EP0807692A1 - Verfahren zum Kühlen von Profilstahl-Trägern - Google Patents

Verfahren zum Kühlen von Profilstahl-Trägern Download PDF

Info

Publication number
EP0807692A1
EP0807692A1 EP97106855A EP97106855A EP0807692A1 EP 0807692 A1 EP0807692 A1 EP 0807692A1 EP 97106855 A EP97106855 A EP 97106855A EP 97106855 A EP97106855 A EP 97106855A EP 0807692 A1 EP0807692 A1 EP 0807692A1
Authority
EP
European Patent Office
Prior art keywords
cooling
profile
temperature
water
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97106855A
Other languages
English (en)
French (fr)
Inventor
Wolfgang Roloff
Lutz Kümmel.
Rolf Stodt
Heinz-Jürgen Oudehinken
Meinert Meyer
Hans-Georg Hartung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Schloemann Siemag AG
Schloemann Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Schloemann Siemag AG, Schloemann Siemag AG filed Critical SMS Schloemann Siemag AG
Publication of EP0807692A1 publication Critical patent/EP0807692A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/44Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/006Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • C21D9/06Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails with diminished tendency to become wavy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B2045/0221Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for structural sections, e.g. H-beams

Definitions

  • the invention relates to a method for cooling shaped steel, in particular section steel beams from the rolling heat.
  • the cooling of shaped steel, such as section steel beams, eg double T and U profiles, angles, T steels, after the rolling is usually done with the help of a cooling bed. Because of the uncontrolled, often unfavorable, free cooling of the section steel beams or bars during the dwell time on the cooling bed, an adverse influence on the straightness and the internal stress state is inevitable. The straightness or the natural shape is causally closely related to the residual stress state. Taken together, these two quality criteria mentioned for the section steel beams can be compared with the flatness of the strip rolling.
  • the invention is based on the following considerations and knowledge relating to the mechanism of the generation of residual stresses.
  • a rolled section steel beam leaves the last rolling stand in good approximation with a homogeneous distribution of strain, which means that the beam or rod is straight and has no areas with waviness.
  • the rod / support is also almost free of residual stress due to the high temperature level.
  • the rolling rod takes on a shape due to the distortion that occurs, in which the internal moment becomes zero, unless external forces - e.g. Weight, friction or other holding forces, for example due to a straightening grate - prevent it.
  • external forces e.g. Weight, friction or other holding forces, for example due to a straightening grate - prevent it.
  • the invention has for its object to provide a method which enables a profile steel having a uniform temperature distribution towards the end of the conversion.
  • a final air cooling is preceded by a targeted water cooling in such a way that shaped steel areas having material accumulations are cooled on the outside of the profile with a variable exposure width and duration subject to a computer-aided predetermined cooling strategy, down to a value which is at least just above the conversion temperature Arl will.
  • the areas on the outside of the profile are, for example, the flanges for double T and U profiles.
  • the appropriate temperature distribution is preferably set by rows of spray nozzles arranged one behind the other in the rolling direction, which, depending on the requirements, can also be arranged several times next to one another and possibly nested, with different spacings in the longitudinal direction or as different nozzles which act on the profile at the desired points or areas.
  • the temperature of the shaped steel is determined in order to determine the exposure width and duration as well as the intensity necessary for the cooling strategy and is entered into the process computer.
  • the temperature distribution in the profile is determined at the beginning of the cooling process or in the case of continuous systems before the profile enters the cooling section. This determination can be achieved either by measuring the temperatures of different profile areas, by measuring a reference temperature and drawing conclusions about a characteristic distribution, by calculation taking into account the forming history, or as a combination of these methods.
  • the suitable cooling strategy is then determined with the help of the process computer, the cooling process automatically in due time activated, if necessary changes in speed or temperature changes over the length and finally ended.
  • the calculation of the suitable cooling strategy can either be achieved on-line using software based on a physical model, or calculation results can be determined in advance depending on the profile type, assumed temperature distributions and material off-line, implemented in the computer and the cooling intensity and duration be determined interpolatively.
  • a water cooling section following the last rolling mill necessary for the rolling of the shaped steel is preferably subdivided into individually controllable and switchable or switchable cooling zones, an adaptation to different profiles, temperature situations, materials and speeds of the outgoing can be carried out in a simple manner Reach shape steel.
  • the cooling section can consist of several cooling section sections. A sufficient number of individually controllable zones also enables the process to be controlled in the event of changing conditions, such as the throughput speed or the output temperature distribution, and also a standstill, e.g. of the rod end within the cooling section can then be controlled.
  • the size of the water-pressurized steel surface be changed by changing the distance from the cooling water nozzles to the profile outside and, according to a further proposal of the invention, the cooling intensity is controlled by changes in the supply pressure.
  • the manifolds it is advisable to equip the manifolds with several rows of nozzles instead of just one row of nozzles on each side, which contributes to widening the exposure area and grading the cooling intensity.
  • the position or the course of the cooled web defined by the impinging water jets on the shaped steel can be adjusted by means of a corresponding device via rotatable rows of nozzles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

