EP0806510A1 - Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung - Google Patents
Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung Download PDFInfo
- Publication number
- EP0806510A1 EP0806510A1 EP97106879A EP97106879A EP0806510A1 EP 0806510 A1 EP0806510 A1 EP 0806510A1 EP 97106879 A EP97106879 A EP 97106879A EP 97106879 A EP97106879 A EP 97106879A EP 0806510 A1 EP0806510 A1 EP 0806510A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- monofilaments
- carrier
- carrier insert
- reinforcement
- elongation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/02—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
- D04H3/04—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H13/00—Other non-woven fabrics
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/10—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/10—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
- D04H3/105—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/12—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with filaments or yarns secured together by chemical or thermo-activatable bonding agents, e.g. adhesives, applied or incorporated in liquid or solid form
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/902—High modulus filament or fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/643—Including parallel strand or fiber material within the nonwoven fabric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/643—Including parallel strand or fiber material within the nonwoven fabric
- Y10T442/644—Parallel strand or fiber material is glass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/643—Including parallel strand or fiber material within the nonwoven fabric
- Y10T442/645—Parallel strand or fiber material is inorganic [e.g., rock wool, mineral wool, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/681—Spun-bonded nonwoven fabric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/696—Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]
Definitions
- the invention relates to a carrier insert which is particularly suitable as a carrier insert for producing roofing sheets or as a tarpaulin or surface.
- Carrier inserts for the production of roofing membranes must meet a wide range of requirements. On the one hand, sufficient mechanical stability is required, such as good perforation resistance and good tensile strength, in order, for example, to withstand the mechanical loads during further processing, such as bituminization or laying. In addition, a high level of resistance to thermal stress, for example when bituminizing or to radiant heat, and resistance to flying flames are required. There has been no shortage of attempts to improve existing core inserts.
- nonwovens based on synthetic fiber nonwovens with reinforcing fibers for example with glass fibers.
- sealing sheets can be found in GB-A-1,517,595, DE-Gbm-77-39,489, EP-A-160,609, EP-A-176-847, EP-A-403,403 and EP-A-530,769.
- the connection between the nonwoven fabric and the reinforcing fibers takes place either by gluing with a binder or by needling the layers of different material.
- DE-A-3,417,517 discloses a textile interlining material with anisotropic properties and a process for its production.
- the interlining consists of a substrate which has a surface melting below 150 ° C and associated reinforcement filaments melting above 180 ° C, which are fixed on this surface parallel to each other.
- the substrate can be a nonwoven fabric, on one surface of which there are hot-melt adhesive fibers or filaments which are provided for producing a bond between the reinforcing fibers arranged in parallel with the nonwoven fabric.
- EP-A-0,281,643 discloses a combination of reinforcing fibers in the form of a network of bicomponent fibers with nonwovens based on synthetic fibers, the weight fraction of the network of bicomponent fibers being at least 15% by weight.
- a filter material made of inorganic non-woven material and metal wires is known, which is used for exhaust air purification at high temperatures (higher than 300 ° C).
- DE-Gbm-295 00 830 describes the reinforcement of a glass fleece with synthetic monofilaments. These reinforcing monofilaments do not contribute significantly to the reference force at low strains in the sealing membrane. However, they have a significantly higher maximum tensile strength expansion than the glass fleece; thus the areal connection of the geomembrane also becomes guaranteed in the event of deformations that can lead to breakage of the glass fleece.
- the shrinkage of the synthetic monofilaments is higher than the shrinkage of the glass fleece and can lead to waviness in the sealing membrane.
- DE-A-3,941,189 also discloses a combination of reinforcing fibers in the form of a thread chain with nonwovens based on synthetic fibers, which can be connected to one another in a wide variety of ways.
- a preferred connection technique is needling. With needling there is a risk of damage or breakage of the reinforcement threads.
- monofilaments are used, the diameter of which is larger than the notch protrusion of the needles.
- the reinforcement by monofilaments according to the invention leads to particularly low values of the expansion reserve; due to their inherent rigidity, these monofilaments or flat structures made from them can be fed in in a particularly well-oriented manner and installed in the carrier insert. Unlike multifilaments, they always have a load-bearing effect across their entire cross-section.
- the diameter of the monofilaments is preferably greater than the sum of the notch protrusion and the notch depth of the needles.
- the diameter of the monofilaments used is usually at least 0.1 mm.
- the present invention relates to a carrier insert containing a textile fabric and a reinforcement, characterized in that the Reinforcement contains monofilaments with a diameter of at least 0.1 mm, preferably between 0.1-1 mm, particularly preferably 0.1-0.5 mm, and particularly preferably 0.1-0.3 mm.
- Such carrier inserts can absorb a force, so that in the force-elongation diagram (at 20 ° C) the reference force of the carrier insert with reinforcement compared to the carrier insert without reinforcement in the range between 0 and 1% elongation at least at one point by at least 10% , preferably by at least 20%, particularly preferably by at least 30%.
- textile fabric is to be understood in its broadest meaning within the scope of this description. These can be all structures made of fibers from synthesized polymers that have been manufactured using a surface-forming technique.
- notch depth and notch protrusion are defined in a brochure from Groz-Beckert from 1994 with the name "felting and structuring needles”.
- the reference force is measured in accordance with EN 29073, Part 3, on 5 cm wide samples with a measuring length of 100 mm.
- textile fabrics are fabrics, scrims, knitted fabrics and knitted fabrics, and preferably nonwovens.
- spunbonded fabrics which are produced by randomly depositing freshly melt-spun filaments are preferred. They consist of endless synthetic fibers made of melt-spinnable polymer materials.
- Suitable polymer materials are, for example, polyamides, such as polyhexamethylene diadipamide, polycaprolactam, aromatic or partially aromatic polyamides (“aramids”), aliphatic polyamides, such as nylon, partially aromatic or fully aromatic polyesters, polyphenylene sulfide (PPS), polymers with ether and keto groups, such as polyether ketones (PEK) and poly ether ketones (PEEK), or polybenzimidazoles.
- the spunbonded fabrics preferably consist of melt-spinnable polyesters.
- polyester material consist predominantly of building blocks which are derived from aromatic dicarboxylic acids and from aliphatic diols.
- Common aromatic dicarboxylic acid building blocks are the divalent residues of benzenedicarboxylic acids, in particular terephthalic acid and isophthalic acid;
- Common diols have 2 to 4 carbon atoms, with the ethylene glycol being particularly suitable.
- Spunbonded fabrics which consist of at least 85 mol% of polyethylene terephthalate are particularly advantageous.
- dicarboxylic acid units and glycol units which act as so-called modifying agents and which allow the person skilled in the art to specifically influence the physical and chemical properties of the filaments produced.
- dicarboxylic acid units are residues of isophthalic acid or of aliphatic dicarboxylic acid such as e.g. Glutaric acid, adipic acid, sebacic acid;
- diol residues with a modifying action are those of longer-chain diols, e.g. B. of propanediol or butanediol, of di- or triethylene glycol or, if present in small quantities, of polyglycol with a molecular weight of about 500 to 2000.
- Polyesters which contain at least 95 mol% of polyethylene terephthalate (PET), in particular those made of unmodified PET, are particularly preferred.
- the carrier inlays according to the invention are also to have a flame-retardant effect, it is advantageous if they have been spun from flame-retardant modified polyesters.
- flame-retardant modified polyesters are known. They contain additions of halogen compounds, in particular bromine compounds, or, which is particularly advantageous, they contain phosphorus compounds which are condensed into the polyester chain.
- the spunbonded fabrics particularly preferably contain flame-retardant modified polyesters which in the chain contain assemblies of the formula (I) wherein R is alkylene or polymethylene with 2 to 6 carbon atoms or phenyl and R 1 is alkyl with 1 to 6 carbon atoms, aryl or aralkyl, contained in condensed form.
- R is preferably ethylene and R 1 is methyl, ethyl, phenyl, or o-, m- or p-methylphenyl, in particular methyl.
- Such spunbonded fabrics are described, for example, in DE-A-39 40 713.
- the polyesters contained in the spunbonded fabrics preferably have a molecular weight corresponding to an intrinsic viscosity (IV), measured in a solution of 1 g of polymer in 100 ml of dichloroacetic acid at 25 ° C., from 0.6 to 1.4.
- IV intrinsic viscosity
- the individual titer of the polyester filaments in the spunbonded fabric is between 1 and 16 dtex, preferably 2 to 8 dtex.
- the spunbonded nonwoven can also be a nonwoven bond strengthened by melt binder, which contains carrier and hot-melt adhesive fibers.
- the carrier and hot-melt adhesive fibers can be derived from any thermoplastic thread-forming polymers.
- Carrier fibers can also be derived from non-melting thread-forming polymers.
- melt-bond-strengthened spunbonded fabrics are described, for example, in EP-A-0,446,822 and EP-A-0,590,629.
- polymers from which the carrier fibers can be derived are polyacrylonitrile, polyolefins, such as polyethylene, essentially aliphatic polyamides, such as nylon 6.6, essentially aromatic polyamides (aramids), such as poly (p-phenylene terephthalamide) or copolymers containing a proportion on aromatic m-diamine units to improve solubility or poly (m-phenylene isophthalamide), essentially aromatic polyesters, such as poly (p-hydroxybenzoate) or preferably essentially aliphatic polyesters, such as polyethylene terephthalate.
- the proportion of the two types of fibers to one another can be selected within wide limits, it being important to ensure that the proportion of hot-melt adhesive fibers is chosen so high that the nonwoven fabric is given sufficient strength for the desired application by bonding the carrier fibers to the hot-melt adhesive fibers.
- the proportion of hot melt adhesive originating from the hot melt adhesive fiber in the nonwoven fabric is usually less than 50% by weight, based on the weight of the nonwoven fabric.
- Modified polyesters with a melting point which is lowered by 10 to 50 ° C., preferably 30 to 50 ° C., compared to the nonwoven raw material, are particularly suitable as hot-melt adhesives.
- hot melt adhesives are polypropylene, polybutylene terephthalate or by condensing longer-chain diols and / or polyethylene terephthalate modified by isophthalic acid or aliphatic dicarboxylic acids.
- the hot melt adhesives are preferably introduced into the nonwovens in fiber form.
