EP0801142B1 - Procédé de traitement de surface d'une pièce métallique, pièce métallique obtenue et ses applications - Google Patents

Procédé de traitement de surface d'une pièce métallique, pièce métallique obtenue et ses applications Download PDF

Info

Publication number
EP0801142B1
EP0801142B1 EP19970400816 EP97400816A EP0801142B1 EP 0801142 B1 EP0801142 B1 EP 0801142B1 EP 19970400816 EP19970400816 EP 19970400816 EP 97400816 A EP97400816 A EP 97400816A EP 0801142 B1 EP0801142 B1 EP 0801142B1
Authority
EP
European Patent Office
Prior art keywords
process according
metal part
surface layer
metal
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19970400816
Other languages
German (de)
English (en)
Other versions
EP0801142A3 (fr
EP0801142A2 (fr
Inventor
Jean-Paul Lebrun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitruvid SA
Original Assignee
Nitruvid SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitruvid SA filed Critical Nitruvid SA
Publication of EP0801142A2 publication Critical patent/EP0801142A2/fr
Publication of EP0801142A3 publication Critical patent/EP0801142A3/fr
Application granted granted Critical
Publication of EP0801142B1 publication Critical patent/EP0801142B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Definitions

  • the present invention relates to a method for processing surface of a metal part, and more particularly, a method of surface hardening by enriching carbon or boron with surface layer located near a surface of the part.
  • a surface treatment of a metal part has been described in which a gas atmosphere containing an element is brought into contact with a surface of the part brought to a temperature between 270 and 550 ° C. interstitial such as carbon or nitrogen, in the ionized state, at a pressure below 1.33.10 -2 mbar (10 mtorr). Due to the low pressure of the gaseous atmosphere, the interstitial content of the surface layer remains low even for treatment times of several hours.
  • these compounds In the case of surface treatment of a steel part stainless, these compounds contain chromium which is taken up in the surface layer of the stainless steel part. This results in a degradation of the part's resistance to corrosion.
  • An object of the present invention is to remedy this drawback by proposing a method for hardening the surface of a part metallic which does not deteriorate its resistance to corrosion.
  • Another object of the present invention is to provide a treatment of the surface of a metal part which can be used industrially, under favorable conditions with regard to costs and duration of treatment.
  • the gaseous compound can consist of a hydrocarbon aliphatic or aromatic or by a cyclan.
  • the gaseous compound can also consist of methane and in this case, the gaseous atmosphere can contain from 5 to 30% in methane volume.
  • the gaseous compound can also consist of a derivative boron gas, for example, a diborane.
  • the gaseous atmosphere may also contain nitrogen or a gaseous derivative of nitrogen such as ammonia.
  • the process applies, in particular, to alloy parts metallic whose structure is face centered cubic, centered cubic or tetragonal, more particularly, to stainless steel parts austenitic or martensitic, with nickel-based alloy parts and to cobalt-based alloy parts.
  • the process can also be applied to alloy parts metallic based on aluminum or based on titanium.
  • the metal part obtained has a surface layer hardened by an interstitial element consisting of at least one of the carbon and boron elements, and optionally, additionally, with nitrogen; the surface layer consists of a homogeneous solid solution free of precipitates containing 5 and 50 atom% and preferably between 10% and 30% interstitial.
  • the part is placed in the enclosure of a treatment furnace surface by plasma.
  • the enclosure is placed under vacuum and then introduced into the enclosure a mixture of gases, the pressure of which is lower than the pressure atmospheric can be between 0.5 and 200 mbar.
  • the mixture of gas consists of a reactive gas on the one hand, and dilution gas on the other parts which are, for example, hydrogen and argon.
  • the reactive gas is a gaseous compound either of carbon or of boron; for example, a aliphatic hydrocarbon, an aromatic hydrocarbon or a cyclane, and, in particular methane, or, for example, a diborane.
  • the mixture gas may also contain a small proportion of a compound nitrogen gas.
  • the gas mixture creating a cold plasma.
  • ionization of the gas mixture creates ions which, by bombarding the surface of the part, can passivate it to make it reactive and heat, and, on the other hand, creates very reactive species of carbon or of boron, which are atoms of which certain electron layers are excited. Highly reactive carbon or boron species react with the surface and penetrate inside by diffusion to form a interstitial solid solution free of precipitates.
