hardened and ground to prevent abrasion avoid. This inside runs on the crank pin 15, which consists of a cast steel.
  • the outside of the workpiece that is to say the outside of the shells 26, 27, is hard chrome plated. These outer sides of the shells 26, 27 are enclosed by the connecting rod bearing.
  • the connecting rods are mostly made of aluminum, and in this case is a hard chrome plating the outside of the shells 26, 27 is sufficient to avoid abrasion.
  • the two-part workpiece is still shown in a perspective view. You can see the two shells 26, 27 and the two gear segments 28, 29. Composed these segments form a circular gear 3 and the shells 26, 27 one Eccentric 1 with respect to the gear axis. So if you turn this gear 3, it turns the eccentric 1 also around the gear axis.
  • the lower connecting rod bearing which encloses the eccentric 1 and moves the connecting rod up and down, depending on Position of the eccentric 1.
  • the location on the eccentric 1, which with respect to its axis of rotation has the largest radius, is designated by the number 16 and forms a to some extent Nose.
  • the workpiece could also consist of more parts, For example, be made from three segments, each extending through 120 °.
  • this nose 16 formed by the eccentric 1 is directed upwards. That's why the piston 7 assumes the highest possible position in this position and accordingly the volume of the combustion chamber is small. The compression is in this position Eccentric 1 the highest.
  • the gear 3 is designed as an outer gear, so it has a toothed Scope and runs with this in the ring gear 4.
  • This ring gear 4 consists of a Disc 17, which is rotatably mounted about the crankshaft 14. On the outside of the pane there is a projection 18, on the inside of which there is a toothing 19.
  • the gear 3 forms the outer wheel to this toothing 19 and thus runs along the inner edge this overhang 18 on the toothing 19, the teeth 20 of the Engage the outer wheel 3 in that 19 of the ring gear 4.
  • the ratio of the amount of gearing 19 of the ring gear 4 to that of the outer gear 3 is 2: 1. This turns it Outer gear once through 360 °, while it is around the entire circumference of the ring gear teeth 19 expires, and accordingly by only 180 °, if it is only half the circumference of the Ring gear teeth 19 expires.
  • the eccentric 1 which is fixed with the Gear 3 is connected, this means that from the position shown in Figure 1, where the nose 16 of the eccentric 1 points upwards and thus the compression is maximum, this Nose 16 changes position as follows when crankshaft 14 rotates one revolution turns: The gear 3 as a whole and with it the crank pin shaft move in with respect to the crankshaft 14, for example, clockwise around it, with the gear 3 itself rotates counterclockwise.
  • crank arm length takes this in the intermediate positions, such as that shown in Figure 4 Position, an intermediate value.
  • the crank arm length reaches here in top dead center of the piston 7 takes a maximum, takes a minimum after a 90 ° rotation and then comes to a maximum towards bottom dead center. The it experiences the same variation until it reaches the top dead center of the piston 7. Die Crank no longer describes a circle, but a standing ellipse.
  • the nose 16 shows here with respect to the crankshaft axis 8 radially outwards and correspondingly the effective one Crank arm of maximum length.
  • the piston 7 has one with this setting of the compression minimal stroke.
  • the suction path is minimal, the volume of the combustion chamber is maximum and thus the compression ratio is minimal.
  • the crank describes one lying ellipse. By adjusting the eccentric 1 in the bandwidth between these two the compression ratio can be freely selected. In In the intermediate settings, the crank always describes a uniform ellipse, however, this is then neither standing nor lying, but at an oblique angle with respect to the Piston direction of movement.
  • FIG 9 are the different curves which the center of the eccentric 1 at different Settings describes, shown.
  • the piston moves in the directions as indicated by the arrows.
  • the setting is the highest Compression ratio shown.
  • the crank describes a standing ellipse.
  • the crank circuit is indicated by dashed lines in a conventional engine.
  • the piston stroke is longer with this setting.
  • Both the suction path and the Compression path is longer and at the same time is the volume of the combustion chamber reduced.
  • the compression ratio is greatest with this setting. Because with increasing Compression increases the efficiency of the engine, the increase in small loads is greatest, this setting is used somewhere in a petrol engine Partial load range used, while the compression ratio is slightly reduced under full load becomes. In the diesel engine, it is advantageous to use the maximum compression ratio Stop starting the engine and then lower it for operation.
  • the actual adjustment of the eccentric 1 is done by turning the gear 3 by means of the ring gear 4. So that the eccentric 1 by 180 ° from the one maximum position can be rotated into the other, the ring gear 4 must be turned a quarter turn the crankshaft axis 8 are rotated. This rotation of the ring gear 4 can by different adjustment means can be realized.