- Carrier and hot-melt adhesive fibers are preferably constructed from one polymer class. This means that all fibers used are selected from a class of substances so that they can be easily recycled after the fleece has been used.
- the carrier fibers consist of polyester
- the hot melt adhesive fibers are also made of polyester or a mixture of polyesters, e.g. B. selected as a bicomponent fiber with PET in the core and a lower melting polyethylene terephthalate copolymer as a sheath:
- bicomponent fibers are also possible which are made up of different polymers. Examples include bicomponent fibers made of polyester and polyamide (core / shell).
- the individual fiber titers of the carrier and hot melt adhesive fibers can be selected within wide limits. Examples of common titer ranges are 1 to 16 dtex, preferably 2 to 6 dtex.
- the carrier inserts according to the invention with flame-retardant properties are additionally bound, they preferably contain flame-retardant hot-melt adhesives.
- flame retardant hot melt adhesive z. B. a modified by incorporation of chain links of the formula (I) indicated polyethylene terephthalate in the laminate according to the invention.
- the filaments or staple fibers that make up the nonwovens can have a practically round cross section or can also have other shapes, such as dumbbell, kidney-shaped, triangular or tri or multilobal cross sections. Hollow fibers can also be used. Furthermore, the hot-melt adhesive fiber can also be used in the form of bi- or multicomponent fibers.
- the fibers forming the textile fabric can be modified by conventional additives, for example by antistatic agents such as carbon black.
- the weight per unit area of the spunbonded fabric is between 20 and 500 g / m 2 , preferably 40 and 250 g / m 2 .
- the reinforcement used in the carrier insert according to the invention is such that it absorbs and dissipates a force even at an elongation in the range from 0 to 1% (at an ambient temperature of 20 ° C.), so that the reference force is shown in the force-elongation diagram (KD diagram ) increases by at least 10%, preferably by at least 20%, particularly preferably by at least 30%, compared to the unreinforced carrier insert.
- the reinforcement is such that the reference force of the carrier insert at room temperature (20 ° C.) divided by the reference force of the carrier insert at 180 °, measured at at least one point in the range between 0 and 1% elongation, has a quotient of at most 3 ( three), preferably at most 2.5, particularly preferably less than 2.
- the above properties are obtained by monofilaments whose Young's modulus is at least 5 Gpa, preferably at least 10 Gpa, particularly preferably at least 20 Gpa.
- the abovementioned monofilaments have a diameter between 0.1 and 1 mm, preferably 0.1 and 0.5 mm, in particular 0.1 and 0.3 mm and have an elongation at break of 0.5 to 100%, preferably 1 to 60 %.
- the carrier inlays according to the invention particularly advantageously have an expansion reserve of less than 1%.
- the stretch reserve is the stretch that acts on the carrier insert before the force acting on the monofilaments is dissipated, ie a stretch reserve of 0% would mean that tensile forces acting on the carrier insert would be dissipated immediately on the monofilaments. This means that forces acting on the spunbonded fabric do not first bring about an alignment or orientation of the monofilaments, but rather are derived directly on the monofilaments, so that damage to the textile fabric can be avoided. This is particularly evident in a steep increase in the force to be applied with small strains (force-strain diagram at room temperature).
- suitable monofilaments that have a high elongation at break the maximum tensile strength elongation of the carrier insert can be considerably improved. For example, high-strength monofilaments made of polyester or wires made of metals or metallic alloys with an elongation at break of at least 10% are suitable.
- Monofilaments based on aramids preferably so-called high-module aramids, high-strength polyester monofilaments and particularly preferably monofilament wires made of metals or metallic alloys, are preferably used.
- preferred reinforcements consist of metal monofilaments in the form of parallel thread sheets, scrims or fabrics, which may also contain other monofilaments or multifilaments.
- the nonwovens are only reinforced in the longitudinal direction by thread sheets running in parallel.
- the reinforcement by monofilaments according to the invention leads to particularly low values of the expansion reserve; due to their inherent rigidity, these monofilaments or flat structures made from them can be fed in in a particularly well-oriented manner and installed in the carrier insert. Unlike multifilaments, they always have a load-bearing effect across their entire cross-section.
- the monofilaments are preferably fed in during spunbond formation and thus embedded in the spunbonded fabric.
- the thread density can vary within wide limits depending on the desired property profile.
- the thread density is preferably between 20 and 200 threads per Meter.
- the thread density is measured perpendicular to the thread running direction.
- the spunbonded nonwovens are usually subjected to chemical or thermal and / or mechanical consolidation in a known manner.
- the spunbonded fabrics are preferably mechanically consolidated by needling.
- the spunbonded fabric which advantageously already contains the monofilaments, is usually needled with a needle density of 20 to 100 stitches / cm 2 .
- the needling is carried out according to the invention by needles whose notch protrusion, preferably the sum of notch protrusion and notch depth, is smaller than the diameter of the monofilaments. This will not damage the monofilaments.
- the spunbonded webs are then subjected to further consolidation steps, for example a thermal treatment.
- the spunbonded nonwovens which can be bonded with melt binders and which also contain binder fibers in addition to carrier fibers, are thermally bonded in a manner known per se with a calender or in an oven. If the spunbonded fabrics do not contain any binding fibers capable of thermal consolidation, these spunbonded fabrics are impregnated with a chemical binder. Acrylic binders are particularly suitable for this. The proportion of binder is expediently up to 30% by weight, preferably 2 to 25% by weight. The exact choice of the binder is based on the special interests of the processor. Hard binders allow high processing speeds with impregnation, especially bituminization, while a soft binder gives particularly high values of tear and nail tear resistance.
- flame-retardant modified binders can also be used.
- the carrier web according to the invention has an embossing pattern of statistically distributed or repeat arranged, small-area embossments, preferably a canvas embossing, in which the pressing surface, ie the totality of all thin, compacted areas of the spunbonded fabric makes up 30 to 60%, preferably 40 to 45% of its total area, and the thickness of the compacted areas of the nonwoven fabric is at least 20%, preferably 25 to 50%, the thickness of the non-compacted areas of the nonwoven.
- this embossing pattern can advantageously be applied during calender bonding.
- the embossing pattern can also be embossed using a calender.
- This embossing pattern which is applied to both surfaces of the spunbonded fabric, but preferably only to one surface of the spunbonded fabric, when it passes through the spunbonded fabric, has a large number of small embossments which have a size of 0.2 to 40 mm 2 , preferably 0 , 2 to 10 mm 2 , and are separated from one another by interposed, approximately the same size, non-embossed surface elements of the fleece.
- the area of the compacted areas of the nonwoven and the non-compacted areas of the nonwoven can be determined, for example, by means of microscopic cross-sectional images.
- the carrier inlays according to the invention can be combined with other textile fabrics, so that their properties are variable.
- Such composites, which contain the carrier insert according to the invention, are also the subject of the invention.
- the reinforcement from monofilaments can be supplied before, during and / or after the formation of the textile surface.
- the process is characterized by the feeding of the monofilaments and any thermal treatment in the manufacturing process of the carrier insert under tension, in particular under longitudinal tension.
- a thermal treatment under tension is present if the layer is retained as monofilaments in the carrier insert during a thermal step; the preservation of the longitudinal threads by applying a longitudinal tension is of particular interest.
- the formation of the textile fabric can take place on a tapered monofilament or the monofilaments can during the surface formation process, for. B. in the production of nonwovens, or it can be finished a textile fabric and connected by subsequent assembly with a reinforcement in the form of monofilaments.
- the combination of the textile fabric with the reinforcement can be carried out by measures known per se, for example by needling or gluing, including hot melt gluing. The advantages of the process are particularly evident in the production of needled carrier inserts.
- the production of a textile fabric as described can be carried out by spunbonding by means of spinning apparatus known per se.
- the molten polymer is carried through several series of spinnerets or groups of spinneret series Polymers. If a melt-bond-strengthened spunbonded nonwoven is to be produced, polymers are alternately loaded, which form the carrier fiber and the hot-melt adhesive fibers. The spun polymer streams are stretched in a conventional manner, and z. B. deposited using a rotating baffle in scattering texture on a conveyor belt.
- nonwoven layer on the reinforcement or a subsequent layer formation from reinforcement and nonwoven fabric by assembly is preferred.
- the carrier inserts according to the invention can also be combined with other components to form multilayer composites.
- other components are glass fleeces, thermoplastic or metallic foils, insulation materials, etc.
- the carrier inserts according to the invention can be used for the production of bituminized roofing and waterproofing membranes.
- the carrier material is treated with bitumen in a manner known per se and then optionally sprinkled with a granular material, for example with sand.
- the roofing and waterproofing membranes produced in this way are easy to process.
- the bituminized webs contain at least one carrier web embedded in a bitumen matrix - described above - the weight fraction of the bitumen in the basis weight of the bituminized roofing web preferably being 40 to 90% by weight and that of the spunbonded fabric 10 to 60% by weight.
- These membranes can also be a so-called roof membrane.
- bitumen another material, for example polyethylene or polyvinyl chloride, can also be used to coat the carrier insert according to the invention be used.
- PET threads with a filament titer of 4 dtex are produced and laid down to a tangled fleece of 2 m width.
- steel wires are continuously fed at a distance of 2 cm (50 wires / m) in the longitudinal direction.
- the wires manufactured by Bekaert
- the wires are supplied on spools and have a diameter of 0.18 mm, a strength of 2300 N / mm 2 and an elongation at break of 1.5%.
- the nonwoven / wire bond is needled with 40 stitches / cm 2 at a penetration depth of 12.5 mm (needle type from Foster, 15x18x38x3 CB) and then impregnated with an acrylate binder, the weight proportion of which in the finished nonwoven is 20%.
- the binder is cured in a screen drum oven at 210 ° C. This gives a reinforced fleece of 190 g / m 2 basis weight.
- PET threads with a filament titer of 4 dtex are produced and laid down to a tangled fleece of 1 m in width.
- steel wires material no. 1.4301
- the wires are supplied on spools and have a diameter of 0.15 mm, a strength of 14 N and an elongation at break of 34%.