Ein Verfahren zum Kühlen von Profilstahl-Trägern aus der Walzhitze, das einen gegen Ende der Umwandlung bereits geraden und eine gleichförmige Temperaturverteilung aufweisenden Profilstahl-Träger ermöglicht, sieht vor, daß einer abschließenden Luftkühlung eine gezielte Wasserkühlung vorgeschaltet wird, derart, daß Materialanhäufungen aufweisende Trägerbereiche profilaußenseitig mit einer einer rechnergestützt vorgegebenen Kühlstrategie unterliegenden, variablen Beaufschlagungsbreite und -dauer bis auf einen zumindest noch knapp oberhalb der Umwandlungstemperatur Arl liegenden Wert gekühlt werden.

Description

  • Die Erfindung betrifft ein Verfahren zum Kühlen von Formstahl, insbesondere Profilstahlträgern aus der Walzhitze.
  • Das Kühlen von Formstahl, wie Profilstahl-Träger, z.B. Doppel-T-und U-Profile, Winkel, T-Stähle, nach dem Walzen geschieht üblicherweise mit Hilfe eines Kühlbettes. Aufgrund der während der Verweildauer auf dem Kühlbett unkontrollierten, oft ungünstigen freien Abkühlung der Profilstahl-Träger bzw. Stäbe ist meist ein nachteiliger Einfluß auf die, Geradheit und den Eigenspannungszustand unvermeidlich. Die Geradheit bzw. die Eigenform hängt nämlich ursächlich eng mit dem Eigenspannungszustand zusammen. Diese beiden für die Profilstahl-Träger genannten Qualitätskriterien gemeinsam genommen lassen sich mit der Planheit bei der Bandwalzung vergleichen. Während bei Bändern die Bedeutung einer guten Planlage jedoch überwiegend unter geometrischen Aspekten zu sehen ist, wirken sich Längenunterschiede der Fasern über dem Querschnitt bei vergleichsweise steifen Profilen nur gegebenenfalls als Krümmung, mit Sicherheit aber als eine unter Umständen erhebliche Reduzierung der Tragfähigkeit aufgrund von Eigenspannungen aus. Neben einer verminderten Tragfähigkeit bei einwirkenden äußeren Lasten weisen eigenspannungsbehaftete Bauteile auch einen größeren Verzug bei der Bearbeitung aufgrund der dabei entstehenden Störung des Gleichgewichtszustandes auf und neigen auch eher zur Rißbildung in Bereichen mit großen Eigenspannungsunterschieden, wie sie insbesondere im Übergangsbereich vom Steg zum Flansch auftreten können, beispielsweise bei Doppel-T-Profilen.
  • Der Erfindung liegen die folgenden, den Mechanismus des Entstehens von Eigenspannungen betreffenden Überlegungen und Kenntnisse zugrunde. Ein gewalzter Profilstahl-Träger verläßt das letzte Walzgerüst in guter Näherung mit einer homogenen Dehnungsverteilung, was bedeutet, daß der Träger bzw. Stab gerade ist und keine Bereiche mit Welligkeit aufweist. Im Falle von dynamisch rekristallisierenden Werkstoffen ist der Stab/Träger aufgrund des hohen Temperaturniveaus auch nahezu eigenspannungsfrei. Hingegen stellt sich bei einer unterdrückten dynamischen Rekristallisation - eine wichtige Voraussetzung für das thermomechanische Walzen - eine für die letzten Stichabnahmen charakteristische Eigenspannungssituation ein.
  • Die Temperaturverteilung nach der letzten Walzung ist üblicherweise deutlich inhomogen; insbesondere an Stellen mit einer Materialanhäufung kühlt ein Profil weniger stark ab als in dünnwandigen Bereichen. Unabhängig davon, wie der thermische Ausgangszustand war, kühlt ein Profil an Luft im allgemeinen inhomogen ab. Die dadurch bedingten unterschiedlichen thermischen Längenänderungen müssen durch elastische oder sogar elastischplastische Dehnungen kompensiert werden, begleitet durch den Aufbau von damit unvermeidlich einhergehenden Spannungen. Je höher die Temperatur ist, desto schneller bauen sich derartige Spannungen durch Relaxation ab, d.h. einem mit einer parallel ablaufenden Spannungsarmglühung vergleichbarem Vorgang. Da dies allerdings langsamer abläuft als die thermischen Veränderungen, wird das Profil auch in dieser Phase hoher Temperaturen in Summe durch innere Spannungen belastet. Bei unsymmetrischen Abkühlbedingungen oder Profilgeometrien nimmt der Walzstab bedingt durch den auftretenden Verzug eine Form an, bei der das innere Moment zu Null wird, es sei denn, daß äußere Kräfte - z.B. Gewichts-, Reibungs- oder andere Haltekräfte, beispielsweise aufgrund eines Richtrostes - ihn daran hindern.