  • Figures 1 and 4 to 8 and 10 is a Example shown.
  • the ring gear 3 has on the flat, facing away from the projection Back of the disc 17 on a concentric gear 5 fixedly connected to it, that acts as a spur gear.
  • Helical gear 5 engages the toothing 23 of a control gear 6, which is arranged laterally arranged shaft 24 is rotatable.
  • control gear 6 has a radius more than twice as large as the spur gear 5, the control gear for adjustment from one maximum position to another by only about 40 ° Degrees.
  • control gears With several cylinders, which are arranged in a row, sit several such control gears on a common side shaft 24.
  • V-motor With a V-motor a central shaft can be arranged between the V-legs, of which can be operated from the hollow gears 4 to each cylinder.
  • boxer engine so that the same side shaft as the ring gears controls to the opposite cylinders.
  • the actuation of the control gear 6 can be done in many different ways.
  • This stepper motor is advantageously controlled by a microprocessor.
  • the one for the Control microprocessor can be used with several parameters electronically be fed.
  • the engine load on the gearbox can be electronic be measured as this data also for the switching of some automatic Gearboxes can be determined anyway.
  • the engine speed can be more relevant Parameters are recorded electronically and also for the regulation of the compression ratio be taken into account.
  • the signals from a knock sensor that is on many modern vehicle engines already exist can be processed.
  • the combustion pressure and the combustion temperature can also be calculated will.
  • all of this data is ultimately used a multi-dimensional map processed to an output signal, which finally controls the stepper motor to change the position of the control gear or gears.
  • FIG. 10 shows a representation of the motor viewed from the side, here two pistons 7 are shown with their crank drives.
  • the construction for the adjustment the compression ratio includes as already described on the crankshaft 14 seated ring gear 4, which is freewheel mounted on the crankshaft 14.
  • These ring gears 4 are shown here partially cut away for better understanding.
  • the flat back of the disk 17 facing away from the cantilever carries in concentrically Gear wheel 5 firmly connected to it. Inside the internally toothed projection of the ring gear 4 runs a gear 3, which is firmly connected to an eccentric 1. This eccentric 1 encloses the crank arm shaft 15 and is freely rotating on it.
  • the lower connecting rod bearing 25 of the connecting rod 9 encloses the eccentric 1, the nose 16 of the left piston 7 points upwards and with the right piston 7 points downwards.
  • the left is accordingly Piston 7 slightly raised, the right one slightly lowered.
  • the gear 5 with the ring gear 4 rotates, the eccentric 1 also rotates stationary, so that the eccentric formed by it Nose 16 shifts its position.
  • the gear 3 rolls inside the ring gear 4 as an outer wheel and causes the eccentric 1 to rotate around the crankshaft rotates exactly 360 °. So if the crankshaft rotates 180 °, the crankshaft also rotates Eccentric 1 by 180 ° and accordingly the nose 16 formed by it points downwards, as can be seen on the crankshaft section shown on the right.
  • the ring gear 4 can have teeth on its outer circumference and be adjusted by means of a gearwheel that engages directly in this toothing.
  • the ring gear remains stationary while the engine is running. It is also conceivable to let the ring gear run with the crankshaft. In this In this case, the rotational position of the eccentric would always remain the same over one revolution, so that So the effective crank arm length would always be the same for the entire revolution. Corresponding the center of the eccentric would no longer be an ellipse but a circle describe. The adjustment would then be made so that the rotational position of the ring gear with respect the crank axis would have to be changed.
  • the engine according to the invention enables by regulating the compression ratio taking into account another important parameter, which is the characteristic and power delivery of a motor significantly influenced.
  • the modification can start from the existing engines, only the crankshafts and in certain If the engine blocks have to be adapted for new series, and not a complete one Redesign of an engine is necessary. In many cases, the existing engine block can even be used if there is enough space to arrange the gears and the sideshaft is present. So the cylinders, pistons, connecting rods and the peripheral remain Components of an engine such as ignition and injection as well as the auxiliary units from this modification in principle unaffected.
  • the internal combustion engine with variable Compression promises a significantly improved performance while at the same time better smoothness and due to the increased efficiency a further optimized fuel consumption, due to the optimized combustion also the pollutant emissions can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Claims (10)