  • the surface temperature must be sufficient, and preferably above 300 ° C. But to avoid the formation of precipitated the surface temperature must remain below 460 ° C. So that the penetration of the active elements in the metal takes place satisfactorily it is also necessary that the production of element active on the surface of the part is not too important. Indeed, with the carbon, for example, if the production of active carbon is too fast, it a harmful carbon black deposit forms on the surface of the part for the treatment. To avoid this, the active gas content of the product is limited. gas mixture in order to balance the kinetics of production of active element on the surface of the part, and the kinetics of penetration of the active element in the room.
  • the active gas when the active gas is methane, its content in the gas mixture, is between 5 and 30% and, from preferably around 10%.
  • the gaseous atmosphere in contact with the surface of the part is maintained at a pressure which must be higher at 0.5 and which can go up to 200 mbar.
  • the plasma can be a so-called “discharge plasma", that is to say a plasma generated by an electric discharge between an anode and a cathode, the part to be treated being brought to a cathodic potential and which can itself be the cathode.
  • discharge plasma that is to say a plasma generated by an electric discharge between an anode and a cathode, the part to be treated being brought to a cathodic potential and which can itself be the cathode.
  • the ions are accelerated, they bombard the surface of the part which heats it up enough so that there is no need to provide a means of additional heating.
  • the plasma can also be a plasma generated by a electromagnetic wave generator, or microwave generator, or a "post-discharge" plasma, that is to say a plasma transferred from a plasma generator to the enclosure in which it is located the room.
  • a plasma generated by a electromagnetic wave generator, or microwave generator or a "post-discharge" plasma, that is to say a plasma transferred from a plasma generator to the enclosure in which it is located the room.
  • bombardment of the workpiece surface may be insufficient to cause the necessary heating.
  • we heats the surface of the room for example, by radiation.
  • the duration of the treatment depends on the thickness of the layer treated we want to obtain, this duration can vary between 1 hour and a few tens of hours.
  • the solid solution contains a high proportion of element interstitial, between 5 and 50 atom% and, generally between between 10 and 30 atom%. According to the conditions of implementation of the treatment and in particular, depending on the duration of treatment, it is possible to obtain a hardened surface layer with a thickness of 1 to 60 ⁇ m.
  • the surface layer of the part may present after the treatment of a Vickers Hv hardness greater than 800.
  • This treatment which is applicable to a very wide variety of metal alloys and, in particular, to alloys with a structure face centered cubic, centered cubic or tetragonal (for example, austenitic, ferritic or martensitic stainless steels), allows to obtain a layer 1 to 60 ⁇ m thick, of a solid solution saturated, or even supersaturated, with carbon or boron, homogeneous, that is to say free of carbide or boride precipitates, the hardness of which can be greater than 800 Vickers or even 1000 Vickers and that is very resistant to corrosion. Carbon can be combined with nitrogen to form the layer of solid solution.
  • the alloy is an austenitic steel, the carburetted layer cannot be attacked by chemical reagents commonly used in metallography and has a resistance to attack by salt spray greater than 1000 hours.
  • a second phase we submit the parts to an atmosphere containing carbon in activated form at a temperature generally lower than the treatment temperature during the first phase and for example, between 300 and 350 ° C.
  • the surface layer of the parts is loaded with carbon, so so that a solid solution of carbon in the steel of the nitrogen-laden part, during the first phase.
  • the martensitic steel parts then have both a high wear resistance and very good corrosion resistance.
  • This treatment in two successive phases applies in particular highly stressed martensitic steel mechanical parts such as than parts used in the field of oil drilling or tools or cutting blades.
  • the treatment according to the invention which allows obtain very hard, wear-resistant surface layers and very resistant to corrosion, can be performed on all kinds of parts, and in particular, on any mechanical part subject to wear in corrosive environment (for example: food industry, chemical industry, nuclear industry, marine environment, biomedical applications); mostly austenitic steel container to resist scratching, for example austenitic stainless steel dishes that can be coated before forming; on the blades of sharp stainless steel objects martensitics such as knives and scalpels; on implants orthopedic; on valves; on turbine parts or condensers subject to pitting corrosion.
  • the treatment can, also, be made on a strip or on a metal blank, set work after treatment.
  • the treatment applies in particular, in the case of panels in decorative austenitic stainless steel, for example, with polished panels and / or colored by a process such as anodization.
  • the hardening of the surface of the panels by formation of a solution homogeneous solid of carbon in a surface layer of panels avoids the risk of scratches and degradation of the aesthetic appearance of the panels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