- the nonwoven / wire bond is needled with 40 stitches / cm 2 at a penetration depth of 12.5 mm (needle type from Foster, 15x18x38x3 CB) and then impregnated with an acrylate binder, the weight proportion of which in the finished nonwoven is 20%.
- the binder is cured in a screen drum oven at 210 ° C.
- a reinforced fleece of 165 g / m 2 basis weight is obtained in this way.
- PET threads with a filament titer of 4 dtex are produced and laid down to a tangled fleece of 2 m width.
- wires consisting of an alloy of the CuZn37 type are continuously fed in at a distance of 2 cm (50 wires / m).
- the wires (manufacturer JG Dahmen) are supplied on spools and have a diameter of 0.25 mm, a strength of 47 N and an elongation at break of 1.4%.
- the composite fleece / wires is needled with 40 stitches / cm 2 at a penetration depth of 12.5 mm (needle type from Foster, 15x18x38x3 CB) and then impregnated with an acrylic binder, the weight proportion of which in the finished fleece is 20%.
- the binder is cured in a screen drum oven at 210 ° C.
- a reinforced fleece of 192 g / m 2 basis weight is obtained in this way.
- PET threads with a filament titer of 4 dtex are produced and laid down to a tangled fleece of 2 m width.
- wires consisting of an alloy of the CuSn6 type are continuously fed in at a distance of 1.2 cm (83 wires / m).
- the wires (manufacturer JG Dahmen) are supplied on spools and have a diameter of 0.25 mm, a strength of 21 N and an elongation at break of 54%.
- the composite fleece / wires is needled with 40 stitches / cm 2 at a penetration depth of 12.5 mm (needle type from Foster, 15x18x38x3 CB) and then impregnated with an acrylic binder, the weight proportion of which in the finished fleece is 20%.
- the binder is cured in a screen drum oven at 210 ° C.
- a reinforced fleece of 165 g / m 2 basis weight is obtained in this way.
- PET threads with a filament titer of 4 dtex are produced and laid down to a tangled fleece of 2 m width.
- wires consisting of a type CUZn37 alloy are continuously fed in at a distance of 2 cm (50 wires / m).
- the wires (manufacturer JG Dahmen) are supplied on spools and have a diameter of 0.25 mm, a strength of 25 N and an elongation at break of 15%.
- the composite fleece / wires is needled with 40 stitches / cm 2 at a penetration depth of 12.5 mm (needle type from Foster, 15x18x38x3 CB) and then impregnated with an acrylic binder, the weight proportion of which in the finished fleece is 20%.
- the binder is cured in a screen drum oven at 210 ° C.
- a reinforced fleece of 160 g / m 2 basis weight is obtained in this way.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nonwoven Fabrics (AREA)
- Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
- Laminated Bodies (AREA)
- Artificial Filaments (AREA)
Abstract
Description
- Die Erfindung betrifft eine Trägereinlage, die sich insbesondere als Trägereinlage zur Herstellung von Dachbahnen oder als Plane oder Fläche eignet.
- Trägereinlagen zur Herstellung von Dachbahnen müssen vielfältigen Anforderungen genügen. So ist einerseits eine ausreichende mechanische Stabilität gefordert, wie gute Perforationsfestigkeit und gute Zugfestigkeit, um beispielsweise den mechanischen Belastungen bei der Weiterverarbeitung, wie Bituminierung oder Verlegen, standzuhalten. Außerdem wird eine hohe Beständigkeit gegen thermische Belastung, beispielsweise beim Bituminieren oder gegen strahlende Wärme, und Widerstandsfähigkeit gegen Flugfeuer verlangt. Es hat daher nicht an Versuchen gefehlt, bestehende Trägereinlagen zu verbessern.
- So ist es bereits bekannt, Vliesstoffe auf der Basis von Synthesefaservliesen mit Verstärkungsfasern, beispielsweise mit Glasfasern zu kombinieren. Beispiele für solche Dichtungsbahnen findet man in den GB-A-1,517,595, DE-Gbm-77-39,489, EP-A-160,609, EP-A-176-847, EP-A-403,403 und EP-A-530,769. Die Verbindung zwischen Faservlies und Verstärkungsfasern erfolgt nach diesem Stand der Technik entweder durch Verkleben mittels eines Bindemittel oder durch Vernadeln der Schichten aus unterschiedlichem Material.
- Es ist ferner bekannt, Verbundstoffe durch Wirk- oder Nähwirktechniken herzustellen. Beispiele dafür finden sich in den DE-A-3,347,280, US-A-4,472,086, EP-A-333,602 und EP-A-395,548.
- Aus der DE-A-3,417,517 ist ein textiler Einlagestoff mit anisotropen Eigenschaften und ein Verfahren zu dessen Herstellung bekannt. Der Einlagestoff besteht aus einem Substrat, das eine unter 150 °C schmelzende Oberfläche besitzt, und damit verbundenen über 180 °C schmelzenden Verstärkungsfilamenten, die auf dieser Oberfläche parallel zueinander fixiert sind. Gemäß einer Ausführungsform kann es sich bei dem Substrat um einen Vliesstoff handeln, auf dessen einer Oberfläche sich Schmelzklebefasern oder -fäden befinden, die zur Herstellung einer Verklebung der parallel angeordneten Verstärkungsfasern mit dem Vliesstoff vorgesehen sind.
- Aus der US-A-4,504,539 ist eine Kombination von Verstärkungsfasern in Form von Bikomponentenfasern mit Vliesstoffen aus der Basis von Synthesefasern bekannt.
- Aus der EP-A-0,281,643 ist eine Kombination von Verstärkungsfasern in Form eines Netzes aus Bikomponentenfasern mit Vliesstoffen auf der Basis von Synthesefasern bekannt, wobei der Gewichtsanteil des Netzes aus Bikomponentenfasern mindestens 15 Gew.-% beträgt.
- Aus der JP-A-81-5879 ist ein Verbundstoff bekannt, der mit einem netzförmigen Verstärkungsmaterial versehen ist.
- Aus der GB-A-2,017,180 ist ein Filtermaterial aus anorganischem Vliesmaterial und Metalldrähten bekannt, das zur Abluftreinigung bei hohen Temperaturen (höher 300 °C) eingesetzt wird.
- DE-Gbm-295 00 830 beschreibt die Verstärkung eines Glasvlieses mit synthetischen Monofilen. Diese Verstärkungsmonofile tragen in der Dichtungsbahn nicht wesentlich zur Bezugskraft bei geringen Dehnungen bei. Sie weisen aber eine deutlich höhere Höchstzugkraftdehnung auf als das Glasvlies; somit wird der flächige Zusammenhang der Dichtungsbahn auch noch bei Verformungen gewährleistet, die zum Bruch des Glasvlieses führen können. Der Schrumpf der synthetischen Monofile ist höher als der Schrumpf des Glasvlieses und kann in der Dichtungsbahn zur Welligkeit führen.
- Auch aus der DE-A-3,941,189 ist eine Kombination von Verstärkungsfasern in Form einer Fadenkette mit Vliesstoffen auf der Basis von Synthesefasern bekannt, die auf verschiedenste Arten miteinander verbunden werden können. Eine bevorzugte Verbindungstechnik ist die Vernadelung. Bei einer Vernadelung besteht die Gefahr der Schädigung oder des Bruches der Verstärkungsfäden.
- In dieser Anmeldung wird versucht, dieses Problem durch spezielle Orientierung der Nadeln zu lösen. Unter herstellungstechnischen Bedingungen ist diese ideale Ausrichtung von Nadeln zu Verstärkungsfäden jedoch nicht immer gewährleistet.
- Es ist Aufgabe der vorliegenden Erfindung, eine Trägereinlage zu entwickeln, die ein ausgezeichnetes mechanisches Anforderungsprofil aufweist, z.B. einen hohen Modul bei geringen Dehnungen und bei Zimmertemperatur. Zur Lösung dieser Aufgabe kommen Monofile zum Einsatz, deren Durchmesser größer als der Kerbenüberstand der Nadeln ist. Die erfindungsgemäße Verstärkung durch Monofile führt zu besonders geringen Werten der Dehnungsreserve; diese Monofile oder daraus hergestellte Flächengebilde lassen sich durch ihre Eigensteifigkeit besonders gut orientiert zuführen und in die Trägereinlage einbauen. Anders als Multifilamente wirken sie stets über ihren gesamten Querschnitt tragend. Bevorzugt ist der Durchmesser der Monofile größer als die Summe aus Kerbenüberstand und Kerbentiefe der Nadeln. Üblicherweise beträgt der Durchmesser der zum Einsatz kommenden Monofilamente mindestens 0,1 mm.
- Gegenstand der vorliegenden Erfindung ist eine Trägereinlage enthaltend ein textiles Flächengebilde und eine Verstärkung, dadurch gekennzeichnet, daß die Verstärkung Monofilamente mit einem Durchmesser von mindestens 0,1 mm, vorzugsweise zwischen 0,1 - 1 mm besonders bevorzugt 0,1 - 0,5 mm, und insbesondere bevorzugt 0,1 - 0,3 mm, enthält.
- Derartige Trägereinlagen können eine Kraft aufnehmen, so daß sich im Kraft-Dehnungs-Diagramm (bei 20 °C) die Bezugskraft der Trägereinlage mit Verstärkung verglichen mit der Trägereinlage ohne Verstärkung im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 10 %, vorzugsweise um mindestens 20 %, insbesondere bevorzugt um mindestens 30 %, unterscheidet.
- Der Begriff "textiles Flächengebilde" ist im Rahmen dieser Beschreibung in seiner breitesten Bedeutung zu verstehen. Dabei kann es sich um alle Gebilde aus Fasern aus synthetisierten Polymeren handeln, die nach einer flächenbildenden Technik hergestellt worden sind.
- Die Begriffe Kerbentiefe und Kerbenüberstand sind in einem Prospekt mit der Bezeichnung "Filz- und Strukturierungsnadeln" der Fa. Groz-Beckert aus dem Jahr 1994 definiert.
- Die Messung der Bezugskraft erfolgt nach EN 29073, Teil 3, an 5 cm breiten Proben bei 100 mm Meßlänge. Der Zahlenwert der Vorspannkraft, angegeben in Centinewton entspricht dabei dem Zahlenwert der Flächenmasse der Probe, angegeben in Gramm pro Quadratmeter.