  1. Moteur à combustion du type moteur à piston(s), dans lequel le rapport de compression est variable, en ce que la course de piston est réglable, parce que la tige (9) de bielle est logée - du côté du vilebrequin - sur un maneton excentrique (1), ce maneton excentrique étant réglable autour de son axe de rotation (2) par des moyens de commande (3 à 6) pendant le fonctionnement du moteur, caractérisé en ce que le maneton excentrique (1) est formé par au moins deux coquilles (26, 27) chacune d'une seule pièce, qui sont disposées autour de l'arbre (15) du flasque du vilebrequin (14) et l'enserrent, et que ces coquilles (26, 27) comportent chacune un secteur denté (28, 29), ces secteurs enserrant aussi l'arbre (15) du flasque du vilebrequin (14), et que la roue dentée (3) formée par ces secteurs (28, 29) comporte une denture extérieure et se déplace dans une couronne à denture intérieure (4) de plus grand diamètre, logée concentriquement autour de l'axe (8) du vilebrequin (14), en étant réglable dans sa position de rotation quand le moteur tourne, de sorte que la roue à denture extérieure (3) exécute au cours de son déplacement dans la couronne à denture intérieure (4), quand cette dernière est dans une position définie fixe de réglage, exactement une rotation pendant un tour, de sorte que le mouvement du centre effectif du palier inférieur de bielle décrit toujours, suivant la position de réglage, une ellipse, qui peut prendre progressivement toutes les positions de réglage intermédiaires entre une ellipse debout et une ellipse couchée.
  2. Moteur à combustion suivant la revendication 1, caractérisée en ce que la couronne (4) à denture intérieure est reliée concentriquement, sur sa face extérieure plate, à un pignon à denture droite (5), qui peut être déplacé par un pignon de commande (6) engrenant dans le pignon (5).
  3. Moteur à combustion suivant la revendication 1, caractérisé en ce que la couronne (4) à denture intérieure comporte sur son pourtour extérieur une denture déplaçable au moyen d'un pignon de commande (6), qui engrène directement dans cette denture.
  4. Moteur à combustion suivant une des revendications 2 et 3, caractérisé en ce que le pignon de commande (6) peut tourner au moyen d'un servomoteur séparé, de sorte que le rapport de compression du moteur est variable grâce au changement de la longueur de manivelle, cependant que le servomoteur peut être piloté par un microprocesseur, dans lequel au moins un paramètre de fonctionnement du moteur, qui est relevé, peut être traité électroniquement.
  5. Moteur à combustion suivant la revendication 4, caractérisé en ce que le servomoteur est un moteur électrique pas-à-pas, qui entraíne par l'intermédiaire d'un pignon le pignon de commande (6).
  6. Moteur à combustion suivant la revendication 4, caractérisé en ce que le servomoteur est un moteur électrique pas-à-pas, qui entraíne, par l'intermédiaire d'une courroie crantée, le pignon de commande (6) ou son axe d'entraínement (24).
  7. Moteur à combustion suivant une des revendications 4 à 6, caractérisé en ce qu'un microprocesseur est mis en oeuvre, qui est alimenté par un ou plusieurs signaux correspondant à la charge de moteur relevée dans la boíte de vitesses, à la vitesse de moteur relevée, à la quantité d'air relevée à l'aspiration ou à la compression ainsi que par le signal d'un senseur de cognement et au moyen desquels ces valeurs peuvent être traitées électroniquement pour donner un signal de commande du servomoteur.
  8. Moteur à combustion suivant une des revendications 2 à 7, caractérisé en ce que, dans le cas d'un moteur à plusieurs cylindres, les pignons de commande (6) attribués aux différents cylindres sont fixés sur un arbre latéral commun (24).
  9. Moteur à combustion suivant une des revendications précédentes 2 à 8, caractérisé en ce que le pignon de commande (6) a un rayon plus de deux fois supérieur à celui du pignon (5).
  10. Moteur à combustion suivant une des revendications précédentes, caractérisé en ce que la couronne (4) à denture intérieure tourne avec le vilebrequin, mais que sa position de rotation relative à celle de ce dernier est réglable, de sorte que la longueur efficace du flasque de vilebrequin sur toute la rotation de manivelle est toujours la même.
EP96902207A 1995-02-28 1996-02-28 Moteur a combustion interne de type moteur a pistons alternatifs a rapport volumetrique variable Expired - Lifetime EP0812383B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH566/95 1995-02-28
CH56695 1995-02-28
PCT/CH1996/000062 WO1996027079A1 (fr) 1995-02-28 1996-02-28 Moteur a combustion interne de type moteur a pistons alternatifs a rapport volumetrique variable