La présente invention concerne un procédé de traitement de surface d'une pièce métallique, et plus particulièrement, un procédé de durcissement de surface par enrichissement en carbone ou en bore d'une couche superficielle située au voisinage d'une surface de la pièce.
Pour durcir la surface des pièces métalliques, notamment de pièces en acier, et plus particulièrement de pièces en acier inoxydable austénitique, dont la résistance à l'usure ou à l'abrasion est médiocre, il est connu d'enrichir une couche superficielle des pièces en un élément interstitiel tel que l'azote à l'aide d'un plasma froid ou d'un faisceau d'ions. On forme ainsi, à la surface de la pièce une couche d'une épaisseur de quelques dizaines ou quelques centaines de micromètres (µm) extrêmement dure et résistante à l'usure. Cette couche est une solution solide d'azote dans la matrice métallique qui présente l'inconvénient de comporter également des précipités de nitrures qui dégradent sensiblement la résistance à la corrosion de la surface. Cette dégradation de la résistance à la corrosion rend le durcissement par solution solide d'azote, impropre à l'utilisation pour de nombreuses applications, en particulier, chaque fois qu'une résistance à la corrosion est nécessaire.
En particulier, dans le cas de pièces en acier inoxydable martensitique comportant une couche superficielle durcie par de l'azote, la tenue à la corrosion des pièces peut devenir insuffisantes ; en outre, la structure de l'acier peut devenir austénitique dans la couche superficielle, ce qui n'est pas favorable pour assurer une bonne dureté.
Dans le GB-A-226122.7, on a décrit un traitement de surface d'une pièce métallique dans lequel on met en contact avec une surface de la pièce portée à une température comprise entre 270 et 550°C, une atmosphère gazeuse renfermant un élément interstitiel tel que le carbone ou l'azote, à l'état ionisé, à une pression inférieure à 1.33.10-2 mbar (10 mtorr). Du fait de la faible pression de l'atmosphère gazeuse, la teneur de la couche superficielle en interstitiel reste faible même pour des durées de traitement de plusieurs heures.
En outre, dans certains cas, et plus particulièrement, pour les plus fortes températures de traitement des composés tels que des carbures ou des nitrures sont susceptibles de se former dans la couche superficielle, sous forme de précipités.
Dans le cas du traitement de surface d'une pièce en acier inoxydable, ces composés contiennent du chrome qui est prélevé dans la couche superficielle de la pièce en acier inoxydable. Il en résulte une dégradation de la tenue de la pièce à la corrosion.
Un but de la présente invention est de remédier à cet inconvénient en proposant un procédé de durcissement de la surface d'une pièce métallique qui ne détériore pas sa résistance à la corrosion.
Un autre but de la présente invention est de proposer un traitement de surface d'une pièce métallique qui puisse être mis en oeuvre industriellement, dans des conditions favorables en ce qui concerne les coûts et la durée du traitement .
A cet effet, l'invention a pour objet un procédé de traitement de surface d'une pièce métallique, dans lequel on introduit au moins un élément interstitiel constitué par l'un au moins des éléments carbone et bore dans une couche superficielle de la pièce voisine d'une surface de la pièce en mettant en contact avec la surface de la pièce, l'élément interstitiel à l'état activé et en faisant diffuser l'élément interstitiel dans la couche superficielle de la pièce, caractérisé en ce que :
  • on porte la pièce, au moins dans sa zone superficielle, à une température comprise entre 300 et 460°C, et
  • on maintient une atmosphère gazeuse renfermant l'élément interstitiel activé au contact de la surface de la pièce, à une pression comprise entre 0,5 et 200 mbars;
de manière à obtenir, dans la couche superficielle, une solution solide exempte de précipités renfermant de 5 à 50 atomes % d'élément interstitiel.
De préférence :
  • la pression de l'atmosphère gazeuse au contact de la surface de la pièce pendant le traitement est comprise entre 0,5 et 20 m bars;
  • l'atmosphère gazeuse est renferme au moins un composé gazeux comportant l'élément interstitiel, dans un plasma froid.
  • l'atmosphère gazeuse renferme un diluant du composé gazeux constitué par l'un au moins des gaz suivants : hydrogène, argon, mélange d'hydrogène et d'argon.
Le composé gazeux peut être constitué par un hydrocarbure aliphatique ou aromatique ou par un cyclane.
Le composé gazeux peut être également constitué par du méthane et dans ce cas, l'atmosphère gazeuse peut renfermer de 5 à 30 % en volume de méthane.
Le composé gazeux peut encore être constitué par un dérivé gazeux du bore, par exemple, un diborane.
L'atmosphère gazeuse peut en outre, renfermer de l'azote ou un dérivé gazeux de l'azote tel que l'ammoniac.
Le procédé s'applique, notamment, aux pièces en alliage métallique dont la structure est cubique à face centrée, cubique centrée ou tétragonale, plus particulièrement, aux pièces en acier inoxydable austénitique ou martensitique, aux pièces en alliage à base de nickel et aux pièces en alliage à base de cobalt.
Le procédé peut s'appliquer également aux pièces en alliage métallique à base d'aluminium ou à base de titane.
La pièce métallique, obtenue, comporte une couche superficielle durcie par un élément interstitiel constituée par l'un au moins des éléments carbone et bore, et éventuellement, de manière additionelle, par de l'azote; la couche superficielle est constituée par une solution solide homogène exempte de précipités renfermant de 5 et 50 atomes % et de préférence entre 10 % et 30 % d'élément interstitiel.
