EP4045689A1 - Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux - Google Patents

Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux

Info

Publication number
EP4045689A1
EP4045689A1 EP20851331.7A EP20851331A EP4045689A1 EP 4045689 A1 EP4045689 A1 EP 4045689A1 EP 20851331 A EP20851331 A EP 20851331A EP 4045689 A1 EP4045689 A1 EP 4045689A1
Authority
EP
European Patent Office
Prior art keywords
depth
combination layer
hardness
equal
diffusion zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20851331.7A
Other languages
German (de)
English (en)
Inventor
Luc HERMANN
Vincent MONTEUX
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydromecanique et Frottement SAS
Original Assignee
Hydromecanique et Frottement SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydromecanique et Frottement SAS filed Critical Hydromecanique et Frottement SAS
Publication of EP4045689A1 publication Critical patent/EP4045689A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/38Heating by cathodic discharges
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding
    • C23C8/56Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the field of the invention is that of the surface treatment of ferrous metal parts, in particular very low or low alloy steel.
  • the parts can receive one or more treatments making it possible to improve some of their performances, among which the frictional properties, the wear resistance, the fatigue resistance, the chipping resistance, the resistance. corrosion, etc.
  • document WO2011013362A1 describes a method of treating a part, comprising a nitriding operation, a coating operation with a chemical conversion film (sol-gel), and an induction hardening operation.
  • a nitriding operation comprising a nitriding operation, a coating operation with a chemical conversion film (sol-gel), and an induction hardening operation.
  • the aim of the present invention is to remedy the above drawbacks, while maintaining a good compromise between the different properties of the part.
  • the invention relates to a process for treating a piece of ferrous metal, comprising:
  • a nitriding operation forming on the part a combination layer having a thickness between 5 ⁇ m and 30 ⁇ m, and a diffusion zone arranged under and in contact with the combination layer having a thickness between 100 ⁇ m and 500 ⁇ m; then - a high-frequency induction hardening operation of the part, to an induction depth greater than or equal to 0.5 mm, causing hardening of the part providing said part:
  • the method of the invention makes it possible to obtain a part exhibiting both high resistance to wear by abrasion and adhesion, improved friction properties and resistance to chipping, as well as good corrosion resistance. .
  • the method of the invention is also simpler to implement and less expensive than the methods of the prior art because it saves the arrangement of a protective film of the combination layer, as well as the possible removal of said layer. protective film.
  • the protective film can be of any type suitable for preventing degradation of the combination layer during hardening by high frequency induction, this degradation being able to manifest itself by chipping, cracking, or fracturing of the combination layer.
  • the protective film can be a sol-gel film. Therefore, the high-frequency induction hardening operation is performed without a sol-gel film.
  • the treatment process according to the invention has the following different characteristics taken alone or according to their technically possible combinations: the nitriding operation is carried out with gas, or by plasma, or by molten salts; the nitriding operation is carried out at a temperature between 500 ° C and 630 ° C, for a period of between 15 minutes and 3 hours; the induction hardening operation is not followed by a tempering operation; the workpiece high-frequency induction hardening operation is carried out so as to retain ferrite in the workpiece between the diffusion zone / combination layer interface and a depth of 500 ⁇ m, preferably between the zone interface diffusion / combination layer and a depth of 300 ⁇ m.
  • the diffusion zone / combination layer interface means the contact surface between the diffusion zone and the overlying combination layer. Quenching is quick and does not not completely transform the part's ferrite into martensite over its processing depth, so that ferrite remains over the depth treated by HF quenching at the end of the process.
  • the depth of 500 ⁇ m corresponds to an induction depth where hardening and / or changes in the metallurgical structure of the part are observed; the high-frequency induction hardening operation of the part is carried out so as to have a residual ferrite level in the part, between the diffusion zone / combination layer interface and a depth of 500 ⁇ m, between 1% and 50% by volume, preferably between 1% and 30%, and more preferably between 5% and 30%.
  • the level of residual ferrite is volume, and corresponds to the ratio of the volume of ferrite to the volume of the rest of the part in the zone considered; the high-frequency induction hardening operation of the part is carried out so as to have a residual ferrite level in the part, between the diffusion zone / combination layer interface and a depth of 500 ⁇ m, between 5% and 20% by volume, preferably between 5% and 15%; the method comprises an impregnation step subsequent to the high-frequency induction hardening operation. If a tempering step is performed, impregnation is performed after tempering. It can be done for example by soaking or by spraying.
  • Impregnation protects the part because it makes it possible to delay the onset of corrosion, reduce the corrosion rate and thus increase the life of the part; the process provides the part with corrosion resistance greater than 80 hours during a neutral salt spray test.
  • Corrosion resistance is measured by a neutral salt spray test, sometimes also called a standard salt spray, according to EN ISO 9227; the high-frequency induction hardening operation is carried out with the following parameters:
  • This dual condition on frequency and linear energy makes it possible to obtain a ferrous metal part whose mechanical properties are greatly improved compared to parts of the state of the art, in particular resistance to wear by abrasion and adhesion, friction, resistance to chipping, while maintaining good corrosion resistance.
  • the frequency and linear energy are adjusted according to the morphology of the part, for example its diameter; the high-frequency induction hardening operation is carried out with a running speed of between 5 and 40 mm / s.
  • the invention also relates to a part made of ferrous metal, comprising a combination layer having a thickness between 5 ⁇ m and 30 ⁇ m, and a diffusion zone arranged under and in contact with the combination layer, having a thickness between 100 pm and 500 pm, said part having:
  • a hardness of the part greater than or equal to 500 HV0.05 at a depth of 500 ⁇ m, said part comprising ferrite and martensite between the diffusion zone / combination layer interface and a depth of 500 ⁇ m.
  • the ferrous metal part according to the invention has the following different characteristics taken alone or according to their technically possible combinations: the hardness of the part at a depth of 0.5 mm is greater than or equal to a hardness of core + 100 HV0.05; the hardness of the part at a depth of 0.25 mm is greater than or equal to a core hardness + 350 HV0.05; the part is made of very low alloy steel, of the C10-C70 family, with a manganese content of less than 1%. Under these conditions, the steel does not exhibit any significant addition element, that is to say an element which would exceed 5% by mass relative to the total mass of the steel.
  • the part is made of C45 grade steel.
  • grade designates a specific steel in a family. In particular, this is the C45 grade chosen from the C10 to C70 family of steels; the part is made of low alloy steel, with no addition element exceeding 5% by mass.
  • the part is made of 31CrMo4 grade steel; the part comprises ferrite and martensite between the diffusion zone / combination layer interface and a depth of 300 ⁇ m; the part comprises a level of ferrite, between the diffusion zone / combination layer interface and a depth of 500 ⁇ m, between 1% and 50% by volume, preferably between 1% and 30%, and more preferably between 5% and 30%; the part comprises a level of ferrite, between the diffusion zone / combination layer interface and a depth of 500 ⁇ m, between 5% and 20% by volume, preferably between 5% and 15%; the part exhibits a corrosion resistance greater than 80 hours in a neutral salt spray test.
  • thickness is understood to mean the distance between the upper limit and the lower limit of a layer or a given area within the piece of ferrous metal. The thickness is perpendicular to the average surface of said upper and lower limits.
  • depth designates the distance between the surface of the part, also called the free surface, and a given point within the part. The depth is perpendicular to the mean surface of the free surface.
  • a hardness of the diffusion zone greater than or equal to 500 HV0.05 at a depth of 500 ⁇ m means that at a distance of 500 ⁇ m within the part, counted from the free surface of the part. part, the hardness of the diffusion zone is greater than or equal to 500 HV0.05.
  • nitriding In a manner known per se, nitriding consists of immersing a piece of ferrous metal in a medium liable to give up nitrogen.
  • nitriding includes nitrocarburizing, which is a variant of nitriding, in which carbon enters the part in addition to nitrogen.
  • the ARCOR process described in the remainder of this text is a preferred example of a nitrocarburizing process.
  • the diffusion zone is arranged under the combination layer, and extends towards the core of the part (away from the free surface) from said combination layer.
  • the combination layer for its part can be on the surface of the part or at a given depth.
  • An induction depth greater than or equal to 0.5 mm means that the hardening and / or changes in the metallurgical structure of the part, caused by the induction hardening step, extend from the surface of the part to 'to a depth of at least 0.5 mm. Beyond a certain depth, the thermal effect gradually diminishes until there is no longer any measurable effect on the microstructure and hardness of the part.
  • the high-frequency induction hardening operation provides a hardness of the part greater than or equal to 500 HV0.05 at a depth of 500 ⁇ m, and preferably a corrosion resistance greater than 80 hours when tested at. standard salt spray.
  • the hardening by high-frequency induction according to the invention makes it possible to reinforce the mechanical characteristics, in particular the hardness, of the part nitrided beforehand, while retaining the combination layer.
  • the corrosion resistance of the parts is maintained without resorting to an additional device such as, for example, a sol-gel film or a paint. Without a sol-gel film, processing costs are reduced.
  • FIG. 1 is a graph illustrating the hardness profile of two parts, respectively compliant (ARCOR FLASH, that is to say ARCOR nitriding treatment followed by high frequency induction hardening) and not in accordance with the invention ( ARCOR alone, without high frequency induction hardening).
  • Figure 2 is a table describing a series of tests carried out on steel parts, in order to characterize the process according to the invention.
  • Figure 3 is a graph illustrating a series of tests corresponding to the table in Figure 2.
  • FIG. 4 is a micrograph of a part treated by the method according to the invention.
  • Figure 5 is a close-up view of Figure 4.
  • Figure 6 is a micrograph of a part treated according to the prior art (ARCOR treatment followed by induction hardening according to the prior art).
  • Figure 7 is a micrograph of a part treated after ARCOR treatment, without induction hardening.
  • Figure 8 is a micrograph of a ferrous metal part according to the invention (ARCOR FLASH treatment).
  • FIG. 9 is an assembly of a micrograph of a ferrous metal part according to the invention and of a hardness profile obtained by measurement on this same part.
  • FIG. 10 is a graph illustrating the evolution of the friction coefficient of rings, for a ring in accordance with the invention (ARCOR FLASH treatment) and a ring of the state of the art (ARCOR treatment alone).
  • FIG. 11 is a photograph of a ferrous metal part having undergone an ARCOR treatment alone.