Publications (2)

Publication Number Publication Date
EP0812383A1 EP0812383A1 (fr) 1997-12-17
EP0812383B1 true EP0812383B1 (fr) 1998-12-16

Family

ID=4189978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96902207A Expired - Lifetime EP0812383B1 (fr) 1995-02-28 1996-02-28 Moteur a combustion interne de type moteur a pistons alternatifs a rapport volumetrique variable

Country Status (17)

Country Link
US (1) US5908014A (fr)
EP (1) EP0812383B1 (fr)
JP (1) JPH11506511A (fr)
KR (1) KR100403388B1 (fr)
CN (1) CN1072767C (fr)
AT (1) ATE174661T1 (fr)
AU (1) AU699252B2 (fr)
BR (1) BR9607054A (fr)
CA (1) CA2212935C (fr)
CZ (1) CZ289670B6 (fr)
DE (1) DE59600999D1 (fr)
DK (1) DK0812383T3 (fr)
ES (1) ES2128156T3 (fr)
GR (1) GR3029473T3 (fr)
PL (1) PL184758B1 (fr)
RU (1) RU2159858C2 (fr)
WO (1) WO1996027079A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926133C2 (de) * 1999-06-09 2003-04-10 Fev Motorentech Gmbh Kolbenbrennkraftmaschine mit variablem Brennraum