L'invention va maintenant être décrite de façon plus précise mais non limitative et illustrée par les exemples qui suivent.
Pour durcir la surface d'une pièce métallique, par le procédé selon l'invention, on dispose la pièce dans l'enceinte d'un four de traitement de surface par plasma. L'enceinte est mise sous vide puis on introduit dans l'enceinte un mélange de gaz, dont la pression inférieure à la pression atmosphérique peut être comprise entre 0,5 et 200 mbars. Le mélange de gaz est constitué d'un gaz réactif d'une part, et de gaz de dilution d'autre part qui sont, par exemple, de l'hydrogène et de l'argon. Le gaz réactif est un composé gazeux soit de carbone, soit de bore; par exemple, un hydrocarbure aliphatique, un hydrocarbure aromatique ou un cyclane, et, notamment du méthane, ou, par exemple, un diborane. Le mélange gazeux peut également comporter une petite proportion d'un composé azoté gazeux.
Pour effectuer le traitement proprement dit, on ionise, au moins partiellement, le mélange gazeux, en créant un plasma froid. L'ionisation du mélange gazeux, d'une part, crée des ions qui, en bombardant la surface de la pièce, peuvent la dépassiver pour la rendre réactive et la chauffer, et, d'autre part, crée des espèces très réactives de carbone ou de bore, qui sont des atomes dont certaines couches électroniques sont excitées. Les espèces très réactives de carbone ou de bore réagissent avec la surface et pénètrent à l'intérieur par diffusion pour former une solution solide interstitielle exempte de précipités.
Pour que la diffusion du carbone ou du bore se fasse dans de bonnes conditions, la température de la surface doit être suffisante, et de préférence supérieure à 300 °C. Mais pour éviter la formation de précipités la température de la surface doit rester inférieure à 460 °C. Pour que la pénétration des éléments actifs dans le métal se fasse de façon satisfaisante, il est aussi nécessaire que la production d'élément actif à la surface de la pièce ne soit pas trop importante. En effet, avec le carbone, par exemple, si la production de carbone actif est trop rapide, il se forme, sur la surface de la pièce, un dépôt de noir de carbone néfaste pour le traitement. Pour éviter cela, on limite la teneur en gaz actifs du mélange gazeux afin d'équilibrer la cinétique de production d'élément actif à la surface de la pièce, et la cinétique de pénétration de l'élément actif dans la pièce. Par exemple, lorsque le gaz actif est du méthane, sa teneur dans le mélange gazeux, est comprise entre 5 et 30 % et, de préférence, de l'ordre de 10 %. L'atmosphère gazeuse au contact de la surface de la pièce est maintenue à une pression qui doit être supérieure à 0,5 et qui peut aller jusqu'à 200 mbars .
Le plasma peut être un plasma dit de "décharge, c'est-à-dire un plasma engendré par une décharge électrique entre une anode et une cathode, la pièce à traiter étant portée à un potentiel cathodique et pouvant être, elle même, la cathode. Dans ce cas, les ions sont accélérés, ils viennent bombarder la surface de la pièce ce qui l'échauffe suffisamment pour qu'il n'y ait pas besoin de prévoir de moyen de chauffage supplémentaire.
Le plasma peut également, être un plasma engendré par un générateur d'ondes électromagnétiques, ou un générateur de micro-ondes, ou un plasma de "post-décharge", c'est-à-dire un plasma transféré depuis un générateur de plasma jusqu'à l'enceinte dans laquelle se trouve la pièce. Dans ce cas, le bombardement de la surface de la pièce peut être insuffisant pour provoquer l'échauffement nécessaire. Aussi, on chauffe la surface de la pièce, par exemple, par rayonnement.
La durée du traitement est fonction de l'épaisseur de la couche traitée qu'on veut obtenir , cette durée peut varier entre 1 heure et quelques dizaines d'heures.
On a pu montrer qu'en limitant la température d'échauffement de la couche superficielle de la pièce au cours du traitement, à une valeur maximale de 460°C et en maintenant au contact de la surface de la pièce une atmosphère gazeuse contenant un élément interstitiel constitué par le carbone ou le bore à l'état activé, à une pression comprise entre 0,5 et 200 mbars, on obtient une couche superficielle constituée par une solution solide homogène totalement exempte de précipités, de l'élément interstitiel dans le métal de la pièce.
La solution solide renferme une forte proportion d'élément interstitiel, comprise entre 5 et 50 atomes % et, généralement comprise entre 10 et 30 atomes % . Suivant les conditions de mise en oeuvre du traitement et en particulier, en fonction de la durée du traitement, il est possible d'obtenir une couche superficielle durcie d'une épaisseur de 1 à 60 µm. La couche superficielle de la pièce peut présenter après le traitement une dureté Vickers Hv supérieure à 800.
Ce traitement, qui est applicable à une très grande variété d'alliages métalliques et, en particulier, aux alliages ayant une structure cubique à face centrée, cubique centrée ou tétragonale (par exemple, les aciers inoxydables austénitiques, ferritiques ou martensitiques), permet d'obtenir une couche de 1 à 60 µm d'épaisseur, d'une solution solide saturée, ou même sursaturée, de carbone ou de bore, homogène, c'est-à-dire exempte de précipités de carbures ou de borures, dont la dureté peut être supérieure à 800 Vickers ou même à 1000 Vickers et qui est très résistante à la corrosion. Le carbone peut être associé à de l'azote pour former la couche de solution solide. Par exemple, lorsque l'alliage est un acier austénitique, la couche carburée est inattaquable par les réactifs chimiques utilisés habituellement en métallographie et a une résistance à l'attaque par un brouillard salin supérieure à 1000 heures.
Dans le cas de pièces en acier inoxydable martensitique, par exemple de pièces mécaniques utilisées dans des milieux corrosifs et soumises à l'usure ou à l'abrasion, on a réalisé un double traitement de surface permettant d'obtenir une bonne résistance à l'usure et à la corrosion. Mais dans une première phase, on soumet les pièces à une atmosphère gazeuse contenant de l'azote ou une substance renfermant de l'azote, à une température comprise entre 340 et 450°C et de préférence, entre 350 et 380°C, par exemple, à une température de l'ordre de 360°C. Les pièces présentent, après traitement, une couche superficielle chargée en azote. Cette couche s'est avérée présenter une tenue à la corrosion médiocre. Dans une seconde phase, on soumet les pièces à une atmosphère renfermant du carbone sous forme activée à une température généralement inférieure à la température de traitement au cours de la première phase et par exemple, comprise entre 300 et 350°C. La couche superficielle des pièces se charge en carbone, de telle sorte que se forme dans la couche superficielle, une solution solide de carbone dans l'acier de la pièce chargée en azote, lors de la première phase. Les pièces en acier martensitique présentent alors à la fois une forte résistance à l'usure et une très bonne tenue à la corrosion.
Ce traitement en deux phases successives s'applique en particulier aux pièces mécaniques en acier martensitique fortement sollicitées telles que les pièces utilisées dans le domaine du forage pétrolier ou encore aux outils ou lames de coupe.
A titre d'exemple, on a traité des raccords "rapides" en acier inoxydable 316 L, travaillant en milieu corrosif. Le traitement a été fait dans une atmosphère de méthane dilué dans de l'argon, à une température d'environ 400°C, pendant des durées comprises entre 24 et 36 heures. Les couches obtenues avaient une épaisseur comprise entre 20 et 50 µm, une dureté supérieure à 800 Vickers et une résistance à l'attaque par un brouillard salin supérieur à 1000 heures.
Egalement à titre d'exemple, on a traité des écrous en acier inoxydable austénitique destinés à l'industrie nucléaire, pendant 12 heures à une température d'environ 420 °C. Les écrous ainsi traités avaient des caractéristiques anti-grippantes remarquables du fait du niveau de dureté obtenu sur les filetages (Hv >800).
On a pu obtenir une très forte amélioration des caractéristiques de nombreuses pièces soumises au frottement et à l'usure en atmosphère corrosive.
Dans le cas de l'acier inoxydable austénitique, on a pu obtenir une tenue à l'usure dix fois supérieure à la tenue à l'usure d'un acier non-traité, la tenue à l'usure étant définie de manière quantitative à partir d'une mesure de la perte de poids d'un échantillon soumis à l'usure. Les pièces traitées ont également une tenue dans un brouillard salin supérieur à 1000 heures sans formation de piqûres.
Parmi les applications à des pièces soumises au frottement et à l'usure dans un milieu corrosif, on peut citer :
  • les pièces pour robinets et vannes utilisés dans un milieu corrosif telles que les clapets, les boisseaux, les sièges et les opercules.
La couche superficielle de la pièce sous forme de solution solide homogène d'un interstitiel tel que le carbone permet d'éviter tout grippage et d'obtenir une amélioration de la résistance à l'usure.
  • des éléments d'assemblage vissés tels que les écrous, les vis et les boulons en acier inoxydable austénitique.
Le niveau de dureté obtenu sur le filetage (Hv >800) élimine tout risque de grippage. De plus, un essai en brouillard salin met en évidence une absence totale de piqûres de corrosion après 1000 heures d'essai.
  • des raccords rapides en acier inoxydable austénitique pour les fluides corrosifs.
  • des rouleaux de transport de tôles dans une installation de décapage de tôles, avant revêtement électrolytique.
Les rouleaux doivent résister à l'usure au passage de tôles et à l'action agressive des bains acides de décapage.
  • des pièces mobiles de pompes utilisées dans l'industrie chimique ou l'industrie alimentaire, telles que les pistons, les chemises de cylindres, les rotors, les cages, les guides ou les mélangeurs.
De manière générale, le traitement selon l'invention, qui permet d'obtenir des couches de surface très dures, très résistantes à l'usure et très résistantes à la corrosion, peut être effectué sur toute sorte de pièces, et notamment, sur toute pièce mécanique soumise à l'usure en milieu corrosif (à titre d'exemple : industrie alimentaire, industrie chimique, industrie nucléaire, milieu marin, applications biomédicales); sur tout récipient en acier austénitique devant résister aux rayures, par exemples plats en acier inoxydable austénitique qui peuvent être revêtus avant formage; sur les lames d'objets coupants en acier inoxydable martensitique tels que des couteaux et des bistouris ; sur des implants orthopédiques ; sur des soupapes ; sur des pièces de turbine ou de condenseurs soumises à la corrosion par piqûres. Le traitement peut, également, être réalisé sur une bande ou sur un flan métallique, mis en oeuvre après traitement.
Le traitement s'applique en particulier, dans le cas de panneaux en acier inoxydable austénitique décoratifs, par exemple, aux panneaux polis et/ou colorés par un procédé tel que l'anodisation. Dans ce cas, le durcissement de la surface des panneaux par formation d'une solution solide homogène de carbone dans une couche superficielle des panneaux, permet d'éviter des risques de rayures et de dégradation de l'aspect esthétique des panneaux.

Claims (28)

  1. Procédé de traitement de surface d'un pièce métallique, dans lequel on introduit au moins un élément interstitiel constitué par l'un au moins des éléments carbone et bore dans une couche superficielle de la pièce voisine d'une surface de la pièce en mettant en contact avec la surface de la pièce l'élément interstitiel à l'état activé et en faisant diffuser l'élément interstitiel dans la couche superficielle de la pièce, caractérisé en ce que :
    on porte la pièce, au moins dans sa zone superficielle, à une température comprise entre 300 et 460°C, et
    on maintient une atmosphère gazeuse renfermant l'élément interstitiel activé au contact de la surface de la pièce, à une pression comprise entre 0,5 et 200 mbars,
    de manière à obtenir, dans la couche superficielle, une solution solide exempte de précipités renfermant de 5 à 50 atomes % d'élément interstitiel.
  2. Procédé suivant la revendication 1, caractérisé en ce que la pression de l'atmosphère gazeuse est comprise entre 0,5 et 20 mbars.
  3. Procédé suivant l'une quelconque des revendications 1 et 2, caractérisé en ce que l'atmosphère gazeuse renferme au moins un composé gazeux comportant l'élément interstitiel activé, dans un plasma froid.
  4. Procédé suivant la revendication 3, caractérisé en ce que l'atmosphère gazeuse renferme un diluant du composé gazeux constitué par l'un au moins des gaz suivants : hydrogène, argon, un mélange d'hydrogène et d'argon.
  5. Procédé suivant l'une quelconque des revendications 3 et 4, caractérisé en ce que le composé gazeux est constitué par un hydrocarbure aliphatique ou aromatique ou un cyclane.
  6. Procédé suivant l'une quelconque des revendications 3 et 4, caractérisé en ce que le composé gazeux est constitué par du méthane et que l'atmosphère renferme de 5 à 30 % en volume de méthane.
  7. Procédé suivant l'une quelconque des revendications 3 et 4, caractérisé en ce que le composé gazeux est un dérivé gazeux du bore tel qu'un diborane.
  8. Procédé suivant l'une quelconque des revendications 3 à 7, caractérisé en ce que l'atmosphère gazeuse renferme en outre de l'azote ou un dérivé gazeux de l'azote, tel que l'ammoniac.
  9. Procédé suivant l'une quelconque des revendications 3 à 8, caractérisé en ce que le plasma est généré par une décharge électrique entre une anode et une cathode qui peut être la pièce métallique.
  10. Procédé suivant l'une quelconque des revendications 3 à 8, caractérisé en ce que le plasma est généré par un générateur de micro-ondes ou un générateur d'ondes électromagnétiques et éventuellement transféré pour être mis en contact avec la surface de la pièce.
  11. Procédé suivant l'une quelconque des revendications 1 à 10, caractérisé en ce que la surface de la pièce est chauffée par rayonnement.
  12. Procédé suivant l'une quelconque des revendications 1 à 9, caractérisé en ce que la pièce est un alliage métallique dont la structure est cubique à face centrée, cubique centrée ou tétragonale.
  13. Procédé suivant la revendication 12, caractérisé en ce que l'alliage métallique est l'un des alliages suivants : acier inoxydable austénitique, acier inoxydable martensitique, alliage à base de nickel, alliage à base de cobalt.
  14. Procédé suivant la revendication 12, caractérisé en ce que l'alliage métallique est un alliage à base d'aluminium ou un alliage à base de titane.
  15. Procédé suivant la revendication 1, dans le cas d'une pièce en acier inoxydable martensitique, caractérisé en ce que :
    dans une première phase, on soumet la pièce à une atmosphère renfermant de l'azote, à une température comprise entre 340 et 450°C et de préférence, entre 350 et 380°C, de manière à charger une couche superficielle de la pièce en azote, et
    dans une seconde phase, on soumet la pièce chargée en azote, à une atmosphère renfermant du carbone à l'état activé, à une température généralement inférieure à la température du traitement au cours de la première phase et comprise de préférence entre 300 et 380°C.
  16. Pièce métallique comportant une couche superficielle durcie par un élément interstitiel constitué par l'un au moins des éléments carbone et bore et éventuellement de manière additionnelle par de l'azote, caractérisée en ce que la couche superficielle est constituée par une solution solide homogène exempte de précipités renfermant de 5 à 50 atomes % d'élément interstitiel.
  17. Pièce métallique suivant la revendication 16, caractérisée en ce que la couche superficielle renferme de 10 à 30 atomes % d'interstitiel.
  18. Pièce métallique suivant l'une quelconque des revendications 16 et 17, caractérisée en ce que la couche superficielle a une épaisseur comprise entre 1 et 60 µm.
  19. Pièce métallique suivant l'une quelconque des revendications 16 à 18, caractérisée en ce que la couche superficielle a une dureté Vickers Hv supérieure à 800.
  20. Utilisation d'une pièce métallique suivant l'une quelconque des revendications 16 à 19 comme pièce de frottement en ambiance corrosive et en particulier comme clapet, boisseau, siège ou opercule d'un robinet ou d'une vanne utilisée dans un milieu corrosif.
  21. Utilisation d'une pièce métallique en acier inoxydable austénitique suivant l'une quelconque des revendications 16 à 19 comme élément d'un assemblage vissé tel qu'un écrou, une vis ou un boulon utilisable dans un milieu corrosif.
  22. Utilisation d'une pièce métallique en acier inoxydable austénitique suivant l'une quelconque des revendications 16 à 19 comme raccord pour le transport de fluides spéciaux.
  23. Utilisation d'une pièce métallique suivant l'une quelconque des revendications 16 à 19 comme rouleau de transport de tôle dans une installation de décapage.
  24. Utilisation d'une pièce métallique suivant l'une quelconque des revendications 16 à 19 comme pièce mobile d'une pompe utilisée dans l'industrie chimique ou dans l'industrie alimentaire, telle qu'un piston, une chemise de cylindre, un rotor, une cage, un guide ou un mélangeur.
  25. Utilisation d'une pièce métallique suivant l'une quelconque des revendications 16 à 19 comme implant orthopédique.
  26. Utilisation d'une pièce métallique suivant l'une quelconque des revendications 16 à 19 comme panneau décoratif poli et/ou coloré.
  27. Pièce métallique suivant l'une quelconque des revendications 16 à 19, caractérisée en ce qu'elle est constituée par un produit plat en acier inoxydable austénitique destiné à subir un formage.
  28. Pièce métallique suivant l'une quelconque des revendications 16 à 19, caractérisée en ce qu'elle est constituée par un objet coupant en acier inoxydable martensitique, tel qu'un couteau ou un bistouri.
EP19970400816 1996-04-12 1997-04-09 Procédé de traitement de surface d'une pièce métallique, pièce métallique obtenue et ses applications Expired - Lifetime EP0801142B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9604561 1996-04-12
FR9604561A FR2747398B1 (fr) 1996-04-12 1996-04-12 Procede de traitement de surface d'une piece metallique

Publications (3)

Publication Number Publication Date
EP0801142A2 EP0801142A2 (fr) 1997-10-15
EP0801142A3 EP0801142A3 (fr) 1998-09-16
EP0801142B1 true EP0801142B1 (fr) 2002-07-03

Family

ID=9491129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970400816 Expired - Lifetime EP0801142B1 (fr) 1996-04-12 1997-04-09 Procédé de traitement de surface d'une pièce métallique, pièce métallique obtenue et ses applications

Country Status (3)

Country Link
EP (1) EP0801142B1 (fr)
DE (1) DE69713662T2 (fr)
FR (1) FR2747398B1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9715180D0 (en) 1997-07-19 1997-09-24 Univ Birmingham Process for the treatment of austenitic stainless steel articles
FR2807956B1 (fr) * 2000-04-19 2003-10-24 Nitruvid Procede de traitement de surface d'une piece et piece obtenue
GB0209797D0 (en) * 2002-04-29 2002-06-05 Univ Birmingham Method of surface hardening cobalt-chromium based alloy articles
LU90986B1 (en) * 2002-11-07 2004-05-10 Plasma Metal S A Process for nitriding articles in bulk.
FR2888586B1 (fr) * 2005-07-13 2008-01-11 Nitruvid Snc Procede de traitement d'une piece en titane ou alliage de titane et piece obtenue
FR2980804B1 (fr) 2011-09-30 2014-06-27 Areva Np Procede de realisation a partir d'une ebauche en acier inoxydable austenitique a faible teneur en carbone d'une gaine resistant a l'usure et a la corrosion pour reacteur nucleaire, gaine et grappe de commande correspondantes
FR2980803B1 (fr) 2011-09-30 2013-10-25 Areva Np Procede de realisation d'une piece en acier inoxydable resistant a l'usure et a la corrosion pour reacteur nucleaire, piece et grappe de commande correspondantes.
DE102012216117A1 (de) * 2012-09-12 2014-03-13 Hilti Aktiengesellschaft Verfahren zum Herstellen einer selbstschneidenden Schraube
CN104769148B (zh) 2012-11-07 2016-11-23 阿海珐核能公司 用于在遮掩部分的同时热化学处理部件的方法及相应掩模
CN108486525A (zh) * 2017-02-22 2018-09-04 学校法人丰田学园 金属制品的制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RO74414A2 (fr) * 1974-03-23 1981-09-24 Institutul De Cercetari Si Proiectari Tehnologice Pentru Sectoare Calde,Ro Procede de nitruration ionique
DD159350A1 (de) * 1981-06-02 1983-03-02 Bernd Buecken Verfahren zur haertung von eisenwerkstoffen in einer stromstarken gasentladung
FI63783C (fi) * 1981-09-30 1983-08-10 Kymin Oy Kymmene Ab Foerfarande foer nitrering vid laogt tryck med hjaelp av glimurladdning
JPS60211061A (ja) * 1984-04-05 1985-10-23 Toyota Central Res & Dev Lab Inc アルミニウム材のイオン窒化方法
FR2587729B1 (fr) * 1985-09-24 1988-12-23 Centre Nat Rech Scient Procede et dispositif de traitement chimique, notamment de traitement thermochimique et de depot chimique dans un plasma homogene de grand volume
JPH01176066A (ja) * 1987-12-28 1989-07-12 Hamamatsu Netsushiyori Kogyo Kk イオン窒化処理済サーメットチップ及びその製造方法
JPH01261213A (ja) * 1988-04-12 1989-10-18 Idemitsu Petrochem Co Ltd 4a,Va,6a族金属の炭化方法
FR2630133B1 (fr) * 1988-04-18 1993-09-24 Siderurgie Fse Inst Rech Procede pour l'amelioration de la resistance a la corrosion de materiaux metalliques
FR2652591B1 (fr) * 1989-10-03 1993-10-08 Framatome Procede d'oxydation superficielle d'une piece en metal passivable, et elements d'assemblage combustible en alliage metallique revetus d'une couche d'oxyde protectrice.
FR2653137B1 (fr) * 1989-10-17 1993-06-11 Siderurgie Fse Inst Rech Procede de traitement de surface de produits siderurgiques par action d'un plasma.
GB2261227B (en) * 1991-11-08 1995-01-11 Univ Hull Surface treatment of metals
JP2917810B2 (ja) * 1994-04-28 1999-07-12 住友金属工業株式会社 表面の耐剥離特性に優れた炭窒化処理鋼

Also Published As

Publication number Publication date
EP0801142A3 (fr) 1998-09-16
DE69713662T2 (de) 2002-12-05
FR2747398A1 (fr) 1997-10-17
DE69713662D1 (de) 2002-08-08
EP0801142A2 (fr) 1997-10-15
FR2747398B1 (fr) 1998-05-15

Similar Documents

Publication Publication Date Title
Vasylyev et al. Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy
EP0801142B1 (fr) Procédé de traitement de surface d'une pièce métallique, pièce métallique obtenue et ses applications
EP3205742B1 (fr) Procédé de modification de la surface d'un métal à base de fer
FR2493348A1 (fr) Procede et dispositif de depot physique par vapeur de produits de revetement durs, notamment pour outils
GB2458518A (en) An aerospace bearing
FR2481632A1 (fr) Procede de fabrication d'articles revetus d'un materiau extremement dur
JP2007169698A (ja) 非晶質硬質炭素皮膜
EP0537062A1 (fr) Procédé de traitement pour déposer une couche de carbone en phase vapeur sur la surface d'une pièce métallique
EP0010484B1 (fr) Perfectionnement dans la chromisation des aciers par voie gazeuse
EP0509875A1 (fr) Procédé pour le dépôt sur au moins une pièce, notamment une pièce métallique, d'une couche dure à base de pseudo carbone diamant ainsi que pièce revêtue d'une telle couche
Maia et al. Comparative study of surface modification techniques through average flank wear in high speed steel tools coated with thin TiN film
Furlan et al. Diamond-like carbon films deposited by hydrocarbon plasma sources
Stock et al. Fundamental and applied aspects of the plasma-assisted nitriding process for aluminium and its alloys
EP2066829A2 (fr) Couche d'alliage d'or comprenant des atomes d'azote inseres, procédé de traitement associé
JP2773092B2 (ja) 表面被覆鋼製品
EP1274873B1 (fr) Procede de traitement de surface d'une piece et piece obtenue
Slat et al. Effect of diamond-like carbon coating on corrosion rate of machinery steel HQ 805
JP5664950B2 (ja) 転造チタン合金ねじ
EP4045689A1 (fr) Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux
Grenadyorov et al. Hydrogen-Free Active Screen Plasma Nitriding of AISI 316 L Stainless Steel
EP0885980A2 (fr) Procédé pour la formation, par traitement thermochimique sans plasma, d'une couche superficielle présentant une dureté élevée
Andriyanti et al. Titanium nitride (TiN) deposition on the surface of Al-5083 using DC sputtering method to improve its hardness and wear resistance
Ashrafizadeh Plasma-assisted surface treatment of aluminium alloys to combat wear
EP3807450B1 (fr) Pièce revêtue par un revêtement de carbone amorphe non-hydrogéné sur une sous-couche comportant du chrome, du carbone et du silicium
KR101466221B1 (ko) 절삭 공구의 내마모성 향상방법 및 이에 따라 내마모성이 향상된 절삭 공구

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19990304

17Q First examination report despatched

Effective date: 20010326

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI LU NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69713662

Country of ref document: DE

Date of ref document: 20020808

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020925

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030404

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20150320

Year of fee payment: 19

Ref country code: NL

Payment date: 20150313

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150409

Year of fee payment: 19

Ref country code: CH

Payment date: 20150407

Year of fee payment: 19

Ref country code: GB

Payment date: 20150414

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150429

Year of fee payment: 19

Ref country code: FR

Payment date: 20150423

Year of fee payment: 19

Ref country code: IT

Payment date: 20150423

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69713662

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160409

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160501

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160409

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160409