- Beispiele für textile Flächengebilde sind Gewebe, Gelege, Gestricke und Gewirke, sowie vorzugsweise Vliese.
- Von den Vliesen aus Fasern aus synthetischen Polymeren sind Spinnvliese, sogenannte Spunbonds, die durch eine Wirrablage frisch schmelzgesponnener Filamente erzeugt werden, bevorzugt. Sie bestehen aus Endlos-Synthesefasern aus schmelzspinnbaren Polymermaterialien. Geeignete Polymermaterialien sind beispielsweise Polyamide, wie z.B. Polyhexamethylen-diadipamid, Polycaprolactam, aromatische oder teilaromatische Polyamide ("Aramide"), aliphatische Polyamide, wie z.B. Nylon, teilaromatische oder vollaromatische Polyester, Polyphenylensulfid (PPS), Polymere mit Ether- und Keto-gruppen, wie z.B. Polyetherketone (PEK) und Poly-etheretherketon (PEEK), oder Polybenzimidazole.
- Bevorzugt bestehen die Spinnvliese aus schmelzspinnbaren Polyestern. Als Polyestermaterial kommen im Prinzip alle zur Faserherstellung geeigneten bekannten Typen in Betracht. Derartige Polyester bestehen überwiegend aus Bausteinen, die sich von aromatischen Dicarbonsäuren und von aliphatischen Diolen ableiten. Gängige aromatische Dicarbonsäurebausteine sind die zweiwertigen Reste von Benzoldicarbonsäuren, insbesondere der Terephthalsäure und der Isophthalsäure; gängige Diole haben 2 bis 4 C-Atome, wobei das Ethylenglycol besonders geeignet ist. Besonders vorteilhaft sind Spinnvliese, die zu mindestens 85 mol % aus Polyethylenterephthalat bestehen. Die restlichen 15 mol % bauen sich dann aus Dicarbonsäureeinheiten und Glycoleinheiten auf, die als sogenannte Modifizierungsmittel wirken und die es dem Fachmann gestatten, die physikalischen und chemischen Eigenschaften der hergestellten Filamente gezielt zu beeinflussen. Beispiele für solche Dicarbonsäureeinheiten sind Reste der Isophthalsäure oder von aliphatischen Dicarbonsäure wie z.B. Glutarsäure, Adipinsäure, Sebazinsäure; Beispiele für modifizierend wirkende Diolreste sind solche von längerkettigen Diolen, z. B. von Propandiol oder Butandiol, von Di- oder Triethylenglycol oder, sofern in geringer Menge vorhanden, von Polyglycol mit einem Molgewicht von ca. 500 bis 2000.
- Besonders bevorzugt sind Polyester, die mindestens 95 mol % Polyethylenterephthalat (PET) enthalten, insbesondere solche aus unmodifiziertem PET.
- Sollen die erfindungsgemäßen Trägereinlagen zusätzlich eine flammhemmende Wirkung haben, so ist es von Vorteil, wenn sie aus flammhemmend modifizierten Polyestern ersponnen wurden. Derartige flammhemmend modifizierten Polyester sind bekannt. Sie enthalten Zusätze von Halogenverbindungen, insbesondere Bromverbindungen, oder, was besonders vorteilhaft ist, sie enthalten Phosphorverbindungen, die in die Polyesterkette einkondensiert sind.
- Besonders bevorzugt enthalten die Spinnvliese flammhemmend modifizierte Polyester, die in der Kette Baugruppen der Formel (I)
- Die in den Spinnvliesen enthaltenen Polyester haben vorzugsweise ein Molekulargewicht entsprechend einer intrinsischen Viskosität (IV), gemessen in einer Lösung von 1 g Polymer in 100 ml Dichloressigsäure bei 25 °C, von 0,6 bis 1,4.
- Die Einzeltiter der Polyesterfilamente im Spinnvlies betragen zwischen 1 und 16 dtex, vorzugsweise 2 bis 8 dtex.
- In einer weiteren Ausführungsform der Erfindung kann das Spinnvlies auch ein schmelzbinderverfestigter Vliesstoff sein, welcher Träger- und Schmelzklebefasern enthält. Die Träger- und Schmelzklebefasern können sich von beliebigen thermoplastischen fadenbildenden Polymeren ableiten. Trägerfasern können sich darüber hinaus auch von nicht schmelzenden fadenbildenden Polymeren ableiten. Derartige schmelzbinderverfestigte Spinnvliese sind beispielsweise in EP-A-0,446,822 und EP-A-0,590,629 beschrieben.
- Beispiele für Polymere, von denen sich die Trägerfasern ableiten können, sind Polyacrylnitril, Polyolefine, wie Polyethylen, im wesentlichen aliphatische Polyamide, wie Nylon 6.6, im wesentlichen aromatische Polyamide (Aramide), wie Poly-(p-phenylenterephthalamid) oder Copolymere enthaltend einen Anteil an aromatischen m-Diamineinheiten zur Verbesserung der Löslichkeit oder Poly(m-phenylenisophthalamid), im wesentlichen aromatische Polyester, wie Poly-(p-hydroxybenzoat) oder vorzugsweise im wesentlichen aliphatische Polyester, wie Polyethylenterephthalat.
- Der Anteil der beiden Fasertypen zueinander kann in weiten Grenzen gewählt werden, wobei darauf zu achten ist, daß der Anteil der Schmelzklebefasern so hoch gewählt wird, daß der Vliesstoff durch Verklebung der Trägerfasern mit den Schmelzklebefasern eine für die gewünschte Anwendung ausreichende Festigkeit erhält. Der Anteil des aus der Schmelzklebgefaser stammenden Schmelzklebers im Vliesstoff beträgt üblicherweise weniger als 50 Gew.-%, bezogen auf das Gewicht des Vliesstoffes.
- Als Schmelzkleber kommen insbesondere modifizierte Polyester mit einem gegenüber dem Vliesstoff-Rohstoff um 10 bis 50 °C, vorzugsweise 30 bis 50 °C abgesenkten Schmelzpunkt in Betracht. Beispiele für einen derartigen Schmelzkleber sind Polypropylen, Polybutylenterephthalat oder durch Einkondensieren längerkettiger Diole und/oder von Isophthalsäure oder aliphatischen Dicarbonsäuren modifiziertes Polyethylenterephthalat.
- Die Schmelzkleber werden vorzugsweise in Faserform in die Vliese eingebracht.
- Vorzugsweise sind Träger- und Schmelzklebefasern aus einer Polymerklasse aufgebaut. Darunter ist zu verstehen, daß alle eingesetzten Fasern aus einer Substanzklasse so ausgewählt werden, daß diese nach Gebrauch des Vlieses problemlos recycliert werden können. Bestehen die Trägerfasern beispielsweise aus Polyester, so werden die Schmelzklebefasern ebenfalls aus Polyester oder aus einer Mischung von Polyestern, z. B. als Bikomponentenfaser mit PET im Kern und einen niedriger schmelzenden Polyethylenterephthalat-Copolymeren als Mantel ausgewählt: Darüber hinaus sind jedoch auch Bikomponentenfasern möglich, die aus unterschiedlichen Polymeren aufgebaut sind. Beispiele hierfür sind Bikomponentenfasern aus Polyester und Polyamid (Kern/Hülle).
- Die Einzelfasertiter der Träger- und der Schmelzklebefasern können innerhalb weiter Grenzen gewählt werden. Beispiele für übliche Titerbereiche sind 1 bis 16 dtex, vorzugsweise 2 bis 6 dtex.
- Sofern die erfindungsgemäßen Trägereinlagen mit flammhemmenden Eigenschaften zusätzlich gebunden sind, enthalten sie vorzugsweise flammhemmende Schmelzkleber. Als flammhemmender Schmelzkleber kann z. B. ein durch Einbau von Kettengliedern der oben angegebenen Formel (I) modifiziertes Polyethylenterephthalat in dem erfindungsgemäßen Schichtstoff vorhanden sein.
- Die die Vliesstoffe aufbauenden Filamente oder Stapelfasern können einen praktisch runden Querschnitt besitzen oder auch andere Formen aufweisen, wie hantel-, nierenförmige, dreieckige bzw. tri- oder multilobale Querschnitte. Es sind auch Hohlfasern einsetzbar. Ferner läßt sich die Schmelzklebefaser auch in Form von Bi- oder Mehrkomponentenfasern einsetzen.
- Die das textile Flächengebilde bildenden Fasern können durch übliche Zusätze modifiziert sein, beispielsweise durch Antistatika, wie Ruß.
- Das Flächengewicht des Spinnvlieses beträgt zwischen 20 und 500 g/m2, vorzugsweise 40 und 250 g/m2.
- Die in der erfindungsgemäßen Trägereinlage eingesetzte Verstärkung ist derart, daß sie bereits bei einer Dehnung im Bereich von 0 bis 1 % (bei Umgebungstemperatur 20 °C) eine Kraft aufnimmt und ableitet, so daß die Bezugskraft im Kraft-Dehnungs-Diagramm (KD-Diagramm) sich gegenüber der unverstärkten Trägereinlage um mindestens 10 %, vorzugsweise um mindestens 20 %, insbesondere bevorzugt um mindestens 30 %, erhöht.
Darüber hinaus ist die Verstärkung derart, daß die Bezugskraft der Trägereinlage bei Raumtemperatur (20 °C), dividiert durch die Bezugskraft der Trägereinlage bei 180°, gemessen an mindestens einem Punkt im Bereich zwischen 0 und 1 % Dehnung, einen Quotienten von höchstens 3 (drei), vorzugsweise höchstens 2,5, insbesondere bevorzugt kleiner 2, ergibt. - Die vorstehenden Eigenschaften werden durch Monofilamente erhalten, deren Young-Modul mindestens 5 Gpa, bevorzugt mindestens 10 Gpa, besonders bevorzugt mindestens 20 Gpa, beträgt. Die vorstehend genannten Monofilamente haben einen Durchmesser zwischen 0,1 und 1 mm, vorzugsweise 0,1 und 0,5 mm, insbesondere 0,1 und 0,3 mm und besitzen eine Bruchdehnung von 0,5 bis 100 %, vorzugsweise 1 bis 60 %. Besonders vorteilhaft weisen die erfindungsgemäßen Trägereinlagen eine Dehnungsreserve von weniger als 1 % auf.