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009211C2 (nl) 1998-05-19 1999-11-22 L H De Gooijer Holding B V Kruk-drijfstangmechanisme.
JP2000130101A (ja) * 1998-10-29 2000-05-09 Nikko:Kk 4サイクル内燃エンジン
US6289857B1 (en) * 2000-02-23 2001-09-18 Ford Global Technologies, Inc. Variable capacity reciprocating engine
US6564762B2 (en) * 2000-04-28 2003-05-20 Glendal R. Dow Gear train crankshaft
US6450136B1 (en) * 2001-05-14 2002-09-17 General Motors Corporation Variable compression ratio control system for an internal combustion engine
DE10220596B3 (de) * 2002-05-08 2004-01-22 Siemens Ag Verfahren zum Regeln des Verdichtungsverhältnisses einer Brennkraftmaschine
DE10220601C1 (de) * 2002-05-08 2003-12-18 Siemens Ag Verfahren zum Anpassen der Ladezeit einer Zündspule an das veränderliche Verdichtungsverhältnis einer Brennkraftmaschine
DE10220598B3 (de) * 2002-05-08 2004-03-04 Siemens Ag Verfahren zum Anpassen des Zündwinkels an das Verdichtungsverhältnis einer Brennkraftmaschine
DE10220597B3 (de) * 2002-05-08 2004-02-26 Siemens Ag Verfahren zum Anpassen einer Klopfregelung an das veränderliche Verdichtungsverhältnis einer Brennkraftmaschine
CZ297764B6 (cs) * 2002-06-12 2007-03-21 Zarízení pro rízenou regulaci kompresního pomeru
US6752105B2 (en) 2002-08-09 2004-06-22 The United States Of America As Represented By The Administrator Of The United States Environmental Protection Agency Piston-in-piston variable compression ratio engine
JP2004183644A (ja) * 2002-11-20 2004-07-02 Honda Motor Co Ltd ストローク可変エンジン
US7007640B2 (en) * 2003-07-25 2006-03-07 Masami Sakita Engine with a variable compression ratio
US6948460B1 (en) 2003-08-01 2005-09-27 Dow Glendal R Crankshaft with variable stroke
DE50309264D1 (de) 2003-10-24 2008-04-10 Ford Global Tech Llc Vorrichtung zur Veränderung des Verdichtungsverhältnisses eines Hubkolbenmotors
WO2005059330A2 (fr) * 2003-12-11 2005-06-30 Dow Glendal R Vilebrequin variable
US7174865B2 (en) * 2004-07-19 2007-02-13 Masami Sakita Engine with a variable compression ratio
CN100340750C (zh) * 2005-12-02 2007-10-03 李乐 可变输出转速无连杆往复活塞发动机
US7625188B2 (en) * 2006-05-17 2009-12-01 Dow Glendal R Heart booster pump
EP1959112A1 (fr) * 2007-02-16 2008-08-20 Gomecsys B.V. Mécanisme réciproque de piston, son procédé d'assemblage et moteur à combustion interne
US7631620B2 (en) * 2007-03-17 2009-12-15 Victor Chepettchouk Variable compression ratio mechanism for an internal combustion engine
US7946260B2 (en) * 2007-06-22 2011-05-24 Von Mayenburg Michael Internal combustion engine with variable compression ratio
EP2006509A2 (fr) * 2007-06-22 2008-12-24 Michael Von Mayenburg Moteur à combustion interne doté d'un taux de compression variable
EP2025893A1 (fr) * 2007-08-09 2009-02-18 Gomecsys B.V. Mécanisme réciproque de piston
DE102008046821B8 (de) * 2008-09-11 2016-10-06 Audi Ag Kurbelwelle für eine Brennkraftmaschine mit variabler Verdichtung und Brennkraftmaschine mit variabler Verdichtung
KR100980863B1 (ko) 2008-12-02 2010-09-10 현대자동차주식회사 자동차 엔진용 가변 압축비 장치
KR101028181B1 (ko) 2009-06-25 2011-04-08 현대자동차주식회사 가변 압축비 엔진
US8281764B2 (en) * 2009-06-25 2012-10-09 Onur Gurler Half cycle eccentric crank-shafted engine
KR101510321B1 (ko) * 2009-06-30 2015-04-08 현대자동차 주식회사 가변 압축비 장치