  • Figure 12 is a photograph of a ferrous metal part according to the invention, having undergone an ARCOR FLASH treatment (ARCOR nitriding followed by high frequency induction hardening).
  • ARCOR FLASH treatment ARCOR nitriding followed by high frequency induction hardening
  • Figure 13 is a close-up view of the micrograph of Figure 4, centered on the induction layer.
  • the inventors' approach was to carry out several series of tests using different treatments of a ferrous metal part.
  • the ARCOR nitrocarburizing treatment (trademark registered by the Applicant) provides, from the surface to the core of the part, a combination layer 2 and a diffusion zone 3 juxtaposed (see FIG. 4).
  • the combination layer 2 typically has a thickness of about 20 ⁇ m, while the diffusion zone 3 typically has a thickness of a few tens or hundreds of microns, for example 300 ⁇ m.
  • High frequency hardening (frequency> 20 kHz) provides a martensitic structure on the surface of the part, on an induction layer generally having a depth of around 1 mm.
  • the induction hardening extends from the surface of the part to a depth of the order of 1 mm, and is superimposed on the hardening profile already obtained by the nitriding.
  • the induction layer comprises Fe (a ') martensite resulting from the transformation of Fe (a) ferrite, as well as the remaining untransformed Fe (a) ferrite, and offers a significant hardness, admitted as very favorable to resistance to abrasive wear and fatigue.
  • the combination layer 2 offers, among other things, good frictional properties, high adhesive wear resistance and good corrosion resistance.
  • the diffusion zone 3 offers a hardness gradient, between the combination layer 2 and the base material 1 located under the diffusion zone 3, favorable to a certain wear resistance (abrasive and adhesive) and a resistance to the tired.
  • HF FLASH quenching makes it possible to minimize or even eliminate the degradation of the ARCOR combination layer 2 (oxidation or spalling which induces the loss of corrosion resistance properties and the tribological properties associated with the combination layer 2).
  • part P retains its basic properties provided by ARCOR.
  • HF FLASH quenching increases the hardness below combination layer 2, as well as the depth of hardening.
  • Figure 1 is a graph for comparing the hardness profile of two parts, including a part receiving ARCOR treatment alone (Series 1) and a part receiving ARCOR FLASH treatment according to the invention (Series 5).
  • the ARCOR FLASH treatment increases the hardness below the combination layer 2, especially in the diffusion zone, as well as the depth of cure.
  • the diffusion zone 3 has a thickness of between 400 ⁇ m and 500 ⁇ m and the induction depth is approximately 1 mm.
  • Figure 2 is a table describing a series of tests carried out on steel parts, in order to characterize the ARCOR FLASH treatment process according to the invention.
  • the parts are steel bars with a diameter of 38 mm, having received an ARCOR treatment creating a combination layer with a thickness between 15 and 20 ⁇ m.
  • the E1-E9 tests are carried out on C45 steel bars, the E10 and E11 tests on C10 steel bars, and the E12 test on a C70 steel bar and the E13 test on a 42CD4 steel bar.
  • the tests consist of high-frequency induction hardening operations, carried out with variable parameters.
  • the travel speed is that of the mobile magnetic inductor in translation along the part.
  • test E2 also allow satisfactory results to be obtained with a C70 steel.
  • Figure 3 is a graph showing the results of tests E1-E9 of Figure 2, performed on C45 steel bars.
  • Linear energy is defined as being the power of the induction reduced to the running speed of the parts P during the induction. This quantity is linked to the geometry of the P parts processed. Another more general quantity could be a surface power density applied over a certain time, that is to say the power of the induction divided by the surface area of the part absorbing the induction, and divided by the running speed. It would thus be possible, from optimal hardening parameters for a part of a first dimension, to easily find the optimal hardening parameters for a part of a second dimension (for example of larger diameter), the other parameters being otherwise equal (same material, same nitriding).
  • the hardness of the diffusion zone at a depth of 0.25 mm is greater than or equal to a hardness core + 350 HV0.05, and the hardness of the diffusion zone at a depth of 0.5 mm is greater than or equal to the core hardness + 100 HV0.05.
  • the treatment according to the invention is therefore effective up to a great depth in the diffusion zone.
  • FIGS. 4 and 5 are micrographs of a part P in C45 steel having received the ARCOR FLASH treatment (ARCOR + HF induction hardening, according to the invention) with a combination layer 2 of 18 ⁇ m, a diffusion zone 3 of about 300pm and an induction depth of about 0.5mm.
  • ARCOR FLASH treatment ARCOR + HF induction hardening, according to the invention
  • Part P comprises a steel substrate 1, an induction layer 4, a combination layer 2 and diffusion zone 3.
  • An aluminum foil 5 and a coating 6 have been added in order to make the cut necessary to make micrography.
  • the segment [AB] represents the distance (the thickness) between an average surface of the combination layer 2 (interface between the diffusion zone 3 and the combination layer 2), and an average surface of the substrate steel 1.
  • the combination layer 2 and the diffusion zone 3 are here obtained by ARCOR nitrocarburizing.
  • the induction layer 4 is obtained by high-frequency induction. It is composed of fine martensite Fe (a ’) and ferrite Fe (a).
  • FIG. 5 clearly shows the presence of Fe (a) ferrite remaining in the quenching zone of the part obtained at the end of the process, after quenching. It is a microstructure which conforms to the invention.
  • Figure 6 illustrates a micrograph of a steel that was nitrided and then received a conventional HF quenching: all the Fe (a) ferrite was transformed into Fe (a ’) martensite during the quenching. There is therefore no longer any ferrite left in the treated area. This microstructure is therefore not in accordance with the invention.
  • FIG. 7 illustrates a part made of ferrous metal having received an ARCOR nitrocarburizing alone (without quenching), and FIG. 8 illustrates a part according to the invention, therefore having received a nitrocarburizing then an HF quenching (ARCOR + hardening by HF induction, according to invention).
  • the combination layer 2 of the part P comprises an upper layer 2a of black color and measuring around ten micrometers.
  • This upper layer 2a has been made porous by the HF quenching, and is clearly revealed by the Nital.
  • the combination layer is slightly degraded following the HF quenching, but remains present, and retains its structural integrity at least on its lower part 2b.
  • Such an upper layer 2a is not observed in FIG. 7.
  • the structure of the combination layer has in fact not been modified since there has been no quenching.
  • Part P according to the invention therefore indeed has a combination layer 2 providing the part with properties of resistance to wear and friction, and of resistance to corrosion, despite the fact that the HF hardening has been carried out. without protective film.
  • FIG. 9 is an assembly juxtaposing a micrograph of a part P according to the invention, and a hardness profile obtained by measurements on this same part. Hardness measurement points are visible on the micrograph and measurement steps corresponding to the different layers have been framed.
  • the partially oxidized combination layer 2 and the induction layer 4 are particularly visible.
  • Hardness measurements taken just below the suit layer show a hardness of up to 900HV. As you move away from the surface of the part and down towards the core of the part, the hardness decreases in an almost linear fashion, which makes it possible to estimate the thickness of diffusion zone 3 at about 175 ⁇ m, where the depth is. hardness is 775HV.
  • the hardness is generally stable at values between 550 and 600HV. These depths are located in the induction treatment zone, which is visually detectable on the micrograph from the crystallography of the part.
  • Measurements taken from a depth of 600pm and beyond are located in the base material of the part, i.e. the core of the part, which has not received any treatment.
  • the hardnesses recorded are around 250HV.
  • a smooth 42CD4 steel ring with ARCOR nitrocarburizing alone hereinafter referred to as "ARCOR ring”
  • ARCOR ring A smooth 42CD4 steel ring with ARCOR nitrocarburizing alone, hereinafter referred to as "ARCOR ring”
  • ARCOR ring A smooth 42CD4 steel ring with ARCOR nitrocarburizing and HF quenching according to the invention.
  • FIG. 10 is a graph illustrating the evolution of the coefficient of friction of these two rings as a function of the number of revolutions performed. On the ordinate is the coefficient of friction m (without unit), and on the abscissa is the number of revolutions Rev (in turns) that the ring undergoes.
  • the ARCOR ring alone has a new coefficient of friction m of about 0.15, and that it begins to increase regularly from only 2000 revolutions, until reaching high values, of the order of 0.6 for about 9000 turns.
  • Part P according to the invention has, when new, a coefficient of friction slightly lower than that of the ARCOR ring alone, of the order of 0.1, and remains stable up to approximately 11,000 revolutions. It is only from this value that the coefficient of friction begins to increase, reaching a value of 0.6 at approximately 125,000 revolutions, similar to that of the ARCOR ring alone.
  • Figures 11 and 12 are photographs respectively of the ARCOR ring alone and of the part P according to the invention, after these tests. It can be seen that the ARCOR ring alone shows marked wear, material having been torn off by seizing. Part P for its part exhibits less pronounced wear.
  • FIG. 13 is a close-up view of the micrograph of FIG. 4, centered on the induction layer 4.
  • the thickness of the induction layer 4 is represented by the segment [AB]
  • An image processing of the figure 13 makes it possible to estimate the proportion of the zones made up of ferrite Fe (a) in the induction layer, that is to say compared to the sum of the zones of ferrite Fe (a) and the zones of martensite Fe (at'). More precisely, by defining lower and upper gray level thresholds, we can estimate the air occupied by the medium gray zone of the martensite phase and thus go back to the ferrite level. It is advisable to use two thresholds and to vary them in order to arrive at this estimate, because although the ferrite appears in clear, the phase interfaces can appear dark and for small ferrites this cannot be negligible. .
  • the rate of residual ferrite with respect to the rest of the layer delimited by the segment [AB] is between 1% and 15%, it being understood that this rate tends towards 1% near the combination layer (point A), and tends to 15% near the heart (point B).
  • the level of residual ferrite is volume.
  • the treatment method according to the invention makes it possible to obtain a level of residual ferrite in the part, between the diffusion zone 3 / combination layer 2 interface and a depth of 500 ⁇ m (segment [AB]) , greater than or equal to 1%, preferably greater than or equal to 5%.
  • the treatment method according to the invention makes it possible to obtain a level of residual ferrite in the part, between the diffusion zone 3 / combination layer 2 interface and a depth of 500 ⁇ m (segment [AB]), less than or equal to 50%, preferably less than or equal to 30%, more preferably less than or equal to 20%, and more preferably less than or equal to 15%.
  • the level of residual ferrite is between 1% and 20%, preferably between 5% and 15%.
  • the manufacturing process can optionally include an impregnation step, in order to improve the corrosion resistance of part P.
  • the impregnation takes place after induction hardening.
  • Impregnation in itself is a technique well known to those skilled in the art, and a particular method is described, for example, in document EP3237648. Impregnation can be done by dipping or spraying.
  • Impregnation protects the part because it helps to delay the onset of corrosion, reduce the corrosion rate and thus increase the life of the part.
  • An evaluation of the resistance of the parts to corrosion can be made by tests in a corrosive atmosphere, for example a salt spray.
  • Standard EN ISO 9227 “Corrosion tests in artificial atmospheres - Salt spray tests” describes such tests.