- Als Dehnungsreserve wird die Dehnung bezeichnet, die auf die Trägereinlage einwirkt bevor die einwirkende Kraft auf die Monofilamente abgeleitet wird, d.h. eine Dehnungsreserve von 0 % würde bedeuten, das auf die Trägereinlage einwirkende Zugkräfte sofort auf die Monofilamente abgeleitet werden würden. Dies bedeutet, daß auf das Spinnvlies einwirkende Kräfte nicht erst eine Ausrichtung bzw. Orientierung der Monofilamente bewirken sondern vielmehr direkt auf die Monofilamente abgeleitet werden, so daß eine Schädigung des textilen Flächengebildes vermieden werden kann. Dies zeigt sich insbesondere in einem steilen Anstieg der aufzuwendenden Kraft bei kleinen Dehnungen (Kraft-Dehnungs-Diagramm bei Raumtemperatur). Zusätzlich kann mit Hilfe geeigneter Monofilamente, die eine hohe Bruchdehnung aufweisen, die Höchstzugkraftdehnung der Trägereinlage erheblich verbessert werden. Geeignet sind beispielsweise hochfeste Monofilamente aus Polyester oder Drähte aus Metallen oder metallischen Legierungen deren Bruchdehnung mindestens 10 % beträgt.
- Bevorzugt werden Monofilamente auf Basis von Aramiden, vorzugsweise sogenannte Hoch-Modul-Aramide, hochfeste Polyester-Monofilamente sowie besonders bevorzugt Monofilament-Drähte aus Metallen oder metallischen Legierungen eingesetzt.
- Bevorzugte Verstärkungen bestehen aus wirtschaftlichen Gründen aus Metall-Monofilamenten in Form von parallelen Fadenscharen, Gelegen oder Geweben, die gegebenenfalls auch andere Mono- oder Multifilamente enthalten können.
- Meist erfolgt nur eine Verstärkung in Längsrichtung der Vliesstoffe durch parallel laufende Fadenscharen.
- Die erfindungsgemäße Verstärkung durch Monofile führt zu besonders geringen Werten der Dehnungsreserve; diese Monofile oder daraus hergestellte Flächengebilde lassen sich durch ihre Eigensteifigkeit besonders gut orientiert zuführen und in die Trägereinlage einbauen. Anders als Multifilamente wirken sie stets über ihren gesamten Querschnitt tragend.
- Die Monofilamente werden vorzugsweise während der Spinnvliesbildung zugeführt und somit in das Spinnvlies eingebettet. Die Fadendichte kann in Abhängigkeit vom gewünschten Eigenschaftsprofil in weiten Grenzen schwanken. Bevorzugt beträgt die Fadendichte zwischen 20 und 200 Fäden pro Meter. Die Fadendichte wird senkrecht zur Fadenlaufrichtung gemessen.
- Üblicherweise werden die Spinnvliese nach ihrer Herstellung in bekannter Weise einer chemischen oder thermischen und/oder mechanischen Verfestigung unterworfen. Bevorzugt werden die Spinnvliese mechanisch durch Vernadeln verfestigt. Hierzu wird das Spinnvlies, das vorteilhafterweise bereits die Monofilamente enthält, üblicherweise mit einer Nadeldichte von 20 bis 100 Stichen/cm2 vernadelt. Die Vernadelung erfolgt erfindungsgemäß durch Nadeln deren Kerbenüberstand, bevorzugt de Summe aus Kerbenüberstand und Kerbentiefe, kleiner ist als der Durchmesser der Monofilamente. Hierdurch werden die Monofilamente nicht geschädigt. Anschließend werden die Spinnvliese weiteren Verfestigungsschritten, beispielsweise einer thermischen Behandlung unterworfen.
Hierzu werden die schmelzbinderverfestigbaren Spinnvliese, die neben Trägerfasern auch Bindefasern enthalten, in an sich bekannter Weise mit einem Kalander oder in einem Ofen thermisch verfestigt.
Enthalten die Spinnvliese keine zur thermischen Verfestigung befähigten Bindefasern, so werden diese Spinnvliese mit einem chemischen Binder imprägniert. Hierzu kommen insbesondere Acrylatbinder in Frage. Der Binderanteil beträgt zweckmäßigerweise bis zu 30 Gew.-%, vorzugsweise 2 bis 25 Gew.-%. Die genaue Wahl des Binders erfolgt nach der speziellen Interessenlage des Weiterverarbeiters. Harte Binder erlauben hohe Verarbeitungsgeschwindigkeiten bei einer Imprägnierung, insbesondere Bituminierung, während ein weicher Binder besonders hohe Werte der Weiterreiß- und Nagelausreißfestigkeit ergibt. - In einer weiteren Ausführungsform können auch flammhemmend modifizierte Binder verwendet werden.
- In einer weiteren Ausführungsform der Erfindung weist die erfindungsgemäße Trägerbahn ein Prägemuster aus statistisch verteilten oder rapportmäßig angeordneten, kleinflächigen Einprägungen, vorzugsweise eine Leinwandprägung auf, bei der die Preßfläche, d.h. die Gesamtheit aller dünnen verdichteten Stellen des Spinnvlieses 30 bis 60 %, vorzugsweise 40 bis 45 % seiner Gesamtfläche ausmacht, und die Dicke der verdichteten Stellen des Vlieses mindestens 20 %, vorzugsweise 25 bis 50 %, der Dicke der nicht verdichteten Stellen des Vlieses beträgt. Dieses Prägemuster kann im Fall der schmelzbinderverfestigten Spinnvliese vorteilhafterweise bei der Kalander-Verfestigung aufgebracht werden. Wird die Trägereinlage durch einen chemischen Binder endverfestigt kann das Prägemuster ebenfalls mittels eines Kalanders aufgeprägt werden. Dieses Prägemuster, das beim Durchlaufen des Spinnvlieses durch einen beheizten Kalander auf beide Oberflächen des Spinnvlieses, vorzugsweise aber nur auf eine Oberfläche des Spinnvlieses aufgebracht wird, weist eine Vielzahl kleiner Einprägungen auf, die eine Größe von 0,2 bis 40 mm2, vorzugsweise 0,2 bis 10 mm2, haben und durch dazwischen liegende, etwa gleich große, nicht geprägte Flächenelemente des Vlieses voneinander getrennt sind. Die Bestimmung der Fläche der verdichteten Stellen des Vlieses und der nicht verdichteten Stellen des Vlieses kann beispielsweise mittels mikroskopischer Querschnittsaufnahmen erfolgen.
- Die erfindungsgemäßen Trägereinlagen können mit weiteren textilen Flächengebilden kombiniert werden, so daß deren Eigenschaften variabel sind. Derartige Verbundstoffe, die die erfindungsgemäße Trägereinlage enthalten, sind ebenfalls Gegenstand der Erfindung.
- Die Zuführung der Verstärkung aus Monofilamenten kann vor, während und/oder nach der Bildung der textilen Fläche erfolgen.
- Die Herstellung der erfindungsgemäßen Trägereinlage umfaßt an sich bekannte Maßnahmen
- a) Bildung eines textilen Flächengebildes,
- b) Zuführen der Verstärkung aus Monofilamenten,
- c) gegebenenfalls Zuführen oder Herstellung eines weiteren textilen Flächengebildes, so daß die Monofilamente sandwich-artig von textilen Flächengebilden umgeben sind,
- d) Verfestigung der gemäß Maßnahme c) erhaltenen Trägereinlage,
- e) gegebenenfalls Imprägnieren der gemäß d) verfestigten Trägereinlage mit einem Binder, und
- f) gegebenenfalls Verfestigung des gemäß d) erhaltenen Zwischenproduktes durch erhöhte Temperatur und/oder Druck, wobei die Reihenfolge der Schritte a) und b) auch umgekehrt sein kann.
- Kennzeichnend für das Verfahren ist die Zuführung der Monofilamente und jede thermische Behandlung im Herstellungsverfahren der Trägereinlage unter Spannung, insbesondere unter Längsspannung. Eine thermische Behandlung unter Spannung liegt vor, wenn die Lage als Monofilamente in der Trägereinlage bei einem thermischen Schritt erhalten bleibt; dabei ist insbesondere der Erhalt der Längsfäden durch Anlegen einer Längsspannung von Interesse. Die Bildung des textilen Flächengebildes kann auf einer gespannt zulaufenden Monofilamente erfolgen oder die Monofilamente können während des Flächenbildungsprozesses, z. B. bei der Vliesherstellung, zulaufen oder es kann ein textiles Flächengebilde fertiggestellt werden und durch nachträgliches Assemblieren mit einer Verstärkung in Form von Monofilamenten verbunden werden. Der Verbund des textilen Flächengebildes mit der Verstärkung kann durch an sich bekannte Maßnahmen erfolgen, beispielsweise durch Nadeln oder Kleben einschließlich Schmelzkleben. Die Vorteile des Verfahrens zeigen sich besonders bei der Herstellung von vernadelten Trägereinlagen.
- Die gemäß beschriebene Herstellung eines textilen Flächengebildes kann durch Spinnvliesbildung mittels an sich bekannter Spinnapparate erfolgen.
- Hierzu wird das geschmolzene Polymer durch mehrere hintereinander geschaltete Reihen von Spinndüsen bzw. Gruppen von Spinndüsenreihen mit Polymeren geschickt. Soll ein schmelzbinderverfestigtes Spinnvlies erzeugt werden, so wird abwechselnd mit Polymeren beschickt, die die Trägerfaser und die Schmelzklebefasern bilden. Die ausgesponnenen Polymerströme werden in an sich bekannter Weise verstreckt, und z. B. unter Verwendung einer rotierenden Prallplatte in Streutextur auf einem Transportband abgelegt.
- Ebenso bevorzugt ist eine Vliesablage auf die Verstärkung ode eine nachträgliche Schichtbildung aus Verstärkung und Vliesstoff durch Assemblieren.