KR101090801B1 (ko) * 2009-06-30 2011-12-08 현대자동차주식회사 가변 압축비 장치
FI121283B (fi) * 2009-08-17 2010-09-15 Aulis Pohjalainen Moottorin sylinteripaineen säädin
US8267055B2 (en) * 2009-09-03 2012-09-18 Manousos Pattakos Variable compression ratio engine
DE102009048716A1 (de) * 2009-10-08 2011-04-14 Daimler Ag Brennkraftmaschine
US20110155106A1 (en) * 2009-12-29 2011-06-30 Von Mayenburg Michael Internal combustion engine with variable compression ratio
KR101180953B1 (ko) 2010-11-16 2012-09-07 현대자동차주식회사 가변 압축비 장치
KR101180955B1 (ko) * 2010-11-18 2012-09-07 현대자동차주식회사 가변 압축비 장치
US8967097B2 (en) 2011-05-17 2015-03-03 Lugo Developments, Inc. Variable stroke mechanism for internal combustion engine
CN102230423B (zh) * 2011-05-23 2013-07-17 舒锦海 齿轮传动内燃机
EP2620614B1 (fr) 2012-01-24 2016-11-09 Gomecsys B.V. Mécanisme réciproque de piston
US8851030B2 (en) 2012-03-23 2014-10-07 Michael von Mayenburg Combustion engine with stepwise variable compression ratio (SVCR)
RU2580191C1 (ru) * 2012-09-07 2016-04-10 Луго Девелопментс, Инк. Двигатель внутреннего сгорания
WO2014056291A1 (fr) * 2012-10-08 2014-04-17 Shen Dazi Dispositif à taux de compression variable avec structure excentrique à verrouillage automatique conçue pour moteur à combustion interne
RU2585998C1 (ru) * 2013-02-20 2016-06-10 Ниссан Мотор Ко., Лтд. Двигатель внутреннего сгорания с переменной степенью сжатия
US9638117B2 (en) * 2013-03-15 2017-05-02 Honda Motor Co., Ltd. Method for controlling an amount of fuel and vehicle including same
EP2873834A1 (fr) * 2013-11-13 2015-05-20 Gomecsys B.V. Procédé d'assemblage, ensemble d'un vilebrequin et élément de manivelle
US9422873B2 (en) * 2013-12-12 2016-08-23 Ford Global Technologies, Llc Methods and systems for operating an engine
EP2902603A1 (fr) * 2014-01-31 2015-08-05 Gomecsys B.V. Moteur à combustion interne comprenant un rapport de compression variable
EP2907986B1 (fr) 2014-02-18 2017-05-03 Gomecsys B.V. Moteur à combustion interne à quatre temps doté d'un taux de compression variable
CN103925079B (zh) * 2014-03-25 2016-06-29 天津大学 不破坏曲轴结构适合任意曲柄重叠度的压缩比可调发动机
EP2930329B1 (fr) 2014-04-08 2016-12-28 Gomecsys B.V. Moteur à combustion interne comprenant un rapport de compression variable
CN104454159B (zh) * 2014-11-12 2017-02-01 董伟冈 一种内燃机压缩比调整装置以及内燃机
FR3035681B1 (fr) * 2015-04-28 2017-04-28 Peugeot Citroen Automobiles Sa Piece excentrique pour systeme de variation du taux de compression d'un moteur thermique
RU2595993C1 (ru) * 2015-07-22 2016-08-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Устройство изменения радиуса кривошипа кривошипно-шатунного механизма
FR3042816B1 (fr) 2015-10-22 2017-12-08 Peugeot Citroen Automobiles Sa Moteur thermique muni d'un systeme de variation du taux de compression
RU2607436C1 (ru) * 2015-11-03 2017-01-10 Александр Алексеевич Семенов Двигатель внутреннего сгорания с изменяемой степенью сжатия эксцентриковым механизмом
DE102015223878A1 (de) 2015-12-01 2017-06-01 Schaeffler Technologies AG & Co. KG Anordnung zur Einstellung einer variablen Verdichtung des Verbrennungsgases in einer Brennkraftmaschine
CN106943272A (zh) * 2016-01-06 2017-07-14 王继文 一种应用于人体各组织的被动运动装置
US9896089B2 (en) * 2016-04-07 2018-02-20 Ford Global Technologies, Llc Methods and systems for adjusting engine operation based on weather data