Abstract

L'invention se rapporte principalement à un procédé de traitement d'une pièce (P) en métal ferreux, comprenant : une opération de nitruration formant sur la pièce (P) une couche de combinaison (2) ayant une épaisseur comprise entre 5 et 30 pm, et une zone de diffusion (3) agencée sous et au contact de la couche de combinaison (2) ayant une épaisseur comprise entre 100 pm et 500 pm; puis une opération de trempe par induction haute-fréquence de la pièce (P), sur une profondeur d'induction supérieure ou égale à 0,5 mm, provoquant un durcissement de la pièce (P) procurant à ladite pièce (P) : • une dureté de surface supérieure ou égale à 50 HRC, • une dureté de la couche de combinaison (2) supérieure ou égale à 400 HV0,05, • une dureté de la pièce supérieure ou égale à 500 HV0,05 à une profondeur de 500 pm, et dans lequel l'opération de trempe par induction haute-fréquence est réalisée sans application d'un film protecteur sur la pièce (P) préalablement à l'opération de trempe par induction. L'invention concerne également une pièce (P) en métal ferreux, présentant une importante résistance à l'usure par abrasion et adhésion, des propriétés de frottement et de résistance à l'écaillage améliorées, ainsi qu'une bonne tenue à la corrosion.

Description

PROCEDE DE TRAITEMENT D’UNE PIECE EN METAL FERREUX ET PIECE EN
METAL FERREUX
DOMAINE TECHNIQUE
Le domaine de l’invention est celui du traitement de surface des pièces en métal ferreux, notamment en acier très faiblement ou faiblement allié.
ART ANTERIEUR
Dans les applications automobiles, aéronautiques ou industrielles, les pièces mécaniques sont généralement soumises à d’importantes sollicitations en service.
De manière classique, les pièces peuvent recevoir un ou plusieurs traitements permettant d’améliorer certaines de leurs performances, parmi lesquelles les propriétés de frottement, la résistance à l’usure, la résistance à la fatigue, la résistance à l’écaillage, la tenue à la corrosion, etc.
Cependant, il est difficile d’obtenir un bon compromis entre les différentes propriétés de la pièce.
À titre d’exemple, le document WO2011013362A1 décrit un procédé de traitement d’une pièce, comprenant une opération de nitruration, une opération de revêtement par un film de conversion chimique (sol-gel), et une opération de trempe par induction. Cependant, un tel procédé présente un coût prohibitif, en raison du coût du film et de la nécessité de réaliser trois opérations successives.
EXPOSE DE L’INVENTION
Le but de la présente invention est de remédier aux inconvénients ci-dessus, tout en conservant un bon compromis entre les différentes propriétés de la pièce.
À cet effet, l’invention a pour objet un procédé de traitement d’une pièce en métal ferreux, comprenant :
- une opération de nitruration formant sur la pièce une couche de combinaison ayant une épaisseur comprise entre 5 pm et 30 pm, et une zone de diffusion agencée sous et au contact de la couche de combinaison ayant une épaisseur comprise entre 100 pm et 500 pm ; puis - une opération de trempe par induction haute-fréquence de la pièce, sur une profondeur d’induction supérieure ou égale à 0,5 mm, provoquant un durcissement de la pièce procurant à ladite pièce :
• une dureté de surface supérieure ou égale à 50 HRC,
• une dureté de la couche de combinaison supérieure ou égale à 400 HV0,05,
• une dureté de la pièce supérieure ou égale à 500 HV0,05 à une profondeur de 500 pm, et dans lequel l’opération de trempe par induction haute-fréquence est réalisée sans application d’un film protecteur sur la pièce préalablement à l’opération de trempe par induction.
Le procédé de l’invention permet d’obtenir une pièce présentant à la fois une importante résistance à l’usure par abrasion et adhésion, des propriétés de frottement et de résistance à l’écaillage améliorées, ainsi qu’une bonne tenue à la corrosion. Le procédé de l’invention est en outre plus simple à mettre en oeuvre et moins onéreux que les procédés de l’art antérieur car il économise l’agencement d’un film protecteur de la couche de combinaison, ainsi que l’éventuel retrait dudit film protecteur.
Le film protecteur peut être de tout type adapté pour prévenir la dégradation de la couche de combinaison durant la trempe par induction haute fréquence, cette dégradation pouvant se manifester par écaillage, fissuration, ou fracturation de la couche de combinaison.
En particulier, le film protecteur peut être un film sol-gel. Dès lors, l’opération de trempe par induction haute-fréquence est réalisée sans film sol-gel.
Selon d’autres aspects, le procédé de traitement selon l’invention présente les différentes caractéristiques suivantes prises seules ou selon leurs combinaisons techniquement possibles : l’opération de nitruration est réalisée au gaz, ou par plasma, ou par sels fondus ; l’opération de nitruration est réalisée à une température comprise entre 500°C et 630°C, pendant une durée comprise entre 15 minutes et 3 heures ; l’opération de trempe par induction n’est pas suivie par une opération de revenu ; l’opération de trempe par induction haute-fréquence de la pièce est réalisée de manière à conserver de la ferrite dans la pièce entre l’interface zone de diffusion / couche de combinaison et une profondeur de 500 pm, de préférence entre l’interface zone de diffusion / couche de combinaison et une profondeur de 300 pm. L’interface zone de diffusion / couche de combinaison signifie la surface de contact entre la zone de diffusion et la couche de combinaison sus-jacente. La trempe est rapide et ne transforme pas complètement la ferrite de la pièce en martensite sur sa profondeur de traitement, de sorte que de la ferrite subsiste sur la profondeur traitée par trempe HF en fin de procédé. La profondeur de 500 pm correspond à une profondeur d’induction où sont observés un durcissement et/ou des changements de la structure métallurgique de la pièce ; l’opération de trempe par induction haute-fréquence de la pièce est réalisée de manière à avoir un taux de ferrite résiduelle dans la pièce, entre l’interface zone de diffusion / couche de combinaison et une profondeur de 500 pm, compris entre 1% et 50% en volume, de préférence entre 1% et 30%, et de manière davantage préférée entre 5% et 30%. Le taux de ferrite résiduelle est volumique, et correspond au ratio du volume de ferrite sur le volume du reste de la pièce dans la zone considérée ; l’opération de trempe par induction haute-fréquence de la pièce est réalisée de manière à avoir un taux de ferrite résiduelle dans la pièce, entre l’interface zone de diffusion / couche de combinaison et une profondeur de 500 pm, compris entre 5% et 20% en volume, de préférence entre 5% et 15% ; le procédé comprend une étape d’imprégnation postérieurement à l’opération de trempe par induction haute-fréquence. Si une étape de revenu est réalisée, rimprégnation est réalisée après le revenu. Elle peut être faite par exemple par trempage ou par pulvérisation. L’imprégnation protège la pièce car elle permet de retarder le démarrage de la corrosion, de réduire le taux de corrosion et ainsi d'accroître la durée de vie de la pièce ; le procédé procure à la pièce une résistance à la corrosion supérieure à 80 heures lors d’un essai au brouillard salin neutre. La résistance à la corrosion est mesurée par un essai au brouillard salin neutre, parfois appelé également brouillard salin standard, selon la norme EN ISO 9227 ; l’opération de trempe par induction haute-fréquence est réalisée avec les paramètres suivants :
• une fréquence comprise entre 50 et 400 kHz,
• une énergie linéaire comprise entre 4,6 et 5,8 J/mm.
Cette double condition sur la fréquence et l’énergie linéaire permet d’obtenir une pièce en métal ferreux dont les propriétés mécaniques sont fortement améliorées par rapport aux pièces de l’état de l’art, notamment la résistance à l’usure par abrasion et adhésion, le frottement, la résistance à l’écaillage, tout en conservant une bonne tenue à la corrosion. La fréquence et l’énergie linéaire sont ajustées en fonction de la morphologie de la pièce, par exemple son diamètre ; l’opération de trempe par induction haute-fréquence est réalisée avec une vitesse de défilement comprise entre 5 et 40 mm/s.
L’invention se rapporte également à une pièce en métal ferreux, comprenant une couche de combinaison ayant une épaisseur comprise entre 5 pm et 30 pm, et une zone de diffusion agencée sous et au contact de la couche de combinaison, ayant une épaisseur comprise entre 100 pm et 500 pm, ladite pièce présentant :
- une dureté de surface supérieure ou égale à 50 HRC,
- une dureté de la couche de combinaison supérieure ou égale à 400 HV0,05,