  • Gerät eine Faser oder ein Teil des Profiles in den Bereich der Gamma-Alpha-Gefügeumwandlung, so baut sich dort aufgrund der völligen Neustrukturierung des Gefüges jegliche Spannung ab. Auch das durch die geringere Packungsdichte des Alpha-Eisens bedingte Wachsen dieser Faser wird zum Teil unterdrückt, weil sich die anderen, noch nicht in der Umwandlung befindlichen Fasern aufgrund ihrer Restelastizität gegen ein Mitwachsen wehren. In dieser Phase des sukzessiven Erreichens des Umwandlungsbereiches verändert sich die Krümmung eines unsymmetrischen oder unsymmetrisch abkühlenden und nicht in einem Richtrost oder anderweitig geführten Profiles ständig. Erst gegen Ende der Umwandlung ist das Profil nahezu eigenspannungsfrei und unabhängig von dem sich frei ausbildenden oder erzwungenen Krümmungszustand. Dann allerdings, wenn mindestens zwei Fasern oder Teilbereiche die untere Grenztemperatur der Umwandlung unterschritten haben, kann sich zwischen diesen Fasern wieder ein Zwang ergeben, der eine Folge des elastischen bzw. elastisch-plastischen Ausgleichs unterschiedlicher thermisch bedingter Kontraktionen ist. Diese Spannungen - spätere Eigenspannungen - werden unterhalb der Umwandlung wegen der dann zunehmend unbedeutender werdenden Relaxation auch kaum noch abgebaut. Mit fortschreitender Abkühlung verlassen mehr und mehr Fasern den Bereich der Umwandlung und beteiligen sich an dem oben beschriebenen Aufbau der Eigenspannungen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, das einen gegen Ende der Umwandlung eine gleichförmige Temperaturverteilung aufweisenden Profilstahl ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß einer abschließenden Luftkühlung eine gezielte Wasserkühlung vorgeschaltet wird, derart, daß Materialanhäufungen aufweisende Formstahlbereiche profilaußenseitig mit einer einer rechnergestützt vorgegebenen Kühlstrategie unterliegenden, variablen Beaufschlagungsbreite und -dauer bis auf einen zumindest noch knapp oberhalb der Umwandlungstemperatur Arl liegenden Wert gekühlt werden. Die profilaußenseitigen Bereiche sind z.B. die Flansche bei Doppel-T- und U-Profilen. Indem somit durch eine selektive Kühlung oberhalb der Umwandlungstemperatur Arl, vorzugsweise an der Grenze der unteren Umwandlungstemperatur, eine homogene Temperaturverteilung ermöglicht wird, weil der Träger nach der Wasserkühlung sich selbst überlassen wird, bis die gekühlten Bereiche den Kühlvorrat aufgezehrt und sich thermisch wieder erholt haben, liegt ein technisch eigenspannungsfreies Profil vor. Es kommt daher nicht mehr wie bei den bekannten Verfahren zu einem Aufbau innerer Spannungen im Profil, die dort aufgrund im wesentlichen elastischer bzw. elastisch-plastischer Kompensation unterschiedlicher, thermisch bedingter Dehnungen infolge einer inhomogenen Temperaturverteilung gegen Ende der Umwandlung auftreten. Es wird somit die Formstabilität sowohl bei der Herstellung der Profilstahl-Träger als auch bei deren Nachbearbeitung, z. B. Sägen, verbessert. Die weitgehende Eigenspannungsarmut gegen Ende der Umwandlung in Verbindung mit einer gleichförmigen Temperaturverteilung führt selbst dann zu einem nahezu eigenspannungsfreien und somit höher belastbaren und formstabilen Profil - auch nach vollständiger Abkühlung auf Raumtemperatur - ,wenn die Temperaturverteilung zwischenzeitlich inhomogen war.
  • Die Einstellung der geeigneten Temperaturverteilung erfolgt vorzugsweise durch in Walzrichtung hintereinander angeordnete Spritzdüsenreihen, die entsprechend den Erfordernissen auch mehrfach nebeneinander und gegebenenfalls verschachtelt, mit unterschiedlichen Abständen in Längsrichtung oder als unterschiedliche Düsen ausgeführt sein können, die das Profil an den gewünschten Stellen bzw. Bereichen beaufschlagen.
  • Nach einem Vorschlag der Erfindung wird zur Bestimmung der für die Kühlstrategie notwendigen Beaufschlagungsbreite und -dauer sowie Intensität die Temperatur des Formstahles ermittelt und in den Prozeßrechner eingegeben. Hierzu wird zu Beginn des Kühlvorganges bzw. bei Durchlaufanlagen vor dem Eintritt des Profils in die Kühlstrecke die Temperaturverteilung im Profil ermittelt. Diese Ermittlung läßt sich entweder durch Messung der Temperaturen verschiedener Profilbereiche, durch Messung einer Referenztemperatur und Rückschluß auf eine charakteristische Verteilung, durch Berechnung unter Berücksichtigung der umformtechnischen Vorgeschichte oder als Kombination dieser Verfahren erreichen. Anhand dieser Eingaben wird anschließend die geeignete Kühlstrategie mit Hilfe des Prozeßrechners ermittelt, der Kühlvorgang zeitgerecht automatisch aktiviert, bei Geschwindigkeitsänderungen oder Temperaturveränderungen über der Länge gegebenenfalls variiert und schließlich beendet. Die Berechnung der geeigneten Kühlstrategie läßt sich mit Hilfe einer auf einem physikalischen Modell basierenden Software entweder on-line erreichen, oder es können im Vorfeld Berechnungsergebnisse abhängig vom Profiltyp, angenommenen Temperaturverteilungen und Werkstoff off-line ermittelt, im Rechner implementiert und die Kühlintensität und -dauer interpolativ ermittelt werden.
  • Wenn eine dem letzten für die Walzung des Formstahles notwendigen Walzwerk nachfolgende Wasserkühlstrecke, insbesondere eine Durchlaufkühlstrecke, vorzugsweise in einzeln ansteuerbare und abschalt- bzw. zuschaltbare Kühlzonen unterteilt wird, läßt sich in einfacher Weise eine Anpassung an unterschiedliche Profile, Temperatursituationen, Werkstoffe und Geschwindigkeiten des auslaufenden Formstahles erreichen. Hierbei kann die Kühlstrecke aus mehreren Kühlstreckenabschnitten bestehen. Eine hinreichende Anzahl einzeln ansteuerbarer Zonen ermöglicht darüber hinaus auch die Steuerung des Prozesses bei sich verändernden Bedingungen, wie der Durchlaufgeschwindigkeit oder der Ausgangstemperaturverteilung, und auch ein Stillstand, z.B. des Stabendes, innerhalb der Kühlstrecke ist dann beherrschbar.
  • Es wird vorgeschlagen, daß die Größe der wasserbeaufschlagten Formstahlfläche durch Verändern des Abstandes von Kühlwasser-Düsen zur Profilaußenseite verändert und nach einem weiteren Vorschlag der Erfindung die Kühlintensität durch Änderungen des Versorgungsdruckes gesteuert wird. Vor allem bei größeren Profilen empfiehlt es sich, statt in Laufrichtung pro Seite nur einer Düsenreihe eine Bestückung der Verteilerrohre mit mehreren Düsenreihen vorzunehmen, was zur Verbreiterung der Beaufschlagungsfläche und zur Stufung der Kühlintensität beiträgt. Die Lage bzw. der Verlauf der durch die auftreffenden Wasserstrahlen definierten, gekühlten Bahn am Formstahl kann aufgrund einer entsprechenden Vorrichtung über drehbare Düsenreihen eingestellt werden.
  • Die Wirkungsweise des erfindungsgemäßen Verfahrens im Vergleich zum Stand der Technik veranschaulichen die beiden nachfolgend einander gegenübergestellten Beispiele:
    • 1. Abkühlung eines Profiles HEB 140 an der Luft nach dem Stand der Technik
      Ausgehend von einer homogenen Anfangstemperaturverteilung von T0=900°C und dem Werkstoff c 45, liegt aufgrund der freien Abkühlung nach dem Unterschreiten der unteren Umwandlungstemperatur durch die heißeste Faser eine Eigenspannungen hervorrufende inhomogene Temperatur- bzw. Zwischentemperaturverteilung vor, die nach vollständiger Abkühlung auf Raumtemperatur (300 Minuten) Restspannungen bewirkt. Hierbei treten Eigenspannungen in Höhe von ca. 21% der Kaltfließgrenze von 460 N/mm2 unter anderem an den Flanschspitzen auf, d.h. unabhängig von der Biegeachse an den Außenfasern, die im Falle aufzunehmender äußerer Lasten grundsätzlich höchstbelastet sind. Diese Vorbelastung durch Restspannungen reduziert die Belastbarkeit des fertigen Trägers ganz erheblich.
    • 2. Abkühlung eines Profiles HEB 140 an der Luft nach einer vorgeschalteten, erfindungsgemäßen Wasserkühlung
      Werden nun bei gleichen Voraussetzungen wie oben genannt die Flanschaußenseiten für die Dauer von 6,7 sec auf einer 80 mm breiten, mittigen Bahn mit richtig bemessener Intensität wassergekühlt, läßt sich nach vollständigem Durchlaufen der Umwandlung eine wesentlich gleichmäßigere Temperaturverteilung erreichen, was Versuche bestätigt haben. Nach vollständiger Abkühlung ergeben sich Eigenspannungen, die maximal nur noch 5,6% der Kaltfließgrenze betragen. Darüber hinaus ergibt sich eine deutliche Vergleichmäßigung der Spannungen, insbesondere im Wurzelbereich, in dem bei nach üblicher Praxis abgekühlten Profilen häufig eigenspannungsbedingte Anrisse auftreten. Für die Berechnung des Zusammenhangs zwischen Spannungen und Dehnungen werden neben den thermisch bedingten Längenänderungen alle anderen kontinuumsmechanisch relevanten Vorgänge berücksichtigt, wie Elastizität, Plastizität und Relaxation in Abhängigkeit von der Temperatur.

Claims (5)

  1. Verfahren zum Kühlen von Formstahl, insbesondere Profilstahl-Trägern, aus der Walzhitze,
    dadurch gekennzeichnet,
    daß einer abschließenden Luftkühlung eine gezielte Wasserkühlung vorgeschaltet wird, derart, daß Materialanhäufungen aufweisende Formstahl profilaußenseitig mit einer einer rechnergestützt vorgegebenen Kühlstrategie unterliegenden, variablen Beaufschlagungsbreite und -dauer bis auf einen zumindest noch knapp oberhalb der Umwandlungstemperatur Arl liegenden Wert gekühlt werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß zur Bestimmung der für die Kühlstrategie notwendigen Beaufschlagungsbreite und -dauer sowie Intensität die Temperatur des Formstahles ermittelt und in den Prozeßrechner eingegeben wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß die Größe der wasserbeaufschlagten Formstahlfläche durch Verändern des Abstandes von Kühlwasser-Düsen zur Profilaußenseite verändert wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß die Kühlintensität durch Änderungen des Versorgungsdruckes gesteuert wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß die Wasserkühlstrecke in einzeln ansteuerbare und abschalt- bzw. zuschaltbare KÜhlzonen unterteilt wird.
EP97106855A 1996-05-15 1997-04-25 Verfahren zum Kühlen von Profilstahl-Trägern Withdrawn EP0807692A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19619574 1996-05-15
DE19619574 1996-05-15

Publications (1)

Publication Number Publication Date
EP0807692A1 true EP0807692A1 (de) 1997-11-19

Family

ID=7794382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97106855A Withdrawn EP0807692A1 (de) 1996-05-15 1997-04-25 Verfahren zum Kühlen von Profilstahl-Trägern

Country Status (5)

Country Link
US (1) US6059903A (de)
EP (1) EP0807692A1 (de)
JP (1) JPH1071415A (de)
KR (1) KR970073769A (de)
CN (1) CN1171307A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111074A3 (de) * 1999-12-23 2004-01-07 SMS Demag AG Verfahren und Vorrichtung zum Abkühlen von warmgewalzten Profilen

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221742A (ja) * 1997-09-30 1999-08-17 Hoya Corp 研磨方法及び研磨装置並びに磁気記録媒体用ガラス基板及び磁気記録媒体
DE19828785C2 (de) * 1998-06-27 2000-08-03 Sms Demag Ag Verfahren zum Richten von gewalztem Profilstahl
US7073805B2 (en) * 2003-01-06 2006-07-11 Hui Yan User-propelled riding toys and methods
CN102601305B (zh) * 2012-03-26 2013-11-20 大连远东美连精工有限公司 实体制壳熔模铸造方法
NZ610739A (en) 2012-05-18 2014-04-30 Neturen Co Ltd Rebar structure and reinforced concrete member
CN103042054A (zh) * 2013-01-25 2013-04-17 中冶赛迪工程技术股份有限公司 异形钢材防止冷却弯曲装置及工艺方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE404127C (de) * 1924-02-16 1924-10-13 Cie Des Forges De Chatillon Co Verfahren zum Richten von Metallstangen unsymmetrischen Querschnittes, im besonderen on Eisenbahnschienen
DE2148722A1 (de) * 1970-10-02 1972-05-10 Wendel Sidelor Verfahren zur Waermebehandlung von Schienen mit einer hohen Widerstandsfaehigkeit gegen Abnutzung und dadurch hergestellte Schienen
US4486248A (en) * 1982-08-05 1984-12-04 The Algoma Steel Corporation Limited Method for the production of improved railway rails by accelerated cooling in line with the production rolling mill
EP0151194A1 (de) * 1984-01-28 1985-08-14 VEB Stahl- und Walzwerk "Wilhelm Florin" Hennigsdorf Verfahren zur Verbesserung der Geradheit von Walzstahl
US4668308A (en) * 1984-05-09 1987-05-26 Centre De Recherches Metallurgiques-Centrum Voor Research In De Metallurgie Method and apparatus for manufacturing rails
US5000798A (en) * 1989-11-07 1991-03-19 The Algoma Steel Corporation, Limited Method for shape control of rail during accelerated cooling
DE4237991A1 (de) * 1992-11-11 1994-05-19 Schloemann Siemag Ag Verfahren und Vorrichtung zur Abkühlung von warmgewalzten Profilen insbesondere von Schienen
EP0725152A1 (de) * 1995-02-04 1996-08-07 Sms Schloemann-Siemag Aktiengesellschaft Verfahren und Vorrichtung zum Abkühlen von warmgewalzten Profilen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197825A (ja) * 1984-03-19 1985-10-07 Yokogawa Hokushin Electric Corp 冷却制御方法
DE69113326T2 (de) * 1990-06-21 1996-03-28 Nippon Steel Corp Verfahren und Vorrichtung zum Herstellen stählerner Doppel-T-Träger mit dünnem Steg.
JPH04103720A (ja) * 1990-08-21 1992-04-06 Kawasaki Steel Corp 形状の良好なh形鋼の製造方法
CH686072A5 (de) * 1992-06-19 1995-12-29 Alusuisse Lonza Services Ag Sprayanlage zum Kuhlen von Profilen.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE404127C (de) * 1924-02-16 1924-10-13 Cie Des Forges De Chatillon Co Verfahren zum Richten von Metallstangen unsymmetrischen Querschnittes, im besonderen on Eisenbahnschienen
DE2148722A1 (de) * 1970-10-02 1972-05-10 Wendel Sidelor Verfahren zur Waermebehandlung von Schienen mit einer hohen Widerstandsfaehigkeit gegen Abnutzung und dadurch hergestellte Schienen
US4486248A (en) * 1982-08-05 1984-12-04 The Algoma Steel Corporation Limited Method for the production of improved railway rails by accelerated cooling in line with the production rolling mill
EP0151194A1 (de) * 1984-01-28 1985-08-14 VEB Stahl- und Walzwerk "Wilhelm Florin" Hennigsdorf Verfahren zur Verbesserung der Geradheit von Walzstahl
US4668308A (en) * 1984-05-09 1987-05-26 Centre De Recherches Metallurgiques-Centrum Voor Research In De Metallurgie Method and apparatus for manufacturing rails
US5000798A (en) * 1989-11-07 1991-03-19 The Algoma Steel Corporation, Limited Method for shape control of rail during accelerated cooling
DE4237991A1 (de) * 1992-11-11 1994-05-19 Schloemann Siemag Ag Verfahren und Vorrichtung zur Abkühlung von warmgewalzten Profilen insbesondere von Schienen
EP0725152A1 (de) * 1995-02-04 1996-08-07 Sms Schloemann-Siemag Aktiengesellschaft Verfahren und Vorrichtung zum Abkühlen von warmgewalzten Profilen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111074A3 (de) * 1999-12-23 2004-01-07 SMS Demag AG Verfahren und Vorrichtung zum Abkühlen von warmgewalzten Profilen

Also Published As

Publication number Publication date
KR970073769A (ko) 1997-12-10
JPH1071415A (ja) 1998-03-17
CN1171307A (zh) 1998-01-28
US6059903A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
DE69814513T2 (de) Walzverfahren und Walzstrasse für dünne Flacherzeugnisse
EP0771596A1 (de) Produktionsanlage zum kontinuierlichen- oder diskontinuierlichen Auswalzen von Warmband
EP0264459A1 (de) Herstellung von warmgewalztem Stahlband aus stranggegossenen Brammen
DE102008003222A1 (de) Kompakte flexible CSP-Anlage für Endlos-, Semi-Endlos- und Batchbetrieb
EP0121148A1 (de) Verfahren zum Herstellen von Walzband mit hoher Bandprofil- und Bandplanheitsgüte
DE60035571T2 (de) Kontinuierliche herstellungsanlagen für draht
EP3341142B1 (de) Verfahren zum betreiben einer anlage nach dem csp-konzept
EP2507399A1 (de) Warmwalzwerk und verfahren zum warmwalzen eines metallbandes oder -blechs
EP0405065A2 (de) Verfahren zur Herstellung von rechteckigen Hohlprofilen unterschiedlicher Wanddicke
EP0807692A1 (de) Verfahren zum Kühlen von Profilstahl-Trägern
DE2651573C2 (de) Verfahren und Vorrichtung zum Steuern einer Sekundärkühlung eines aus einer Stranggießkokille austretenden Stahlstrangs
DE4009861C2 (de) Verfahren zur Herstellung von warmgewalztem Stangenmaterial wie Feinstahl oder Draht und Anlage zur Durchführung des Verfahrens
AT408420B (de) Anlage zur herstellung von warmgewalztem stahlband
DE60314256T2 (de) Verfahren und anlage zum heisswalzen von schienen
EP0725152B1 (de) Verfahren und Vorrichtung zum Abkühlen von warmgewalzten Profilen
DE2949970A1 (de) Anlage zur herstellung von nahtlosen metallrohren grossen durchmessers
DE4009860C2 (de) Verfahren und Anlage zur Herstellung von warmgewalztem Stahlband, insbesondere für Edelstähle, aus bandförmig stranggegossenem Vormaterial
EP1218562B1 (de) Verfahren zur wärmebehandlung von metallischen pressbolzen
DE102011078829A1 (de) Verfahren zur Herstellung von Magnesiumband
DE3401894A1 (de) Verfahren zum herstellen von walzband mit hoher bandprofil- und bandplanheitsguete
WO2023186471A1 (de) GIEßWALZANLAGE UND VERFAHREN ZU DEREN BETRIEB
DE102022208817A1 (de) Gießwalzanlage und Verfahren zu deren Betrieb
EP0018350B1 (de) Stranggiessanlage, insbesondere zum Herstellen von Brammen
DE3411734A1 (de) Vorrichtung zum strang-giesswalzen von metallen, insbesondere von stahl
DD268178A1 (de) Anlage zum adjustieren von sehr harten staehlen und sonderwerkstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT LU

17Q First examination report despatched

Effective date: 19991215

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS DEMAG AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20010629