FR3050234B1 (fr) * 2016-04-19 2021-01-15 Peugeot Citroen Automobiles Sa Ensemble pour systeme de variation de taux de compression de moteur thermique
US10113623B2 (en) * 2016-05-26 2018-10-30 Borislav Zivkovich Orbitual crankshaft with extended constant volume combustion cycle
AT519011B1 (de) * 2016-05-31 2018-03-15 Avl List Gmbh Hubkolbenmaschine
CN106438062A (zh) * 2016-09-09 2017-02-22 王祖军 一种无级可变压缩比内燃机
US10119463B2 (en) * 2016-12-09 2018-11-06 Mark Albert Sokalski Infinitely variable compression ratio and single stroke length mechanism or dual stroke length mechanism of reciprocating 2-cycle or 4-cycle internal combustion engine
CN106930831A (zh) * 2017-04-10 2017-07-07 陈光明 电控偏心齿轮式可变压缩比发动机
CN106996332A (zh) * 2017-04-10 2017-08-01 陈光明 偏心齿轮齿圈式可变压缩比发动机
DE102017207644A1 (de) * 2017-05-05 2018-11-08 Ford Global Technologies, Llc Verfahren zum Verändern eines zylinderzugehörigen Verdichtungsverhältnisses e einer fremdgezündeten Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
CN107201945A (zh) * 2017-07-21 2017-09-26 泸州职业技术学院 一种可变压缩比发动机
EP3486453B1 (fr) * 2017-11-21 2020-08-05 Mark Albert Sokalski Moteur à combustion interne muni d'un mécanisme à taux de compression variable infiniment
CN108590849B (zh) * 2018-01-09 2023-07-14 西华大学 一种可实现米勒循环的曲柄连杆机构及控制方法
KR20200058141A (ko) 2018-11-19 2020-05-27 현대자동차주식회사 가변 압축비를 가지는 피스톤기구
KR20200065795A (ko) 2018-11-30 2020-06-09 현대자동차주식회사 피스톤의 냉각구조
US20220090588A1 (en) * 2018-12-03 2022-03-24 Centerline Manufacturing Llc Duplex drive head
DE102019123601A1 (de) * 2019-09-04 2021-03-04 Bayerische Motoren Werke Aktiengesellschaft Hubkolben-Brennkraftmaschine mit einem variablen Verdichtungsverhältnis
DE102019126014A1 (de) * 2019-09-26 2021-04-01 Bayerische Motoren Werke Aktiengesellschaft Kompressionsverstellvorrichtung mit gelagertem Hohlrad
CN113494355A (zh) * 2020-04-08 2021-10-12 广州汽车集团股份有限公司 一种可变压缩比发动机曲轴装置
GR1010047B (el) * 2020-06-16 2021-08-13 Περικλης Γερασιμος Ρασσιας Μεταβλητος στροφαλος μηχανης εσωτερικης καυσης
CN111957868A (zh) * 2020-07-09 2020-11-20 蒙特费罗(湖州)电梯部件有限公司 一种用于电梯零配件的高强度钢板热冲压成型生产装置
GEP20227367B (en) 2020-08-06 2022-03-25 Ramzan Goytemirov Engine having compression ratio control mechanism
AT524321B1 (de) 2021-03-12 2022-05-15 Roland Kirchberger Dipl Ing Dr Techn Verbrennungskraftmaschine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE379257C (de) * 1922-01-17 1923-08-18 Hans Rohrbach Verbrennungskraftmaschine mit veraenderlichem Kolbenhub
US1553009A (en) * 1923-07-23 1925-09-08 Stuke Ernest Engine
FR861611A (fr) * 1939-07-29 1941-02-13 Moteur à explosion à cylindrée et taux de compression variables automatique
FR1014314A (fr) * 1946-04-10 1952-08-13 Moteur à explosion à cylindrée variable
DE1961142A1 (de) * 1969-10-04 1971-04-15 Filippo Bonetto Kurbelgetriebe
US4044629A (en) * 1975-12-29 1977-08-30 John Michael Clarke Reciprocating piston machine
PL144411B1 (en) * 1984-11-23 1988-05-31 Politechnika Warszawska Crank mechanism with variable crank radius for a piston-type internal combustion engine
US5158047A (en) * 1990-05-14 1992-10-27 Schaal Jack E Delayed drop power stroke internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926133C2 (de) * 1999-06-09 2003-04-10 Fev Motorentech Gmbh Kolbenbrennkraftmaschine mit variablem Brennraum