- Um speziellen Anforderungen zu genügen, wie z.B. Brandschutz oder extreme thermomechanische Beanspruchung, können die erfindungsgemäßen Trägereinlagen noch mit weiteren Komponenten zu mehrschichtigen Verbundstoffen kombiniert werden. Beispiele für weitere Komponenten sind Glasvliese, thermoplastische oder metallische Folien, Dämmstoffe, etc.
- Die erfindungsgemäßen Trägereinlagen lassen sich zur Herstellung von bituminierten Dach- und Dichtungsbahnen verwenden. Dies ist ebenfalls ein Gegenstand der vorliegenden Erfindung. Dazu wird das Trägermaterial in an sich bekannter Weise mit Bitumen behandelt und anschließend gegebenenfalls mit einem körnigen Material, beispielsweise mit Sand, bestreut. Die auf diese Weise hergestellten Dach- und Dichtungsbahnen zeichnen sich durch gute Verarbeitbarkeit aus. Die bituminierten Bahnen enthalten mindestens eine in eine Bitumenmatrix eingebettete - vorstehend beschriebene - Trägerbahn, wobei der Gewichtsanteil des Bitumens am Flächengewicht der bituminierten Dachbahn vorzugsweise 40 bis 90 Gew.-% und der des Spinnvlieses 10 bis 60 Gew.-% beträgt. Bei diesen Bahnen kann es sich auch um eine sogenannte Dachunterspannbahn handeln.
- Anstelle von Bitumen kann auch ein anderes Material, z.B. Polyethylen oder Polyvinylchlorid zur Beschichtung der erfindungsgemäßen Trägereinlage verwendet werden.
- Es werden Polyethylen-Terephthalat (PET)-Fäden mit einem Filamenttiter von 4 dtex hergestellt und zu einem Wirrvlies von 2 m Breite abgelegt.
Während des Ablegens werden in Längsrichtung kontinuierlich Stahldrähte im Abstand von 2 cm (50 Drähte/m) zugeführt. Die Drähte (Hersteller Fa. Bekaert) werden auf Spulen geliefert und haben einen Durchmesser von 0,18 mm, eine Festigkeit von 2300 N/mm2 und eine Bruchdehnung von 1,5 %. - Der Verbund Vlies/Drähte wird mit 40 Stichen/cm2 bei einer Einstichtiefe von 12,5 mm vernadelt (Nadeltyp Fa. Foster, 15x18x38x3 CB) und anschließend mit einem Acrylatbinder imprägniert, dessen Gewichtsanteil im fertigen Vlies bei 20 % liegt. Die Aushärtung des Binders erfolgt in einem Siebtrommelofen bei 210 °C. Man erhält so ein verstärktes Vlies von 190 g/m2 Flächenmasse.
- Für die Bezugskräfte des Vlieses bei Umgebungstemperatur (20 °C) mit und ohne Verstärkung wurden folgende Werte gemessen:
Dehnung % Vlies ohne Verstärkung (N/5 cm) Vlies mit Verstärkung (N/5 cm) 0,6 100 159 0,8 129 208 1,0 170 266 1,2 191 302 1,4 210 332 1,6 230 240 1,8 240 245 2 252 255 4 305 305 6 337 340 - Es werden Polyethylen-Terephthalat (PET)-Fäden mit einem Filamenttiter von 4 dtex hergestellt und zu einem Wirrvlies von 1 m Breite abgelegt.
Während des Ablegens werden in Längsrichtung kontinuierlich Stahldrähte (Werkstoff-Nr. 1.4301) im Abstand von 6,7 mm (150 Drähte/m) zugeführt. Die Drähte (Hersteller Fa. Sprint Metal) werden auf Spulen geliefert und haben einen Durchmesser von 0,15 mm, eine Festigkeit von 14 N und eine Bruchdehnung von 34 %. - Der Verbund Vlies/Drähte wird mit 40 Stichen/cm2 bei einer Einstichtiefe von 12,5 mm vernadelt (Nadeltyp Fa. Foster, 15x18x38x3 CB) und anschließend mit einem Acrylatbinder imprägniert, dessen Gewichtsanteil im fertigen Vlies bei 20 % liegt. Die Aushärtung des Binders erfolgt in einem Siebtrommelofen bei 210 °C. Man erhält so ein verstärktes Vlies von 165 g/m2 Flächenmasse.
- Für die Bezugskräfte des Vlieses bei Umgebungstemperatur (20 °C) mit und ohne Verstärkung wurden folgende Werte gemessen:
Dehnung % Vlies ohne Verstärkung (N/5 cm) Vlies mit Verstärkung (N/5 cm) 0,6 77 117 1,0 120 163 1,6 200 244 2 220 266 4 285 337 6 330 388 10 385 453 15 440 518 20 515 598 25 577 664 30 638 727 - In diesem Beispiel wird deutlich, daß die Vliesfestigkeit nicht nur im Bereich geringer Dehnung, sondern auch ei hoher Dehnung verbessert wird.
- Es werden Polyethylen-Terephthalat (PET)-Fäden mit einem Filamenttiter von 4 dtex hergestellt und zu einem Wirrvlies von 2 m Breite abgelegt. Während des Ablegens werden in Längsrichtung kontinuierlich Drähte, bestehend aus einer Legierung des Typs CuZn37, im Abstand von 2 cm (50 Drähte/m) zugeführt.
Die Drähte (Hersteller Fa. J.G. Dahmen) werden auf Spulen geliefert und haben einen Durchmesse von 0,25 mm, eine Festigkeit von 47 N und eine Bruchdehnung von 1,4 %. - Der Verbund Vlies/Drähte wird mit 40 Stichen/cm2 bei einer Einstichtiefe von 12,5 mm vernadelt (Nadeltype Fa. Foster, 15x18x38x3 CB) und anschließend mit einem Acrylbinder imprägniert, dessen Gewichtsanteil im fertigen Vlies bei 20 % liegt. Die Aushärtung des Binders erfolgt in einem Siebtrommelofen bei 210 °C. Man erhält so ein verstärktes Vlies von 192 g/m2 Flächenmasse.
- Für die Bezugskräfte des Vlieses bei Umgebungstemperatur (20 °C) mit und ohne Verstärkung wurden folgende Werte gemessen:
Dehnung % Vlies ohne Verstärkung (N/5 cm) Vlies mit Verstärkung (N/5 cm) 0,6 100 160 0,8 129 203 1,0 170 257 1,2 191 287 1,4 210 310 1,6 230 235 2 252 255 4 305 300 - Es werden Polyethylen-Terephthalat (PET)-Fäden mit einem Filamenttiter von 4 dtex hergestellt und zu einem Wirrvlies von 2 m Breite abgelegt. Während des Ablegens werden in Längsrichtung kontinuierlich Drähte, bestehend aus einer Legierung des Typs CuSn6, im Abstand von 1,2 cm (83 Drähte/m) zugeführt.
Die Drähte (Hersteller Fa. J.G. Dahmen) werden auf Spulen geliefert und haben einen Durchmesser von 0,25 mm, eine Festigkeit von 21 N und eine Bruchdehnung von 54 %. - Der Verbund Vlies/Drähte wird mit 40 Stichen/cm2 bei einer Einstichtiefe von 12,5 mm vernadelt (Nadeltype Fa. Foster, 15x18x38x3 CB) und anschließend mit einem Acrylbinder imprägniert, dessen Gewichtsanteil im fertigen Vlies bei 20 % liegt. Die Aushärtung des Binders erfolgt in einem Siebtrommelofen bei 210 °C. Man erhält so ein verstärktes Vlies von 165 g/m2 Flächenmasse.
- Für die Bezugskräfte des Vlieses bei Umgebungstemperatur (20 °C) mit und ohne Verstärkung wurden folgende Werte gemessen:
Dehnung % Vlies ohne Verstärkung (N/5 cm) Vlies mit Verstärkung (N/5 cm) 0,6 77 120 1,0 120 162 1,6 200 244 2 220 264 4 285 332 6 330 381 10 385 442 20 515 582 25 577 647 30 638 710 - In diesem Beispiel wird deutlich, daß die Vliesfestigkeit nicht nur im Bereich geringer Dehnung, sondern auch bei hoher Dehnung verbessert wird.
- Es werden Polyethylen-Terephthalat (PET)-Fäden mit einem Filamenttiter von 4 dtex hergestellt und zu einem Wirrvlies von 2 m Breite abgelegt.
Während des Ablegens werden in Längsrichtung kontinuierlich Drähte, bestehend aus einer Legierung des Typs CUZn37, im Abstand von 2 cm (50 Drähte/m) zugeführt. Die Drähte (Hersteller Fa. J.G. Dahmen) werden auf Spulen geliefert und haben einen Durchmesser von 0,25 mm, eine Festigkeit von 25 N und eine Bruchdehnung von 15 %. - Der Verbund Vlies/Drähte wird mit 40 Stichen/cm2 bei einer Einstichtiefe von 12,5 mm vernadelt (Nadeltype Fa. Foster, 15x18x38x3 CB) und anschließend mit einem Acrylbinder imprägniert, dessen Gewichtsanteil im fertigen Vlies bei 20 % liegt. Die Aushärtung des Binders erfolgt in einem Siebtrommelofen bei 210 °C. Man erhält so ein verstärktes Vlies von 160 g/m2 Flächenmasse.
- Für die Bezugskräfte des Vlieses bei Umgebungstemperatur (20 °C) mit und ohne Verstärkung wurden folgende Werte gemessen:
Dehnung % Vlies ohne Verstärkung (N/5 cm) Vlies mit Verstärkung (N/5 cm) 0,6 77 114 1,0 120 165 1,6 200 247 2 220 267 4 285 334 6 330 380 10 385 436 15 440 493
Claims (28)
- Trägereinlage enthaltend ein textiles Flächengebilde und eine Verstärkung, dadurch gekennzeichnet, daß die Verstärkung Monofilamente enthält, deren Durchmesser mindestens 0,1 mm, vorzugsweise zwischen 0,1 und 1 mm beträgt.
- Trägerbahn gemäß Anspruch 1, dadurch gekennzeichnet, daß die Monofilamente einen Durchmesser von 0,1 bis 0,5 mm haben.
- Trägerbahn gemäß Anspruch 2, dadurch gekennzeichnet, daß die Monofilamente einen Durchmesser von 0,1 bis 0,3 mm haben.
- Trägereinlage gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Monofilamente eine Kraft aufnehmen, so daß sich im Kraft-Dehnungs-Diagramm (bei 20 °C) die Bezugskraft der Trägereinlage mit Verstärkung verglichen mit der Trägereinlage ohne Verstärkung im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 10 % unterscheidet.
- Trägereinlage gemäß Anspruch 4, dadurch gekennzeichnet, daß sich im Kraft-Dehnungs-Diagramm (bei 20 °C) die Bezugskraft der Trägereinlage mit Verstärkung verglichen mit der Trägereinlage ohne Verstärkung im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 20 % unterscheidet.
- Trägereinlage gemäß Anspruch 5, dadurch gekennzeichnet, daß sich im Kraft-Dehnungs-Diagramm (bei 20 °C) die Bezugskraft der Trägereinlage mit Verstärkung verglichen mit der Trägereinlage ohne Verstärkung im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 30 % unterscheidet.
- Trägereinlage gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Bezugskraft der Trägereinlage bei Raumtemperatur (20 °C), dividiert durch die Bezugskraft der Trägereinlage bei 180 °C, gemessen an mindestens einem Punkt im Bereich zwischen 0 und 1 % Dehnung, einen Quotienten von höchstens 3 ergibt.
- Trägerbahn gemäß Anspruch 1, dadurch gekennzeichnet, daß das textile Flächengebilde ein Spinnvlies, vorzugsweise aus Polyester ist.
- Trägerbahn gemäß Anspruch 8 dadurch gekennzeichnet, daß das Spinnvlies mechanisch, thermisch und/oder chemisch verfestigt ist.
- Trägerbahn gemäß Anspruch 9 dadurch gekennzeichnet, daß das Spinnvlies durch Vernadelung mechanisch verfestigt ist, wobei der Kerbenüberstand, vorzugsweise die Summe aus Kerbenüberstand und Kerbentiefe, der Nadeln kleiner ist als der Durchmesser der Monofilamente.
- Trägerbahn gemäß Anspruch 8, dadurch gekennzeichnet, daß der Polyester zu mindestens 85 mol-% aus Polyethylenterephthalat besteht.
- Trägerbahn gemäß Anspruch 8, dadurch gekennzeichnet, daß das Spinnvlies ein schmelzbinderverfestigtes Spinnvlies.
- Trägerbahn gemäß Anspruch 8, dadurch gekennzeichnet, daß das Spinnvlies durch einen chemischen Binder verfestigt ist.
- Trägerbahn gemäß Anspruch 1, dadurch gekennzeichnet, daß das Flächengewicht des textilen Flächengebildes zwischen 20 und 500 g/m2 beträgt.
- Trägerbahn gemäß Anspruch 1, dadurch gekennzeichnet, daß die Monofilamente ein Young-Modul von mindestens 5 Gpa aufweisen.
- Trägerbahn gemäß Anspruch 1, dadurch gekennzeichnet, daß die Monofilamente eine Bruchdehnung von 0,5 bis 100 % aufweisen.
- Trägerbahn gemäß Anspruch 1, dadurch gekennzeichnet, daß die Trägerbahn eine Dehnungsreserve von weniger als 1 % aufweist.
- Trägerbahn gemäß Anspruch 16, dadurch gekennzeichnet, daß die Monofilamente aus Hoch-Modul-Aramiden, hochfesten Polyester-Monofilamenten, sowie Monofilament-Drähte aus Metallen oder metallischen Legierungen bestehen.
- Trägerbahn gemäß Anspruch 8, dadurch gekennzeichnet, daß das Spinnvlies aus Polyester ein Prägemuster aufweist.
- Verfahren zur Herstellung der Trägereinlage definiert in Anspruch 1, umfassend die an sich bekannten Maßnahmen:a) Bildung eines textilen Flächengebildes,b) Zuführen der Monofilamente,c) gegebenenfalls Zuführen eines weiteren textilen Flächengebildes, so daß die Monofilamente sandwichartig von textilen Flächengebilden umgeben sind,d) Verfestigung der gemäß Maßnahme c) erhaltenen Trägereinlage,e) gegebenenfalls Imprägnieren der verfestigten Trägereinlage mit einem Binder,f) gegebenenfalls Verfestigung des gemäß d) erhaltenen Zwischenproduktes durch erhöhte Temperatur und/oder Druck, wobei die Reihenfolge der Schritte a) und b) auch umgekehrt sein kann, dadurch gekennzeichnet, daß die Zuführung der Monofilamente und jede thermische Behandlung im Herstellungsverfahren der Trägereinlage unter Spannung, vorzugsweise unter Längsspannung, erfolgt.
- Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß die Bildung des textilen Flächengebildes auf gespannt zulaufenden Monofilamenten erfolgt.
- Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß die Zuführung der Monofilamente während des Flächenbildungsprozesses der textilen Fläche erfolgt.
- Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß mindestens ein fertiggestelltes textiles Flächengebilde und mindestens eine Verstärkung in Form von Monofilamenten assembliert und durch Nadeln und/oder Kleben verbunden wird.
- Verfahren gemäß Anspruch 20, dadurch gekennzeichnet, daß die Verfestigung gemäß Maßnahme d) durch Vernadelung der Kerbenüberstand, vorzugsweise die Summe aus Kerbenüberstand und Kerbentiefe, der Nadeln kleiner als der Durchmesser der Monofilamente ist, oder durch Verkleben erfolgt.
- Verwendung der Trägereinlage definiert in Anspruch 1 zur Herstellung von Verbundstoffen, insbesondere Dach- und Dichtungsbahnen.
- Verwendung der Trägereinlage definiert in Anspruch 1 zur Herstellung von bituminierten Dach- und Dichtungsbahnen.
- Verbundstoffe enthaltend eine Trägereinlage definiert in Anspruch 1.
- Dach- und Dichtungsbahn enthaltend eine Trägereinlage definiert in Anspruch 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19620361A DE19620361C5 (de) | 1996-05-10 | 1996-05-10 | Trägereinlage und deren Verwendung |
DE19620361 | 1996-05-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0806510A1 true EP0806510A1 (de) | 1997-11-12 |
EP0806510B1 EP0806510B1 (de) | 2001-12-05 |
Family
ID=7794853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97106879A Expired - Lifetime EP0806510B1 (de) | 1996-05-10 | 1997-04-25 | Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung |
Country Status (6)
Country | Link |
---|---|
US (2) | US6110572A (de) |
EP (1) | EP0806510B1 (de) |
JP (1) | JPH1053949A (de) |
KR (1) | KR970075018A (de) |
CA (1) | CA2204968A1 (de) |
DE (2) | DE19620361C5 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006060241A1 (de) * | 2006-12-20 | 2008-06-26 | Johns Manville Europe Gmbh | Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung |
DE202008010258U1 (de) | 2008-07-30 | 2008-10-30 | Johns Manville, Denver | Trägereinlage und beschichtete Dachbahnen |
DE102009005587A1 (de) | 2009-01-21 | 2010-07-22 | Johns Manville Europe Gmbh | Verfahren zur Qualitätssicherung von verstärkten flächigen Gebilden |
DE102010007939A1 (de) | 2010-02-12 | 2011-08-18 | Johns Manville Europe GmbH, 86399 | Vorkonfektionierte Trägereinlage und beschichtete Dachbahnen |
DE202006021073U1 (de) | 2006-12-20 | 2012-04-30 | Johns Manville Europe Gmbh | Trägereinlage und deren Verwendung |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10052431B4 (de) * | 2000-10-23 | 2004-07-15 | Elsayed Elsaftawi | Verfahren zur Abdichtung von Natursteinmauerwerksfugen gegen Feuchtigkeit |
US7662252B2 (en) | 2005-02-04 | 2010-02-16 | Johns Manville | Method for producing a reinforced polyester non-woven material |
US7786028B2 (en) | 2005-04-08 | 2010-08-31 | Johns Manville | Nonwoven polymeric fiber mat composites and method |
US20080233825A1 (en) * | 2007-03-21 | 2008-09-25 | Mohamed Walid Gamaleldin | Articles Including High Modulus Fibrous Material |
US20100199406A1 (en) * | 2009-02-06 | 2010-08-12 | Nike, Inc. | Thermoplastic Non-Woven Textile Elements |
US8850719B2 (en) | 2009-02-06 | 2014-10-07 | Nike, Inc. | Layered thermoplastic non-woven textile elements |
US8906275B2 (en) | 2012-05-29 | 2014-12-09 | Nike, Inc. | Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements |
US9682512B2 (en) | 2009-02-06 | 2017-06-20 | Nike, Inc. | Methods of joining textiles and other elements incorporating a thermoplastic polymer material |
US20130255103A1 (en) | 2012-04-03 | 2013-10-03 | Nike, Inc. | Apparel And Other Products Incorporating A Thermoplastic Polymer Material |
EP2679713A1 (de) * | 2012-06-26 | 2014-01-01 | O.R.V. Ovattificio Resinatura Valpadana S.p.a. | Stütze in mit Fäden verstärktem Vliesstoff und Verfahren zur Herstellung solch einer Stütze |
ITMI20131114A1 (it) * | 2013-07-03 | 2015-01-04 | Politex S A S Di Freudenberg Polit Ex S R L | Substrato di supporto per membrana bituminosa e suo procedimento di preparazione. |
US11618997B2 (en) | 2020-10-30 | 2023-04-04 | Johns Manville | Reinforced polymeric nonwoven mat for carpet tiles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0359165A2 (de) * | 1988-09-14 | 1990-03-21 | Hoechst Aktiengesellschaft | Trägerbahn für Dachunterspannbahnen |
DE3941189A1 (de) * | 1988-12-13 | 1990-06-21 | Rhone Poulenc Fibres | Traeger auf basis von nichtgewebtem vlies aus chemischer textilfaser und sein herstellungsverfahren |
DE9207367U1 (de) * | 1992-05-30 | 1992-09-10 | Johns Manville International, Inc., Denver, Col. | Schichtstoff aus Vlies und Gelege |
DE4337984A1 (de) * | 1993-11-06 | 1995-05-11 | Hoechst Ag | Textiler Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS565879B1 (de) * | 1975-06-06 | 1981-02-07 | ||
GB1517595A (en) * | 1977-03-31 | 1978-07-12 | Bp Aquaseal Ltd | Bituminous material |
DE7739489U1 (de) * | 1977-12-24 | 1978-04-20 | Hoechst Ag, 6000 Frankfurt | Dach- und dichtungsbahn |
US4181514A (en) * | 1978-02-14 | 1980-01-01 | Huyck Corporation | Stitch knitted filters for high temperature fluids and method of making them |
US4472086A (en) * | 1981-02-26 | 1984-09-18 | Burlington Industries Inc. | Geotextile fabric construction |
US4504539A (en) * | 1983-04-15 | 1985-03-12 | Burlington Industries, Inc. | Warp yarn reinforced ultrasonic web bonding |
GB8316704D0 (en) * | 1983-06-20 | 1983-07-20 | Bondina Ltd | Interlinings |
DE3347280A1 (de) * | 1983-12-28 | 1985-07-11 | VEB Kombinat Glasseide Oschatz, DDR 7260 Oschatz | Verfahren zur herstellung von traegermaterialien |
FR2562472B1 (fr) * | 1984-04-06 | 1986-06-06 | Chomarat & Cie | Materiau a base d'une nappe textile comportant un non-tisse en polyester qui sert de support a des fibres de verre implantees par aiguilletage, utilisable comme armature de renforcement de revetement d'etancheite bitumineux |
DE3435643A1 (de) * | 1984-09-28 | 1986-04-10 | Hoechst Ag, 6230 Frankfurt | Schichtstoff |
DE3774869D1 (de) * | 1987-03-09 | 1992-01-09 | Chisso Corp | Verstaerkter vliesstoff. |
FR2628448B1 (fr) * | 1988-03-14 | 1990-11-16 | Chomarat & Cie | Armature textile utilisable pour la realisation de complexes stratifies et complexes stratifies en forme comportant une telle armature |
FR2646442B1 (fr) * | 1989-04-28 | 1993-04-02 | Chomarat & Cie | Armature textile utilisable pour la realisation de materiaux composites et articles en forme comportant une telle armature |
FR2648482B1 (fr) * | 1989-06-16 | 1992-05-15 | Chomarat & Cie | Complexes textiles multicouches a base de nappes fibreuses ayant des caracteristiques differentes et procede pour leur obtention |
DE4008043A1 (de) * | 1990-03-14 | 1991-09-19 | Hoechst Ag | Traegerbahn fuer dachunterspannbahnen |
EP0506051A1 (de) * | 1991-03-28 | 1992-09-30 | Hoechst Aktiengesellschaft | Filamentverstärkte Polyestereinlage |
DE4129188A1 (de) * | 1991-09-03 | 1993-03-04 | Spinnstoffabrik Zehlendorf Ag | Schmelzfaserverklebter schichtstoff, verfahren und zwischenprodukt zu dessen herstellung und dessen verwendung |
ATE148928T1 (de) * | 1992-10-02 | 1997-02-15 | Hoechst Ag | Bituminierte dachunterspannbahn und trägerbahn dazu |
EP0656254A1 (de) * | 1993-11-06 | 1995-06-07 | Hoechst Aktiengesellschaft | Textiler Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung |
DE29600830U1 (de) * | 1996-01-19 | 1996-03-07 | Schuller GmbH, 97877 Wertheim | Dichtungsbahn |
-
1996
- 1996-05-10 DE DE19620361A patent/DE19620361C5/de not_active Expired - Fee Related
-
1997
- 1997-04-25 EP EP97106879A patent/EP0806510B1/de not_active Expired - Lifetime
- 1997-04-25 DE DE59705614T patent/DE59705614D1/de not_active Expired - Lifetime
- 1997-05-08 US US08/853,316 patent/US6110572A/en not_active Expired - Fee Related
- 1997-05-09 CA CA002204968A patent/CA2204968A1/en not_active Abandoned
- 1997-05-09 KR KR1019970017763A patent/KR970075018A/ko not_active Application Discontinuation
- 1997-05-12 JP JP9120471A patent/JPH1053949A/ja active Pending
-
1999
- 1999-02-26 US US09/259,017 patent/US6045645A/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0359165A2 (de) * | 1988-09-14 | 1990-03-21 | Hoechst Aktiengesellschaft | Trägerbahn für Dachunterspannbahnen |
DE3941189A1 (de) * | 1988-12-13 | 1990-06-21 | Rhone Poulenc Fibres | Traeger auf basis von nichtgewebtem vlies aus chemischer textilfaser und sein herstellungsverfahren |
DE9207367U1 (de) * | 1992-05-30 | 1992-09-10 | Johns Manville International, Inc., Denver, Col. | Schichtstoff aus Vlies und Gelege |
DE4337984A1 (de) * | 1993-11-06 | 1995-05-11 | Hoechst Ag | Textiler Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006060241A1 (de) * | 2006-12-20 | 2008-06-26 | Johns Manville Europe Gmbh | Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung |
EP1939342A2 (de) | 2006-12-20 | 2008-07-02 | Johns Manville Europe GmbH | Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung |
EP1939342A3 (de) * | 2006-12-20 | 2008-09-03 | Johns Manville Europe GmbH | Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung |
DE202006021073U1 (de) | 2006-12-20 | 2012-04-30 | Johns Manville Europe Gmbh | Trägereinlage und deren Verwendung |
DE202008010258U1 (de) | 2008-07-30 | 2008-10-30 | Johns Manville, Denver | Trägereinlage und beschichtete Dachbahnen |
EP2154281A2 (de) | 2008-07-30 | 2010-02-17 | Johns Manville Europe GmbH | Basiszwischenschicht und beschichtete Dachmembrane |
EP2154281A3 (de) * | 2008-07-30 | 2010-03-17 | Johns Manville Europe GmbH | Basiszwischenschicht und beschichtete Dachmembrane |
DE102009005587A1 (de) | 2009-01-21 | 2010-07-22 | Johns Manville Europe Gmbh | Verfahren zur Qualitätssicherung von verstärkten flächigen Gebilden |
DE102010007939A1 (de) | 2010-02-12 | 2011-08-18 | Johns Manville Europe GmbH, 86399 | Vorkonfektionierte Trägereinlage und beschichtete Dachbahnen |
EP2360304A1 (de) | 2010-02-12 | 2011-08-24 | Johns Manville Europe GmbH | Vorkonfektionierte Trägereinlage und beschichtete Dachbahnen |
Also Published As
Publication number | Publication date |
---|---|
DE19620361C5 (de) | 2004-01-15 |
EP0806510B1 (de) | 2001-12-05 |
DE19620361A1 (de) | 1997-11-13 |
US6045645A (en) | 2000-04-04 |
DE19620361C2 (de) | 1998-09-10 |
JPH1053949A (ja) | 1998-02-24 |
CA2204968A1 (en) | 1997-11-10 |
DE59705614D1 (de) | 2002-01-17 |
KR970075018A (ko) | 1997-12-10 |
US6110572A (en) | 2000-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0806509B1 (de) | Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung | |
EP0761859B1 (de) | Textiler Verbundstoff, Verfahren zu dessen Herstellung, dessen Verwendung sowie Gelege enthaltend Hybridgarne | |
EP1939342B1 (de) | Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung | |
DE60031546T2 (de) | Verbundvliesmaterial | |
EP0572891B1 (de) | Schichtstoff aus Vlies und Gelege | |
EP0435001B1 (de) | Schichtstoff | |
DE4129188A1 (de) | Schmelzfaserverklebter schichtstoff, verfahren und zwischenprodukt zu dessen herstellung und dessen verwendung | |
EP0590629B1 (de) | Bituminierte Dachunterspannbahn und Trägerbahn dazu | |
EP0806510B1 (de) | Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung | |
EP0603633B1 (de) | Dreikomponenten-Schichtstoff | |
DE202008010258U1 (de) | Trägereinlage und beschichtete Dachbahnen | |
DE60005527T2 (de) | Hydrodynamisch verfestigte trägerbahnen und deren verwendung | |
DE19521838A1 (de) | Textiler Kompakt-Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung | |
EP0661153B1 (de) | Wurzelfeste Trägereinlage | |
EP0506051A1 (de) | Filamentverstärkte Polyestereinlage | |
DE19935408B4 (de) | Mehrlagenschichtstoff | |
DE3821011A1 (de) | Mehrschichtige traegerbahn | |
DE19952432B4 (de) | Schichtstoff | |
DE202006021073U1 (de) | Trägereinlage und deren Verwendung | |
DE29608372U1 (de) | Trägereinlage | |
DE19950057A1 (de) | Zwei- oder Mehrlagenschichtstoffe aus Polyesterfilamentvliesen und Glasfasergeweben oder -gelegen | |
DE29609098U1 (de) | Trägereinlage | |
DE19935531C2 (de) | Zweilagenschichtstoff | |
DE3927505C2 (de) | ||
DE29700810U1 (de) | Vliesstoff mit verbesserter Oberflächengüte für Dachunterspannbahnen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT LU NL |
|
17P | Request for examination filed |
Effective date: 19980411 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: JOHNS MANVILLE INTERNATIONAL, INC. |
|
17Q | First examination report despatched |
Effective date: 19991229 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT LU NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REF | Corresponds to: |
Ref document number: 59705614 Country of ref document: DE Date of ref document: 20020117 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020425 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110427 Year of fee payment: 15 Ref country code: FR Payment date: 20110504 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20110426 Year of fee payment: 15 Ref country code: GB Payment date: 20110426 Year of fee payment: 15 Ref country code: NL Payment date: 20110429 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110426 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59705614 Country of ref document: DE Representative=s name: MAI DOERR BESIER EUROPEAN PATENT ATTORNEYS - E, DE Ref country code: DE Ref legal event code: R082 Ref document number: 59705614 Country of ref document: DE Representative=s name: MAI DOERR BESIER PATENTANWAELTE, DE |
|
BERE | Be: lapsed |
Owner name: *JOHNS MANVILLE INTERNATIONAL INC. Effective date: 20120430 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20121101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120425 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20121228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120425 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59705614 Country of ref document: DE Effective date: 20121101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120425 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121101 |