- une dureté de la pièce supérieure ou égale à 500 HV0,05 à une profondeur de 500 pm, ladite pièce comprenant de la ferrite et de la martensite entre l’interface zone de diffusion / couche de combinaison et une profondeur de 500 pm.
Selon d’autres aspects, la pièce en métal ferreux selon l’invention présente les différentes caractéristiques suivantes prises seules ou selon leurs combinaisons techniquement possibles : la dureté de la pièce à une profondeur de 0,5 mm est supérieure ou égale à une dureté à cœur + 100 HV0,05 ; la dureté de la pièce à une profondeur de 0,25 mm est supérieure ou égale à une dureté à cœur + 350 HV0,05 ; la pièce est en acier très faiblement allié, de la famille C10-C70, présentant une teneur en manganèse inférieure à 1 %. Dans ces conditions, l’acier ne présente pas d’élément d’addition notable, c’est-à-dire un élément qui dépasserait les 5% en masse par rapport à la masse totale de l’acier. De préférence, la pièce est en acier de la nuance C45. Le terme « nuance », utilisé de manière courante dans le domaine des aciers, désigne un acier spécifique dans une famille. En particulier, il s’agit ici de la nuance C45 choisie dans la famille d’aciers C10 à C70 ; la pièce est en acier faiblement allié, sans élément d’addition dépassant 5% en masse. Plus préférentiellement, la pièce est en acier de la nuance 31CrMo4 ; la pièce comprend de la ferrite et de la martensite entre l’interface zone de diffusion / couche de combinaison et une profondeur de 300 pm ; la pièce comprend un taux de ferrite, entre l’interface zone de diffusion / couche de combinaison et une profondeur de 500 pm, compris entre 1% et 50% en volume, de préférence entre 1% et 30%, et de manière davantage préférée entre 5% et 30% ; la pièce comprend un taux de ferrite, entre l’interface zone de diffusion / couche de combinaison et une profondeur de 500 pm, compris entre 5% et 20% en volume, de préférence entre 5% et 15% ; la pièce présente une résistance à la corrosion supérieure à 80 heures lors d’un essai au brouillard salin neutre.
Dans le présent texte, on entend par « épaisseur » la distance entre la limite supérieure et la limite inférieure d’une couche ou d’une zone donnée au sein de la pièce en métal ferreux. L’épaisseur est perpendiculaire à la surface moyenne desdites limites supérieure et inférieure.
Le terme « profondeur » désigne la distance entre la surface de la pièce, dite également surface libre, et un point donné au sein de la pièce. La profondeur est perpendiculaire à la surface moyenne de la surface libre. Par exemple, « une dureté de la zone de diffusion supérieure ou égale à 500 HV0,05 à une profondeur de 500 pm » signifie qu’à une distance de 500 pm au sein de la pièce, comptée à partir de la surface libre de la pièce, la dureté de la zone de diffusion est supérieure ou égale à 500 HV0,05.
Les termes tels que « sur », « dessus », « au-dessus » et « sous », « dessous », « en- dessous » se réfèrent aux positionnements des couches ou zones les unes par rapport aux autres au sein de la pièce. Ces termes n’impliquent pas nécessairement qu’il y a contact entre les couches ou zones considérées.
De manière connue en soi, la nitruration consiste à plonger une pièce en métal ferreux dans un milieu susceptible de céder de l’azote. Dans le présent texte, la nitruration englobe la nitrocarburation, qui est une variante de la nitruration, dans laquelle du carbone pénètre dans la pièce en plus de l’azote. Le procédé ARCOR décrit dans la suite du présent texte est un exemple préféré de procédé de nitrocarburation.
Au sein de la pièce traitée, la zone de diffusion est agencée sous la couche de combinaison, et s’étend vers le cœur de la pièce (en s’éloignant de la surface libre) depuis ladite couche de combinaison. La couche de combinaison quant à elle peut être en surface de la pièce ou à une profondeur donnée.
Une profondeur d’induction supérieure ou égale à 0,5 mm signifie que le durcissement et/ou les changements de la structure métallurgique de la pièce, provoqués par l’étape de trempe par induction, s’étendent depuis la surface de la pièce jusqu’à une profondeur d’au moins 0,5 mm. Passée une certaine profondeur, l’effet thermique s’atténue progressivement jusqu’à ne plus avoir d’effet mesurable sur la microstructure et la dureté de la pièce.
L’opération de trempe par induction haute-fréquence procure une dureté de la pièce supérieure ou égale à 500 HV0,05 à une profondeur de 500 pm, et de préférence, une résistance à la corrosion supérieure à 80 heures lors d’un essai au brouillard salin standard. En effet, de façon surprenante, la trempe par induction haute-fréquence selon l’invention permet de renforcer les caractéristiques mécaniques, notamment la dureté, de la pièce préalablement nitrurée, tout en conservant la couche de combinaison. Ainsi la tenue à la corrosion des pièces est conservée sans recours à un artifice supplémentaire comme par exemple un film sol-gel ou une peinture. Se passer d’un film sol-gel permet de réduire les coûts de traitement.
BREVE DESCRIPTION DES DESSINS
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple non limitatif et faite en référence aux dessins annexés sur lesquels :
La figure 1 est un graphique illustrant le profil de dureté de deux pièces, respectivement conforme (ARCOR FLASH, c’est-à-dire traitement de nitruration ARCOR suivi d’une trempe par induction haute fréquence) et non conforme à l’invention (ARCOR seul, sans trempe par induction haute fréquence).
La figure 2 est un tableau décrivant une série d’essais réalisés sur des pièces en acier, afin de caractériser le procédé selon l’invention.
La figure 3 est un graphique illustrant une série d’essais correspondant au tableau de la figure 2.
La figure 4 est une micrographie d’une pièce traitée par le procédé selon l’invention.
La figure 5 est une vue rapprochée de la figure 4.
La figure 6 est une micrographie d’une pièce traitée selon l’art antérieur (traitement ARCOR suivi d’une trempe par induction selon l’art antérieur).
La figure 7 est une micrographie d’une pièce traitée après traitement ARCOR, sans trempe par induction.
La figure 8 est une micrographie d’une pièce en métal ferreux selon l’invention (traitement ARCOR FLASH).
La figure 9 est un montage d’une micrographie d’une pièce en métal ferreux selon l’invention et d’un profil de dureté obtenu par mesure sur cette même pièce.
La figure 10 est un graphique illustrant l’évolution du coefficient de frottement de bagues, pour une bague conforme à l’invention (traitement ARCOR FLASH) et une bague de l’état de l’art (traitement ARCOR seul). La figure 11 est une photographie d’une pièce en métal ferreux ayant subi un traitement ARCOR seul.
La figure 12 est une photographie d’une pièce en métal ferreux selon l’invention, ayant subi un traitement ARCOR FLASH (nitruration ARCOR suivie d’une trempe par induction haute fréquence).
La figure 13 est une vue rapprochée de la micrographie de la figure 4, centrée sur la couche d’induction.
DESCRIPTION DETAILLEE DE L’INVENTION
La démarche des inventeurs a été de réaliser plusieurs séries d’essais mettant en oeuvre différents traitements d’une pièce en métal ferreux.
En particulier, les inventeurs ont étudié les effets des deux traitements suivants.
Le traitement de nitrocarburation ARCOR (marque déposée par le Demandeur) apporte, de la surface vers le cœur de pièce, une couche de combinaison 2 et une zone de diffusion 3 juxtaposées (voir la figure 4). La couche de combinaison 2 a typiquement une épaisseur d’environ 20 pm, tandis que la zone de diffusion 3 a typiquement une épaisseur de quelques dizaines ou centaines de microns, par exemple 300 pm.
La trempe haute fréquence (fréquence > 20 kHz) apporte une structure martensitique en surface de la pièce, sur une couche d’induction ayant généralement une profondeur de l’ordre de 1 mm. En d’autres termes, le durcissement par l’induction s’étend depuis la surface de la pièce jusqu’à une profondeur de l’ordre de 1 mm, et se superpose au profil de durcissement déjà obtenu par la nitruration. La couche d’induction comprend de la martensite Fe(a’) issue de la transformation de la ferrite Fe(a), ainsi que de la ferrite Fe(a) restante non transformée, et offre une dureté importante, admise comme très favorable à la résistance à l’usure abrasive et à la fatigue.
La couche de combinaison 2 offre, entre autres, de bonnes propriétés de frottement, une haute résistance à l’usure adhésive et une bonne tenue à la corrosion.
La zone de diffusion 3 offre un gradient de dureté, entre la couche de combinaison 2 et le matériau de base 1 situé sous la zone de diffusion 3, favorable à une certaine résistance à l’usure (abrasive et adhésive) et une résistance à la fatigue.
Le Tableau 1 ci-après décrit différentes séries d’essais :
Légende :
0 : propriété inexistante + : amélioration modérée de la propriété ++ : bonne propriété +++ : excellente propriété - : propriété dégradée
Commentaires sur les résultats des séries d’essais :
- Série 1 : Faible profondeur de dureté en sous-couche (« 0,3 mm), donc résistance à l’usure abrasive et à la fatigue modérée.
- Série 2 : Absence de propriété antigrippage et de tenue à la corrosion. - Série 3 : La température de nitruration ARCOR (« 590°C) a un effet de revenu sur la structure martensitique apporté par la trempe HF. Cela se traduit par une importante baisse de dureté. Les résultats sont comparables à ceux de la Série 1.
- Série 4 : Le paramètre temps / température de la trempe HF dégrade la couche de combinaison de l’ARCOR. Les propriétés de tenue en corrosion et le comportement tribologique sont donc dégradés.
- Série 5 : De façon surprenante, la trempe HF FLASH permet de minimiser voire d’éliminer la dégradation de la couche de combinaison 2 de l’ARCOR (oxydation ou écaillage qui induisent les pertes de propriétés de tenue corrosion et les propriétés tribologiques associées à la couche de combinaison 2). En comparaison avec la Série 4, la pièce P conserve ses propriétés de base procurées par l’ARCOR. En comparaison avec la Série 1 , la trempe HF FLASH augmente la dureté en-dessous de la couche de combinaison 2, ainsi que la profondeur de durcissement.
La mise au point de l’invention a nécessité, dans un premier temps, d’identifier les avantages inattendus de la trempe HF FLASH par rapport à la trempe HF classique, puis dans un second temps, de caractériser les paramètres de la trempe HF FLASH afin de pouvoir mettre en oeuvre le procédé de traitement ARCOR + trempe HF FLASH = ARCOR FLASH sur tous types de pièces ferreuses.
La figure 1 est un graphique permettant de comparer le profil de dureté de deux pièces, incluant une pièce recevant un traitement ARCOR seul (Série 1) et une pièce recevant un traitement ARCOR FLASH conforme à l’invention (Série 5). Le traitement ARCOR FLASH permet d’augmenter la dureté en-dessous de la couche de combinaison 2, notamment dans la zone de diffusion, ainsi que la profondeur de durcissement. Pour l’échantillon de la figure 1 , la zone de diffusion 3 présente une épaisseur comprise entre 400 pm et 500 pm et la profondeur d’induction est d’environ 1 mm.
La figure 2 est un tableau décrivant une série d’essais réalisés sur des pièces en acier, afin de caractériser le procédé de traitement ARCOR FLASH conforme à l’invention.
Les pièces sont des barres en acier de diamètre 38 mm, ayant reçu un traitement ARCOR créant une couche de combinaison d’une épaisseur comprise entre 15 et 20 pm.
Les essais E1-E9 sont réalisés sur des barres en acier C45, les essais E10 et E11 sur des barres en acier C10, et l’essai E12 sur une barre en acier C70 et l’essai E13 sur une barre en acier 42CD4. Les essais consistent en des opérations de trempe par induction haute-fréquence, réalisées avec des paramètres variables. La vitesse de défilement est celle de l’inducteur magnétique mobile en translation le long de la pièce.
Commentaires sur les résultats des essais :
- E1 (comparatif) : Fréquence faible et puissance élevée. Couche de combinaison dégradée par l’induction.
- E2 (conforme à l’invention) : Energie linéaire optimale. Résultats satisfaisants.
- E3 (comparatif) : Défilement un peu trop rapide. Energie linéaire un peu trop faible. Dureté de surface et profondeur d’induction trop faibles.
- E4 (conforme à l’invention) : Résultats moins bons que E2 mais meilleurs que E3.
- E5 (comparatif) : Défilement un peu trop lent. Energie linéaire un peu trop élevé. Dureté de surface et profondeur d’induction satisfaisants, mais couche de combinaison dégradée par l’induction.
- E6, E7, E8 et E9 (tous conformes à l’invention) : Essais visant à déterminer l’influence de la fréquence et de la vitesse de défilement. Résultats satisfaisants.
- E10, E11 et E12 : Essais illustrant l’influence de la nuance d’acier sur les résultats du traitement.
- E10 (comparatif) : Les paramètres de l’essai E5, testés sur un acier C10, donnent un résultat non conforme.
- E11 (conforme à l’invention) : Les paramètres de l’essai E2, testés sur un acier C10, permettent d’obtenir des résultats satisfaisants.
- E12 (conforme à l’invention) : Les paramètres de l’essai E2 permettent également d’obtenir des résultats satisfaisants avec un acier C70.
- E13 (conforme à l’invention) : Les paramètres de l’essai E8, appliqués sur un acier 42CD4, permettent d’obtenir des résultats satisfaisants.
La figure 3 est un graphique montrant les résultats des essais E1-E9 de la figure 2, réalisés sur des barres en acier C45.
Sur le graphique, l’énergie linéaire (en W.s/mm) est représentée en abscisses et la fréquence d’induction (en kHz) est représentée en ordonnées.
L’énergie linéaire est définie comme étant la puissance de l’induction ramenée à la vitesse de défilement des pièces P durant l’induction. Cette grandeur est liée à la géométrie des pièces P traitées. Une autre grandeur plus générale pourrait être une densité de puissance surfacique appliquée un certain temps, c’est-à-dire la puissance de l’induction divisée par la superficie de la pièce absorbant l’induction, et divisée par la vitesse de défilement. Il serait ainsi possible, à partir de paramètres de trempe optimaux pour une pièce d’une première dimension, de trouver facilement les paramètres optimaux de trempe pour une pièce d’une deuxième dimension (par exemple de plus grand diamètre), les autres paramètres étant égaux par ailleurs (même matière, même nitruration).
D’après les figures 2 et 3, on remarque que les essais effectués sur acier C45, C10, C70 et 42CD4 pour lesquels la fréquence (F) est comprise entre 50 kHz et 400 kHz et l’énergie linéaire (E) est comprise entre 4,6 et 5,8 J/mm (on se trouve alors dans la zone modélisée par le rectangle en traits pointillés sur la figure 3), permettent d’obtenir après induction : une couche de combinaison de qualité satisfaisante, une couche de combinaison dont la dureté est supérieure ou égale à 400 HV0,05, une profondeur d’induction supérieure ou égale à 0,5 mm, une dureté de surface supérieure ou égale à 50 HRC, et une tenue à la corrosion satisfaisante.
De plus, ces résultats sont obtenus sans qu’il ne soit nécessaire d’enrober préalablement la pièce dans un film protecteur avant la trempe par induction haute-fréquence, tel qu’un film sol-gel, ce qui permet de réduire la complexité et les coûts du traitement.
Pour les essais 2, 4, et 6-9 et 11-12, tous conformes à l’invention, les propriétés avantageuses suivantes : la dureté de la zone de diffusion à une profondeur de 0,25 mm est supérieure ou égale à une dureté à cœur + 350 HV0,05, et la dureté de la zone de diffusion à une profondeur de 0,5 mm est supérieure ou égale à la dureté à cœur + 100 HV0,05.
Le traitement conformément à l’invention est donc efficace jusqu’à une grande profondeur dans la zone de diffusion.
Ces essais ont été effectués sur des barres en acier C45, C10, C70 et 42CD4. En pratique, la fréquence (F) et l’énergie linéaire (E) de la trempe par induction haute-fréquence sont adaptées au métal ferreux de la pièce P. Il peut être nécessaire de procéder par essais afin de déterminer les paramètres adéquats. Pour la réalisation des micrographies des pièces métalliques illustrées sur les figures 4 à 8, et décrites ci-après, les pièces ont été soumises à une attaque chimique par une solution d'acide nitrique et d'alcool appelée « Nital ». Le Nital joue ainsi le rôle de révélateur de la microstructure de la pièce, et rend cette dernière visible au microscope optique.
Les figures 4 et 5 sont des micrographies d’une pièce P en acier C45 ayant reçu le traitement ARCOR FLASH (ARCOR + trempe par induction HF, selon l’invention) avec une couche de combinaison 2 de 18 pm, une zone de diffusion 3 d’environ 300pm et une profondeur d’induction d’environ 0,5 mm.
La pièce P comprend un substrat d’acier 1 , une couche d’induction 4, une couche de combinaison 2 et zone de diffusion 3. Une feuille d’aluminium 5 et un enrobage 6 ont été rajoutés afin de réaliser la coupe nécessaire pour faire la micrographie. Sur la figure 4, le segment [AB] représente la distance (l’épaisseur) entre une surface moyenne de la couche de combinaison 2 (interface entre la zone de diffusion 3 et la couche de combinaison 2), et une surface moyenne du substrat d’acier 1.
La couche de combinaison 2 et la zone de diffusion 3 sont ici obtenues par la nitrocarburation ARCOR.
La couche d’induction 4 est obtenue par induction haute-fréquence. Elle est composée de martensite fine Fe(a’) et de ferrite Fe(a). La figure 5 montre bien la présence de ferrite Fe(a) restant dans la zone de trempe de la pièce obtenue en fin de procédé, après la trempe. C’est une microstructure qui est conforme à l’invention.
La figure 6 illustre une micrographie d’un acier nitruré puis ayant reçu une trempe HF classique : toute la ferrite Fe(a) a été transformée en martensite Fe(a’) lors de la trempe. Il ne reste donc plus de ferrite dans la zone traitée. Cette microstructure est donc non- conforme à l’invention.
La figure 7 illustre une pièce en métal ferreux ayant reçu une nitrocarburation ARCOR seule (sans trempe), et la figure 8 illustre une pièce selon l’invention, donc ayant reçu une nitrocarburation puis une trempe HF (ARCOR + trempe par induction HF, selon l’invention).
Sur la figure 8, on observe que la couche de combinaison 2 de la pièce P comporte une couche supérieure 2a de couleur noire et mesurant une dizaine de micromètres. Cette couche supérieure 2a a été rendue poreuse par la trempe HF, et est nettement révélée par le Nital. Cela démontre qu’à l’issu du procédé de traitement selon l’invention, la couche de combinaison est légèrement dégradée suite à la trempe HF, mais demeure présente, et conserve son intégrité structurelle au moins sur sa partie inférieure 2b. Une telle couche supérieure 2a n’est pas observée sur la figure 7. La structure de la couche de combinaison n’a en effet pas été modifiée puisqu’il n’y a pas eu de trempe.
La pièce P selon l’invention présente donc bel et bien une couche de combinaison 2 apportant à la pièce des propriétés de résistance à l’usure et aux frottement, et de tenue à la corrosion, malgré le fait que la trempe HF ait été réalisée sans film protecteur.
La figure 9 est un montage juxtaposant une micrographie d’une pièce P selon l’invention, et un profil de dureté obtenu par mesures sur cette même pièce. Des points de mesure de la dureté sont visibles sur la micrographie et des paliers de mesure correspondant aux différentes couches ont été encadrés.
Sur cette figure, la couche de combinaison 2 partiellement oxydée et la couche d’induction 4 sont particulièrement visibles. Les mesures de dureté réalisées juste en dessous de la couche de combinaison montrent une dureté allant jusqu’à 900HV. En s’éloignant de la surface de la pièce et en descendant vers le cœur de la pièce, la dureté diminue de façon quasiment linéaire, ce qui permet d’estimer l’épaisseur de la zone de diffusion 3 à environ 175pm, profondeur où la dureté vaut 775HV.
Pour des profondeurs allant de 200pm à 500pm, la dureté est globalement stable à des valeurs comprises entre 550 et 600HV. Ces profondeurs sont situées dans la zone de traitement par induction, qui est détectable visuellement sur la micrographie de par la cristallographie de la pièce.
Les mesures prises à partir de 600pm de profondeur et au-delà sont situées dans le matériau de base de la pièce, c’est-à-dire le cœur de la pièce, qui n’a reçu aucun traitement. Les duretés relevées sont d’environ 250HV.
En référence aux figures 10 à 12, le Demandeur a ensuite procédé à des essais mécaniques de vieillissement de pièces afin de caractériser les performances des pièces obtenues. Une bague lisse en acier 42CD4 avec nitrocarburation ARCOR seule, ci-après désignée « bague ARCOR », est comparée avec une bague lisse en acier 42CD4 avec nitrocarburation ARCOR et trempe HF selon l’invention.
Ces deux bagues ont été montées sur des axes en acier 16NC6 CT, avec adjonction de lubrifiant du commerce. La charge appliquée induisait une pression de contact de 50MPa, et la vitesse de rotation des bagues par rapport à l’axe était de 7,8 mm/s.
La figure 10 est un graphique illustrant l’évolution du coefficient de frottement de ces deux bagues en fonction du nombre de révolutions effectuées. En ordonnée figure le coefficient de frottement m (sans unité), et en abscisse figure le nombre de révolutions Rev (en tours) que subit la bague. On voit que la bague ARCOR seule possède à neuf un coefficient de frottement m d’environ 0.15, et que celui-ci commence à augmenter de façon régulière à partir de 2000 tours seulement, jusqu’à atteindre des valeurs élevées, de l’ordre de 0.6 pour environ 9000 tours.
La pièce P selon l’invention possède à l’état neuf un coefficient de frottement légèrement inférieur à celui de la bague ARCOR seule, de l’ordre de 0.1 , et reste stable jusqu’à environ 11000 tours. C’est à partir de cette valeur seulement que le coefficient de frottement commence à augmenter, pour atteindre une valeur de 0.6 à environ 125000 tours, similaire à celle de la bague ARCOR seule.
Les figures 11 et 12 sont des photographies respectivement de la bague ARCOR seule et de la pièce P selon l’invention, après ces essais. On y voit que la bague ARCOR seule présente une usure marquée, de la matière ayant été arrachée par grippage. La pièce P quant à elle présente une usure moins prononcée.
La figure 13 est une vue rapprochée de la micrographie de la figure 4, centrée sur la couche d’induction 4. L’épaisseur de la couche d’induction 4 est représentée par le segment [AB] Un traitement de l’image de la figure 13 permet d’estimer la proportion des zones constituées de ferrite Fe(a) dans la couche d’induction, c’est-à-dire par rapport à la somme des zones de ferrite Fe(a) et des zones de martensite Fe(a’). Plus précisément, en définissant des seuils de niveaux de gris inférieurs et supérieurs, on peut estimer l’air occupé par la zone de gris moyen de la phase martensite et ainsi remonter au taux de ferrite. Il convient d’utiliser deux seuils et de les faire varier afin d’arriver à cette estimation, car bien que la ferrite apparaisse en clair, les interfaces de phases peuvent apparaître sombres et pour des ferrites de petites dimensions cela ne peut être non-négligeable.
Sur l’exemple de la figure 13, le taux de ferrite résiduelle par rapport au reste de la couche délimitée par le segment [AB] est compris entre 1% et 15%, étant entendu que ce taux tend vers 1% à proximité de la couche de combinaison (point A), et tend vers 15% à proximité du cœur (point B). Le taux de ferrite résiduelle est volumique.
De manière générale, le procédé de traitement selon l’invention permet d’obtenir un taux de ferrite résiduelle dans la pièce, entre l’interface zone de diffusion 3 / couche de combinaison 2 et une profondeur de 500 pm (segment [AB]), supérieur ou égal à 1%, de préférence supérieur ou égal à 5%.
De même, le procédé de traitement selon l’invention permet d’obtenir un taux de ferrite résiduelle dans la pièce, entre l’interface zone de diffusion 3 / couche de combinaison 2 et une profondeur de 500 pm (segment [AB]), inférieur ou égal à 50%, de préférence inférieur ou égal à 30%, de manière davantage préférée inférieur ou égal à 20%, et plus préférentiellement inférieur ou égal à 15%.
De préférence, le taux de ferrite résiduelle est compris entre 1% et 20%, de préférence entre 5% et 15%.
Le procédé de fabrication peut optionnellement comprendre une étape d’imprégnation, afin d’améliorer la tenue à la corrosion de la pièce P.
De préférence, l’imprégnation a lieu après la trempe par induction.
L’imprégnation en elle-même est une technique bien connue de l’homme du métier, et une méthode particulière est décrite par exemple dans le document EP3237648. L’imprégnation peut être faite par trempage ou par pulvérisation.
L’imprégnation protège la pièce car elle permet de retarder le démarrage de la corrosion, de réduire le taux de corrosion et ainsi d'accroître la durée de vie de la pièce.
Une évaluation de la résistance des pièces à la corrosion peut être faite par des essais sous atmosphère corrosive, par exemple un brouillard salin. La norme EN ISO 9227 « Essais de corrosion en atmosphères artificielles — Essais aux brouillards salins » décrit de tels essais. En rajoutant une étape d’imprégnation au procédé selon l’invention, il est possible d’obtenir une pièce P dont la tenue à la corrosion lors d’un essai au brouillard salin neutre est supérieure à 80h.
Au vu de ce qui précède, et de manière inattendue, de nombreux avantages peuvent être obtenus par la mise en oeuvre d’une opération de nitruration suivie d’une opération de trempe par induction haute fréquence selon l’invention. Ces opérations permettent d’obtenir des pièces en matériaux ferreux présentant une importante résistance à l’usure par abrasion et adhésion, et une amélioration de propriétés de frottement, résistance à l’écaillage combinées à une tenue à la corrosion correcte, sans avoir besoin d’enrober la pièce avant trempe HF.

Claims

REVENDICATIONS
1. Procédé de traitement d’une pièce (P) en métal ferreux, comprenant : une opération de nitruration formant sur la pièce (P) une couche de combinaison (2) ayant une épaisseur comprise entre 5 pm et 30 pm, et une zone de diffusion (3) agencée sous et au contact de la couche de combinaison (2) ayant une épaisseur comprise entre 100 pm et 500 pm ; puis une opération de trempe par induction haute-fréquence de la pièce (P), sur une profondeur d’induction supérieure ou égale à 0,5 mm, provoquant un durcissement de la pièce (P) procurant à ladite pièce (P) :
• une dureté de surface supérieure ou égale à 50 HRC,
• une dureté de la couche de combinaison (2) supérieure ou égale à 400 HV0,05,
• une dureté de la pièce supérieure ou égale à 500 HV0,05 à une profondeur de 500 pm, et dans lequel l’opération de trempe par induction haute-fréquence est réalisée sans application d’un film protecteur sur la pièce (P) préalablement à l’opération de trempe par induction.
2. Procédé selon la revendication 1 , caractérisé en ce que l’opération de trempe par induction n’est pas suivie par une opération de revenu.
3. Procédé selon l’une quelconque des revendications 1 ou 2, caractérisé en ce que l’opération de trempe par induction haute-fréquence de la pièce est réalisée de manière à conserver de la ferrite dans la pièce (P) entre l’interface zone de diffusion (3) / couche de combinaison (2) et une profondeur de 500 pm, de préférence entre l’interface zone de diffusion (3) / couche de combinaison (2) et une profondeur de 300 pm.
4. Procédé selon l’une quelconque des revendications précédente, caractérisé en ce que l’opération de trempe par induction haute-fréquence de la pièce est réalisée de manière à avoir un taux de ferrite résiduelle dans la pièce (P), entre l’interface zone de diffusion (3) / couche de combinaison (2) et une profondeur de 500 pm, compris entre 1 % et 50% en volume, de préférence entre 1% et 30%, et de manière davantage préférée entre 5% et 30%.
5. Procédé selon l’une quelconque des revendications précédente, caractérisé en ce que l’opération de trempe par induction haute-fréquence de la pièce est réalisée de manière à avoir un taux de ferrite résiduelle dans la pièce (P), entre l’interface zone de diffusion (3) / couche de combinaison (2) et une profondeur de 500 pm, compris entre 5% et 20% en volume, de préférence entre 5% et 15%.
6. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre une étape d’imprégnation postérieurement à l’opération de trempe par induction haute-fréquence.
7. Procédé selon à la revendication 6, caractérisé en ce qu'il procure à la pièce (P) une résistance à la corrosion supérieure à 80 heures lors d’un essai au brouillard salin neutre.
8. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’opération de trempe par induction haute-fréquence est réalisée avec les paramètres suivants :
• une fréquence (F) comprise entre 50 et 400 kHz,
• une énergie linéaire (E) comprise entre 4,6 et 5,8 J/mm.
9. Pièce (P) en métal ferreux, comprenant une couche de combinaison (2) ayant une épaisseur comprise entre 5 pm et 30 pm, et une zone de diffusion (3) agencée sous et au contact de la couche de combinaison (2), ayant une épaisseur comprise entre 100 pm et 500 pm, ladite pièce (P) présentant :
• une dureté de surface supérieure ou égale à 50 HRC,
• une dureté de la couche de combinaison (2) supérieure ou égale à 400 HV0,05,
• une dureté de la pièce supérieure ou égale à 500 HV0,05 à une profondeur de 500 pm, ladite pièce (P) comprenant de la ferrite et de la martensite entre l’interface zone de diffusion (3) / couche de combinaison (2) et une profondeur de 500 pm.
10. Pièce (P) selon la revendication 9, caractérisée en ce que la dureté de la pièce (P) à une profondeur de 0,5 mm est supérieure ou égale à une dureté à cœur + 100 HV0,05.
11. Pièce (P) selon la revendication 9 ou la revendication 10, caractérisée en ce que la dureté de la pièce (P) à une profondeur de 0,25 mm est supérieure ou égale à une dureté à cœur + 350 HV0,05.
12. Pièce (P) selon l’une quelconque des revendications 9 à 11, caractérisée en ce qu’e Ile est en acier très faiblement allié, de la famille C10-C70, présentant une teneur en manganèse inférieure à 1 %.
13. Pièce (P) selon l’une quelconque des revendications 9 à 12, caractérisée en ce qu’e Ile comprend de la ferrite et de la martensite entre l’interface zone de diffusion (3) / couche de combinaison (2) et une profondeur de 300 pm.
14. Pièce (P) selon l’une quelconque des revendications 9 à 13, caractérisée en ce qu’e Ile comprend un taux de ferrite, entre l’interface zone de diffusion (3) / couche de combinaison (2) et une profondeur de 500 pm, compris entre 1% et 50% en volume, de préférence entre 1% et 30%, et de manière davantage préférée entre 5% et 30%.
15. Pièce (P) selon l’une quelconque des revendications 9 à 13, caractérisée en ce qu’e Ile comprend un taux de ferrite, entre l’interface zone de diffusion (3) / couche de combinaison (2) et une profondeur de 500 pm, compris entre 5% et 20% en volume, de préférence entre 5% et 15%.
16. Pièce (P) selon l’une quelconque des revendications 9 à 15, caractérisée en ce qu’e Ile présente une résistance à la corrosion supérieure à 80 heures lors d’un essai au brouillard salin neutre.
EP20851331.7A 2019-12-24 2020-12-23 Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux Pending EP4045689A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1915524A FR3105262B1 (fr) 2019-12-24 2019-12-24 Procédé et installation de traitement d’une pièce en métal ferreux
PCT/FR2020/052620 WO2021130460A1 (fr) 2019-12-24 2020-12-23 Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux

Publications (1)

Publication Number Publication Date
EP4045689A1 true EP4045689A1 (fr) 2022-08-24

Family

ID=71111478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20851331.7A Pending EP4045689A1 (fr) 2019-12-24 2020-12-23 Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux

Country Status (12)

Country Link
US (1) US20230029324A1 (fr)
EP (1) EP4045689A1 (fr)
JP (1) JP2023508956A (fr)
KR (1) KR20220115576A (fr)
CN (1) CN114846160A (fr)
AU (1) AU2020411028A1 (fr)
BR (1) BR112022010610A2 (fr)
CA (1) CA3160425A1 (fr)
FR (1) FR3105262B1 (fr)
MX (1) MX2022007942A (fr)
WO (1) WO2021130460A1 (fr)
ZA (1) ZA202205809B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022002394A1 (de) * 2022-07-03 2024-01-04 LSV Lech-Stahl Veredelung GmbH Verfahren zur Hersteliung eines Werkstücks aus Stahl und durch das Verfahren hergestelltes Werkstück

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10145599C1 (de) * 2001-09-15 2003-06-18 Gkn Loebro Gmbh Bauteile aus Stahl und Verfahren zur Wärmebehandlung von Bauteilen aus Stahl
JP5328545B2 (ja) * 2009-07-31 2013-10-30 日本パーカライジング株式会社 窒素化合物層を有する鉄鋼部材、及びその製造方法
JP5783101B2 (ja) * 2012-03-22 2015-09-24 新日鐵住金株式会社 窒化用鋼材
FR2991341A1 (fr) * 2012-06-01 2013-12-06 Peugeot Citroen Automobiles Sa Procede d'enrichissement thermochimique avec trempe par induction.
FR2991694B1 (fr) * 2012-06-07 2015-08-07 Peugeot Citroen Automobiles Sa Procede de traitement thermochimique pour une piece en acier combinant une etape de carbonitruration et une etape de nitruration
CN102943159A (zh) * 2012-10-11 2013-02-27 大连经济技术开发区圣洁真空技术开发有限公司 一种减少模具热处理变形的新工艺
FR3030578B1 (fr) 2014-12-23 2017-02-10 Hydromecanique & Frottement Procede de traitement superficiel d'une piece en acier par nitruration ou nitrocarburation, oxydation puis impregnation
CN106367712B (zh) * 2016-09-19 2019-03-29 山东科技大学 一种基于储油二次润滑的金属工件表面氮化+淬火复合处理技术及产品

Also Published As

Publication number Publication date
KR20220115576A (ko) 2022-08-17
BR112022010610A2 (pt) 2022-08-16
WO2021130460A1 (fr) 2021-07-01
ZA202205809B (en) 2023-01-25
MX2022007942A (es) 2022-07-27
AU2020411028A1 (en) 2022-06-09
FR3105262A1 (fr) 2021-06-25
CN114846160A (zh) 2022-08-02
FR3105262B1 (fr) 2022-04-15
CA3160425A1 (fr) 2021-07-01
JP2023508956A (ja) 2023-03-06
US20230029324A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
EP2097208B1 (fr) Piece de frottement en milieu lubrifie travaillant a des pressions de contact superieures a 200 mpa
EP3237648B1 (fr) Procédé de traitement superficiel d'une pièce en acier par nitruration ou nitrocarburation, oxydation puis imprégnation
EP3056583B1 (fr) Procédé de fabrication d'une pièce en acier faiblement allié nitruré
CA2837821C (fr) Traitement de surface d'une piece metallique
EP4045689A1 (fr) Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux
FR2589485A1 (fr) Magnesium ou alliage du magnesium traite en surface et procede pour le traitement de surface du magnesium ou d'un alliage de magnesium
EP3473734A1 (fr) Procede de traitement d'un acier
CH712760A2 (fr) Axe de pivotement pour mouvement d'horlogerie.
FR2884879A1 (fr) Couple d'organes de guidage dont l'un est en acier particulier conduisant a des performances ameliorees.
CA1293163C (fr) Procede de revetement protecteur de produits siderurgiques
EP3551923B1 (fr) Pièce de frottement, système mécanique comprenant une telle pièce de frottement, et procédé de mise en oeuvre.
FR3058423A1 (fr) Procede de traitement thermique d'une piece en acier fortement allie
EP2376668A1 (fr) Procede de traitement d'une partie metallique par un faisceau d'ions
EP0638661B1 (fr) Procédé pour améliorer la résistance à l'usure et à la corrosion de pièces en métaux ferreux
FR2891554A1 (fr) Revetement anti-corrosion a base de silicium, de carbone, d'hydrogene et d'azote.
WO2020221900A9 (fr) Piece en acier cementee pour l'aeronautique
EP3492621A1 (fr) Procédé pour améliorer les propriétés de résistance à l'usure d'une pièce mécanique
EP0310560A2 (fr) Procédé de revêtement à basse température par une couche dure et produits obtenus par ce procédé
FR3097562A1 (fr) Procédé de fabrication d’une pièce abradable de turbomachine et pièce abradable
EP3710716A1 (fr) Bague autolubrifiante pour palier fluide et procede de fabrication d'une telle bague
WO2023175249A1 (fr) Procede de traitement d'une piece en alliage de fer pour ameliorer sa resistance a la corrosion
EP4069879A1 (fr) Procédé de durcissement par nitruration
FR3107081A1 (fr) Piece de turbomachine en superalliage a teneur en hafnium optimisee
FR2656632A1 (fr) Procede de revetement de surfaces comprenant un depot metallurgique prealable d'au moins une couche d'aluminium et son anodisation dure, pieces traitees suivant ce procede, et procede de collage desdites pieces.
EP3390685A1 (fr) Procédé de protection d'une surface métallique d'une pièce par un revêtement en diamant et pièce ainsi obtenue

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: TN

Effective date: 20220520

Extension state: MA

Effective date: 20220520

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527