Also Published As

Publication number Publication date
DE59600999D1 (de) 1999-01-28
CA2212935A1 (fr) 1996-09-06
GR3029473T3 (en) 1999-05-28
CN1176678A (zh) 1998-03-18
CZ289670B6 (cs) 2002-03-13
BR9607054A (pt) 1997-12-30
ES2128156T3 (es) 1999-05-01
MX9706427A (es) 1998-07-31
US5908014A (en) 1999-06-01
AU699252B2 (en) 1998-11-26
ATE174661T1 (de) 1999-01-15
AU4661996A (en) 1996-09-18
KR100403388B1 (ko) 2003-12-18
PL321955A1 (en) 1998-01-05
DK0812383T3 (da) 1999-08-23
RU2159858C2 (ru) 2000-11-27
CA2212935C (fr) 2007-01-23
KR19980702582A (ko) 1998-07-15
PL184758B1 (pl) 2002-12-31
CZ269397A3 (cs) 1998-01-14
WO1996027079A1 (fr) 1996-09-06
EP0812383A1 (fr) 1997-12-17
CN1072767C (zh) 2001-10-10
JPH11506511A (ja) 1999-06-08

Similar Documents

Publication Publication Date Title
EP0812383B1 (fr) Moteur a combustion interne de type moteur a pistons alternatifs a rapport volumetrique variable
DE102008059870B4 (de) Variabel-Verdichtungsverhältnis-Vorrichtung
DE3014005C2 (fr)
DE3030615C2 (de) Brennkraftmaschine
DE2324088B2 (de) Kolbenbrennkraftmaschine mit einem
DE102009006633A1 (de) Brennkraftmaschine mit verlängertem Expansionshub und verstellbarem Verdichtungsverhältnis
EP3362645B1 (fr) Moteur à combustion interne à double manivelle et à compression variable
EP2772624A1 (fr) Moteur à combustion interne fonctionnant selon le cycle d'Atkinson à quatre temps et son procédé de commande de charge
DE102020100311A1 (de) Motor mit variablem verdichtungsverhältnis
DE60200787T2 (de) Brennkraftmaschine mit drehbarem pleuelbolz
DE2705339A1 (de) Gemischverdichtende, fremdgezuendete brennkraftmaschine mit kombinierter drossel- und verdichtungsregelung
DE112008003247T5 (de) Brennkraftmaschine der Funkenzündungsbauart
DE19814870A1 (de) Hubkolbenbrennkraftmaschine
DE102017207644A1 (de) Verfahren zum Verändern eines zylinderzugehörigen Verdichtungsverhältnisses e einer fremdgezündeten Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE2514727A1 (de) Verbrennungsmotor
DE102006000526B4 (de) Gerät und Verfahren zum Erfassen eines Luft-Kraftstoffverhältnisses einer Brennkraftmaschine
DE3019192A1 (de) Asymetrische gegenkolben-brennkraftmaschine
DE3233314A1 (de) Verbrennungsmotor
DE3420529A1 (de) Axialkolbenmaschine mit variablen hub
DE3905574A1 (de) Maschine mit einem zylinder und zwei in diesem verschieblichen kolben
DE102015221908A1 (de) Vorrichtung zur Veränderung des Verdichtungsverhältnisses einer Hubkolbenbrennkraftmaschine
DE10019959A1 (de) Brennkraftmaschine
DE4413443C2 (de) Brennkraftmaschine
DD201927A5 (de) Zweitakt-verbrennungsmotor
DE19731974A1 (de) Hubkolbenbrennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980216

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 174661

Country of ref document: AT

Date of ref document: 19990115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59600999

Country of ref document: DE

Date of ref document: 19990128

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FELBER & PARTNER AG PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990215

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2128156

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19990305

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20010222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010228

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020901

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20120222

Year of fee payment: 17

Ref country code: FR

Payment date: 20120316

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20120216

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120223

Year of fee payment: 17

Ref country code: GB

Payment date: 20120229

Year of fee payment: 17

Ref country code: IT

Payment date: 20120222

Year of fee payment: 17

Ref country code: DK

Payment date: 20120223

Year of fee payment: 17

Ref country code: GR

Payment date: 20120223

Year of fee payment: 17

Ref country code: BE

Payment date: 20120329

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120229

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120224

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120328

Year of fee payment: 17

BERE Be: lapsed

Owner name: *TK DESIGN A.G.

Effective date: 20130228

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20130828

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130901

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 174661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130228

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 990400570

Country of ref document: GR

Effective date: 20130904

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130228

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130901

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130828

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130904

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150226

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150429

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59600999

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL