WO2023175249A1 - Procede de traitement d'une piece en alliage de fer pour ameliorer sa resistance a la corrosion - Google Patents

Procede de traitement d'une piece en alliage de fer pour ameliorer sa resistance a la corrosion Download PDF

Info

Publication number
WO2023175249A1
WO2023175249A1 PCT/FR2023/050087 FR2023050087W WO2023175249A1 WO 2023175249 A1 WO2023175249 A1 WO 2023175249A1 FR 2023050087 W FR2023050087 W FR 2023050087W WO 2023175249 A1 WO2023175249 A1 WO 2023175249A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphating
ions
bath
layer
iron
Prior art date
Application number
PCT/FR2023/050087
Other languages
English (en)
Inventor
Luc HERRMANN
Jérémy BARRALON
Cédric MEUNIER
Original Assignee
Hydromecanique Et Frottement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydromecanique Et Frottement filed Critical Hydromecanique Et Frottement
Publication of WO2023175249A1 publication Critical patent/WO2023175249A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding
    • C23C8/56Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/58Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the present invention relates to a method for treating an iron alloy part by nitriding and phosphating to improve its corrosion resistance, as well as to an iron alloy part treated by nitriding and phosphating.
  • the parts can receive one or more treatments to improve some of their performances, including friction properties, wear resistance, fatigue resistance, or even corrosion resistance.
  • nitriding is an interesting choice. It consists of immersing a ferrous metal part in a medium likely to release nitrogen, and the formation of iron nitrides on the surface of the part as well as the diffusion of nitrogen from the surface towards the heart of the part leads to significant surface hardening.
  • Nitration encompasses nitrocarburizing, which is a variation of nitriding, in which carbon enters the part in addition to nitrogen.
  • the ARCOR process developed by the Applicant and implemented by him for many years, and described in the remainder of this text, is a preferred example of a nitrocarburization process. In the remainder of this text, we group nitriding and nitrocarburizing under the single term “nitriding”.
  • Nitration can be done from a gas phase, a plasma phase, or from a liquid phase.
  • Liquid phase nitriding also called nitriding in molten salt baths, has the advantage of allowing significant hardening to a thickness of several tens of microns in a time of just a few hours, making it a first choice. order.
  • Molten salt baths are typically at temperatures of around 600°C, and in practice contain cyanates and carbonates, and also contain cations which are usually cations of alkali metals, such as lithium, sodium , or even potassium for example.
  • Nitration hardens the surface of the part and thus improves its resistance to wear. It can also improve sliding and seizure properties.
  • Phosphating is, for example, such a treatment, making it possible to improve the performance of parts in terms of corrosion resistance.
  • the crystallinity of the phosphate layer can be improved by a pretreatment which consists of depositing finely dispersed titanium compounds on the surface to be phosphated.
  • a pretreatment which consists of depositing finely dispersed titanium compounds on the surface to be phosphated.
  • the applicant has also demonstrated in patent EP 0560641 that nitriding in the presence of sulfur species makes it possible to facilitate phosphating and thus guarantee fine crystallinity.
  • the sulfur species content must be low (of the order of ten ppm) and controlling and maintaining the correct sulfur species content increases the complexity and cost of such nitriding.
  • gray cast iron is cast iron in which carbon crystallizes in the form of graphite inclusions, which can take the form of long and narrow strips of graphite, nodules (spheroids), or vermicules. These inclusions, when they emerge on the surface of the part, can disrupt surface treatments and thus constitute initiation points for corrosion.
  • a degraphitization treatment before nitriding described in document WO2016143712.
  • such pre-treatment further increases the duration and overall cost of gray cast iron processing.
  • Lamellar cast iron in which the inclusions are in the form of lamellae, has the advantage of being cheaper than other cast irons.
  • Spheroidal cast iron requires the addition of a crystallizing element (rare earth, lithium, magnesium) which increases its cost.
  • a crystallizing element rare earth, lithium, magnesium
  • gray cast iron is a relatively inexpensive material, but rather difficult to protect against corrosion.
  • Gray cast iron being a cheap material, it is used for the manufacture of brake discs for motor vehicles. Brake discs are often untreated and have very low corrosion resistance. During braking, corrosion attacks on the surface of the discs are abraded by the pads, and are therefore eliminated.
  • the presence of unsightly corrosion on the brake discs harms the appearance of the vehicle and may prevent the purchase.
  • the Applicant sought a solution to simplify the processes for treating mechanical parts by nitriding then phosphating, particularly in view of the constraint of surface preparation before the actual phosphating operation, which increases costs. of production.
  • the process should preferably be adapted to the treatment of gray cast iron despite the intrinsic constraints of this material. However, it must be able to be applied to any cast iron or low alloy steel, or in principle to all iron alloys.
  • the invention proposes a process for treating an iron alloy part to improve its resistance to corrosion and its mechanical strength, comprising:
  • molten salt bath contains chlorides
  • phosphating operation is carried out in a phosphating bath which contains ions zinc and/or manganese ions, and iron ions.
  • the Applicant has noticed that carrying out a nitriding operation in the presence of chlorides (that is to say chloride ions Cl' and by extension to chemical species containing chloride ions such as chlorine salts) then a phosphating operation with zinc and iron (zinc/iron type, Zn/Fe), or with manganese and iron (manganese/iron type, Mn/Fe), or with zinc and manganese and iron (zinc/manganese/iron, Zn/Mn/Fe type), makes it possible to obtain a part with good corrosion resistance properties and good mechanical strength.
  • chlorides that is to say chloride ions Cl' and by extension to chemical species containing chloride ions such as chlorine salts
  • a phosphating operation with zinc and iron (zinc/iron type, Zn/Fe), or with manganese and iron (manganese/iron type, Mn/Fe), or with zinc and manganese and iron (zinc/manganese/iron, Zn/Mn/
  • the process of the invention not only leads to the aforementioned advantageous mechanical properties, in particular, a mechanical strength relatively similar to the current standard for gray cast iron, namely nitriding then oxidation in gas phase, but also eliminates the need for prior degraphitization.
  • Zinc can be replaced at least partially by Manganese.
  • the phosphating bath therefore comprises, in addition to the usual PCL 3 ' phosphate ions, zinc Zn 2+ ions and/or manganese Mn 2+ ions, as well as iron Fe 2+ ions.
  • the method of treating a part according to the invention does not include an operation of degraphitization of the part, prior to phosphating, that is to say before phosphating or even before nitriding.
  • the process according to the invention therefore applies advantageously, but not exclusively, to iron alloy parts which usually require degraphitization, in particular gray cast iron parts.
  • the treatment process according to the invention has the following different characteristics taken alone or in their technically possible combinations:
  • the molten salt bath does not contain sulfur;
  • chlorides include alkali metal chlorides; alkali metal chlorides are lithium, sodium and/or potassium chlorides;
  • the molten salt bath comprises cyanate ions CNO', carbonate ions (CCL) 2 ', and alkaline ions preferably chosen from lithium ions Li + , and/or potassium ions K + , and/or sodium ions Na + ;
  • the molten nitriding salt bath includes:
  • the phosphating bath contains zinc ions but not manganese ions, said zinc ions are present at a mass concentration of between 1 g/L and 40 g/L (gram per liter), preferably between 5 g/L and 20 g/L, relative to the total volume of the phosphating bath;
  • the phosphating bath contains manganese ions but not zinc ions, said manganese ions are present at a mass concentration of between 1 g/L and 40 g/L, preferably between 5 g/L and 20 g/L , relative to the total volume of the phosphating bath;
  • the total of these ions is present at a mass concentration of between 1 g/L and 40 g/L, preferably between 5 g/L and 20 g/L .
  • the manganese ions can represent between 10% and 90% by weight, preferably between 25% and 75% by weight, and advantageously between 40% and 60% by weight of the total weight of the zinc ions and the ions.
  • the iron ions being in all cases present in the phosphating bath at a mass concentration of between 1 g/L and 8 g/L, preferably between 1 g/L and 6 g/L, and more preferably between 1 g /L and 5 g/L;
  • the bath possibly including nitric acid or nitrates
  • the phosphating layer has a thickness of between 3 pm and 40 pm, preferably between 5 pm and 30 pm, and more preferably between 5 pm and 20 pm; the combination layer measures between 5 pm and 40 pm in thickness, and preferably between 15 pm and 25 pm; the part is made of gray cast iron.
  • the process of the invention in the case where the phosphating bath does not contain manganese ions, applies particularly to a brake disc.
  • the invention therefore also relates to a process for treating a gray cast iron part to improve its resistance to corrosion, the process being as described previously.
  • Another object of the invention is an iron alloy part capable of being obtained by the treatment process described above, comprising:
  • nitriding layer on the surface of the iron alloy comprising a combination layer containing nitrides
  • a phosphating layer arranged on and in contact with the nitriding layer, comprising metal phosphates, mainly characterized in that the metal phosphates comprise zinc and/or manganese, and iron.
  • the invention also relates to a gray cast iron part capable of being obtained by the treatment process described above, comprising:
  • nitriding layer on the surface of the gray cast iron comprising a combination layer containing nitrides
  • a phosphating layer arranged on and in contact with the nitriding layer, comprising metal phosphates, mainly characterized in that the metal phosphates comprise zinc and/or manganese, and iron.
  • the phosphating layer of the part has a thickness of between 3 pm and 40 pm, preferably between 5 pm and 30 pm, and more preferably between 5 pm and 20 pm.
  • the combination layer has a thickness of between 5 pm and 40 pm, preferably between 15 pm and 25 pm.
  • the part has graphite inclusions at a surface of the part on which the combination layer is formed, to the extent that it has not undergone prior degraphitization. These graphite inclusions are located at least at one surface of the part on which the combination layer is formed.
  • the part is preferably a brake disc.
  • the phosphating is zinc-iron phosphating.
  • the invention therefore also relates to a brake disc having the characteristics of the gray cast iron part described above.
  • Figure 1 is a micrograph of a part according to one embodiment of the invention, said part being a lamellar cast iron brake disc.
  • FIG. 2 is a photograph of the part of Figure 1 after nitration-phosphatization treatment and before a salt spray test.
  • Figure 3 is a photograph of a part not conforming to the invention, said part being a lamellar cast iron brake disc.
  • Figure 4 is a micrograph of the part of Figure 3 after nitration-phosphatization treatment and before a salt spray test.
  • the first problem addressed consists of finding a process giving the part (P) sufficient resistance to corrosion, despite the fact that the bath of nitriding does not contain sulfur and that in addition said part is made of non-degraphitized gray cast iron and therefore particularly difficult to protect from corrosion.
  • the treated parts (P) were subjected to a salt spray, and their resistance to corrosion is evaluated based on the duration of appearance of a threshold of pitting and/or rust dripping.
  • the ARCOR nitrocarburization treatment (trademark registered by the Applicant) provides, from the surface towards the core of the part (P), a combination layer (1) and a diffusion zone ( 1 ') juxtaposed.
  • the combination layer (1) typically has a thickness of between 5 and 30 ⁇ m, and is formed at the surface of the substrate (S) which makes up the part (P).
  • the diffusion zone (1 ') typically has a thickness of a few tens or hundreds of microns, for example 300 pm, and is measured from the surface of the substrate (S) of the part (P), towards the heart of said part .
  • the nitmeteration was carried out in a molten salt bath.
  • Phosphating provides, on the surface of the part (P), above the combination layer (1), a layer of metal phosphate (2).
  • the metal phosphate layer (2) typically has a thickness of approximately 20 ⁇ m.
  • an additional layer (a) is visible: it is a layer of aluminum not forming part of the part (P), but deposited in order to make the cut necessary for the micrograph.
  • G inclusions of graphite, of lamellar shape, which emerge on the surface of the part (P).
  • a first series of corrosion resistance tests was carried out.
  • the parts (P) manufactured from gray cast iron, then treated, are placed in an enclosure and subjected to a salt spray test.
  • the enclosure is then opened every 24 hours to check the appearance of corrosion spots, which indicate the beginning of localized corrosion. These points are counted, and if their number is greater than a predefined threshold, for example 50, then the part (P) is considered corroded and the test stops. The longer the time before the threshold is reached, the more resistant the part is to corrosion.
  • the minimum corrosion resistance is set by the Applicant at a duration greater than or equal to 96 hours.
  • ARCOR L nitriding is a ferritic nitrocarburizing process with treatment temperatures that can vary between 530°C and 650°C depending on the steel to be treated and the specification requested. It corresponds to what is described in patent FR2972459.
  • the “ARCOR L” nitriding bath contains chloride ions.
  • ARCOR V nitration is a ferritic nitrocarburizing process with treatment temperatures that can vary between 500°C and 700°C depending on the steel to be treated and the specification requested. It corresponds to the nitriding part which is described in patent FR2812888.
  • the “ARCOR V” nitriding bath does not contain chloride ions.
  • Oxidation 1 post-treatment is an oxidation process in a molten salt bath at a temperature of 450°C.
  • Oxidation 2 post-treatment is an oxidation process in aqueous solution with treatment temperatures that can vary between 120°C and 140°C.
  • Salts are essentially made up of nitrates, nitrites and carbonates associated with alkaline Na+ cations.
  • a “Ph (ZnFe)” post-treatment is a phosphating process with treatment temperatures that can vary between 60°C and 70°C.
  • Iron is provided in the form of iron powder.
  • a “Ph (ZnCa)” post-treatment is a phosphating process with treatment temperatures that can vary between 80°C and 90°C.
  • a “Ph (Zn)” post-treatment is a phosphating process with treatment temperatures that can vary between 60°C and 70°C.
  • the salts used are of the (H2PO4)2Me type and include only Zn 2+ ions. Based on the corrosion tests carried out, it is possible to draw the following conclusions.
  • a micrograph of a part (Cl 4) was taken after treatment, and before salt spray testing. It can be seen that the border between the phosphating layer (2) and the combination layer (1) is less clear than on the parts (P) according to the invention. It can be assumed that the deposition of the phosphating layer (2) attacked the combination layer (1), to the extent that phosphating with Zn alone takes Fe ions from the substrate. Unlike iron alloy substrates phosphated with zinc but not having undergone nitriding, we observe that zinc phosphating alone on nitrided parts does not provide good corrosion protection. One hypothesis for this observation is that the dissolution of iron from the combination layer makes the surface of the substrate (S) too rough which could increase the porosity of the phosphate layer.
  • the process according to the invention is, however, less expensive than the solutions of the prior art, because it makes it possible to dispense with degraphitization.
  • the nitriding step in particular is inexpensive, because the nitriding salts used (chlorides) are economical and their dosage is not critical.
  • the process according to the invention only requires nitriding and phosphating to modify the chemistry and macroscopic structure of the part (P), and thus give it good mechanical properties, in particular mechanical strength, resistance wear and corrosion resistance.
  • nitriding and phosphating are both carried out by bath, there is no need to change the assembly of the parts to move from one stage to another and industrialization is facilitated. In particular, the time required to complete the complete treatment is greatly reduced compared to equivalent gas nitriding.
  • Other ferrous alloys can be considered to make the part (P), such as steel or white cast iron.
  • gray cast iron has the advantage of being the least expensive material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

La présente invention concerne un procédé de traitement d'une pièce (P) en alliage de fer pour améliorer sa résistance à la corrosion et sa tenue mécanique, comprenant : - une opération de nitruration ou de nitrocarburation en bain de sels fondus, formant sur la pièce (P) une couche de combinaison (1), puis - une opération de phosphatation de la pièce (P) formant une couche de phosphatation (2) en surface de la pièce, caractérisé en ce que le bain de sels fondus contient des chlorures, et l'opération de phosphatation est effectuée dans un bain de phosphatation contenant des ions zinc et/ou des ions manganèse, et des ions fer.

Description

DESCRIPTION
Titre : PROCEDE DE TRAITEMENT D’UNE PIECE EN ALLIAGE DE
FER POUR AMELIORER SA RESISTANCE A LA CORROSION
Domaine technique de l’invention
La présente invention se rapporte à un procédé de traitement d’une pièce en alliage de fer par nitruration et phosphatation pour améliorer sa résistance à la corrosion, ainsi qu’à une pièce en alliage de fer traitée par nitruration et phosphatation.
Arrière-plan technologique
Dans les applications automobiles, aéronautiques ou industrielles, les pièces mécaniques sont généralement soumises à d’importantes sollicitations en service.
De manière classique, les pièces peuvent recevoir un ou plusieurs traitements permettant d’améliorer certaines de leurs performances, parmi lesquelles les propriétés de frottement, de résistance à l’usure, de résistance à la fatigue, ou encore de tenue à la corrosion.
Parmi ces différents traitements, la nitruration est un choix intéressant. Elle consiste à plonger une pièce en métal ferreux dans un milieu susceptible de céder de l’azote, et la formation de nitrures de fer à la surface de la pièce ainsi que la diffusion de l’azote de la surface vers le cœur de la pièce conduit à un durcissement superficiel important.
La nitmration englobe la nitrocarburation, qui est une variante de la nitruration, dans laquelle du carbone pénètre dans la pièce en plus de l’azote. Le procédé ARCOR, développé par le Demandeur et mis en œuvre par celui-ci depuis de nombreuses années, et décrit dans la suite du présent texte, est un exemple préféré de procédé de nitrocarburation. Dans la suite du présent texte, on regroupe la nitruration et la nitrocarburation sous le seul terme de « nitruration ».
La nitmration peut se faire à partir d’une phase gazeuse, d’une phase plasma, ou à partir d’une phase liquide. La nitruration en phase liquide, également appelée nitruration en bains de sels fondus, présente l’avantage de permettre un durcissement important sur une épaisseur de plusieurs dizaines de microns en des temps d’à peine quelques heures, ce qui en fait un choix de premier ordre. Les bains de sels fondus sont typiquement à des températures de l’ordre de 600°C, et contiennent en pratique des cyanates et des carbonates, et contiennent également des cations qui sont usuellement des cations de métaux alcalins, tels que le lithium, le sodium, ou encore le potassium par exemple.
La nitmration permet de durcir la surface de la pièce et d’améliorer ainsi sa résistance à l’usure. Elle peut également améliorer les propriétés de glissement et de grippage.
Elle est souvent combinée à un autre traitement, par exemple s’il y a besoin d’une bonne tenue à la corrosion.
La phosphatation est par exemple un tel traitement, permettant d’améliorer les performances des pièces en termes de tenue à la corrosion.
Les performances des pièces ayant subi une phosphatation, quelle que soit leur application, dépendent essentiellement de deux caractéristiques : la cristallinité et la qualité d’adhérence sur un substrat de la couche phosphatée.
D’une façon générale, on cherche donc à obtenir lors de l’étape de phosphatation une cristallisation fine et régulière, conduisant à une couche phosphate la plus dense possible.
Ces deux caractéristiques sont directement dépendantes de la qualité de la préparation de la surface métallique du substrat, avant l’opération proprement dite de phosphatation. L’état physico-chimique de cette surface conditionne en effet sa réactivité vis-à-vis des agents actifs du bain de phosphatation, ainsi que la croissance de la couche des complexes phosphatés. Il est implicite que les pièces peuvent être lavées, dégraissées et séchées avant les opérations de nitruration et/ou de phosphatation. Ces opérations de routine ne modifient ni la chimie ni la structure des pièces à traiter. Dans certains cas cependant, d’autres opérations de prétraitement sont mises en œuvre.
Il est ainsi connu de l’homme de l’art que la cristallinité de la couche phosphate peut être améliorée par un prétraitement qui consiste à déposer des composés de titane finement dispersés sur la surface à phosphater. La demanderesse a également démontré dans le brevet EP 0560641 qu’une nitruration en présence d’espèces soufrées permet de faciliter la phosphatation et ainsi garantir une cristallinité fine.
Cependant, la teneur en espèces soufrées doit être faible (de l’ordre de la dizaine de ppm) et le contrôle et le maintien de la bonne teneur en espèces soufrées augmente la complexité et le coût d’une telle nitruration.
Le coût peut alors devenir prohibitif pour le traitement de matériaux peu chers, par exemple les aciers très faiblement alliés ou les fontes.
Dans le cas particulier des fontes, la fonte grise est une fonte dans laquelle le carbone cristallise sous forme d’inclusions de graphite, qui peuvent prendre la forme de lamelles longues et étroites de graphite, de nodules (sphéroïdes), ou de vermicules. Ces inclusions, quand elles débouchent à la surface de la pièce, peuvent perturber les traitements de surface et ainsi constituer des points d’amorce pour la corrosion. Ainsi, afin d’améliorer la tenue corrosion, il a été proposé de faire un traitement de dégraphitisation avant la nitruration (décrit dans le document WO2016143712). Cependant, un tel pré-traitement augmente encore la durée et le coût global du traitement de la fonte grise.
La fonte lamellaire, dans laquelle les inclusions sont sous la forme de lamelles, présente l’avantage d’être meilleur marché que les autres fontes. La fonte sphéroïdale nécessite l’ajout d’un élément cristallisant (terre-rare, lithium, magnésium) ce qui augmente son coût. De façon générale, la fonte grise est un matériau assez peu cher, mais plutôt difficile à protéger contre la corrosion.
La fonte grise étant un matériau bon marché, elle est utilisée pour la fabrication de disques de freins de véhicules automobiles. Souvent, les disques de frein ne sont pas traités et présentent une très faible résistance à la corrosion. Lors du freinage, les attaques de corrosion à la surface des disques sont abradées par les plaquettes, et sont donc supprimées.
Cependant, avec l’émergence des véhicules électriques et de la récupération d’énergie électrique au freinage, les freins mécaniques sont de moins en moins sollicités et les éventuelles attaques de corrosion présentes à la surface des disques ne sont désormais plus supprimées : la corrosion, disgracieuse et néfaste pour la qualité du freinage, se propage sur les disques de frein.
Au surplus, en cas de stockage d’une longue durée du véhicule avant sa vente, la présence de corrosion disgracieuse sur les disques de frein nuit à l’apparence du véhicule et peut empêcher l’acte d’achat.
Il convient donc de proposer des pièces mécaniques, notamment des disques de freins, peu onéreuses, mais résistantes à la corrosion. Dans le cas des disques de frein, la phosphatation seule n’est pas suffisante car au premier freinage la couche phosphatée est enlevée.
Brève description de l’invention
Face à cette situation, le Demandeur a cherché une solution pour simplifier les procédés de traitement des pièces mécaniques par nitruration puis phosphatation, tout particulièrement au vu de la contrainte de préparation de la surface avant l’opération proprement dite de phosphatation, qui augmente les coûts de production. Le procédé doit de préférence être adapté au traitement de la fonte grise malgré les contraintes intrinsèques de ce matériau. Cependant, il doit pouvoir être appliqué à toute fonte ou acier faiblement allié, voire en principe à tous les alliages de fer.
A cette fin, l’invention propose un procédé de traitement d’une pièce en alliage de fer pour améliorer sa résistance à la corrosion et sa tenue mécanique, comprenant :
- une opération de nitruration ou de nitrocarburation en bain de sels fondus, formant sur la pièce une couche de combinaison, puis
- une opération de phosphatation de la pièce formant une couche de phosphatation en surface de la pièce, principalement caractérisé en ce que le bain de sels fondus contient des chlorures, et l’opération de phosphatation est effectuée dans un bain de phosphatation qui contient des ions zinc et/ou des ions manganèse, et des ions fer.
Le Demandeur s’est aperçu que la réalisation d’une opération de nitruration en présence de chlorures (c’est-à-dire des ions chlorure Cl’ et par extension à des espèces chimiques contenant des ions chlorure telles que des sels de chlore) puis d’une opération de phosphatation au zinc et au fer (de type zinc/fer, Zn/Fe), ou au manganèse et au fer (de type manganèse /fer, Mn/Fe), ou au zinc et au manganèse et au fer (de type zinc/manganèse/fer, Zn/Mn/Fe), permet d’obtenir une pièce présentant des bonnes propriétés de résistance à la corrosion et une bonne tenue mécanique.
En outre, dans le cas particulier d’une pièce en fonte grise le procédé de l’invention conduit non seulement aux propriétés mécaniques avantageuses susmentionnées, notamment, une tenue mécanique relativement similaire au standard actuel pour les fontes grises, à savoir nitruration puis oxydation en phase gazeuse, mais permet également de s’affranchir d’une dégraphitisation préalable. Pour des applications nécessitant un coefficient de frottement faible, le Zinc peut être remplacé au moins partiellement par du Manganèse. A l’inverse, dans le cas où l’on souhaite conserver un coefficient de frottement relativement élevé, par exemple pour des disques de frein, alors il convient d’éviter la présence d’ions Manganèse dans le bain de phosphatation.
Le bain de phosphatation comprend donc, en plus des ions phosphate PCL3' usuels, des ions zinc Zn2+ et/ou des ions manganèse Mn2+, ainsi que des ions fer Fe2+.
Comme indiqué précédemment, le procédé de traitement d’une pièce selon l’invention ne comprend pas d’opération de dégraphitisation de la pièce, préalablement à la phosphatation, c’est-à-dire avant la phosphatation ou même avant la nitruration.
L’absence de dégraphitisation permet de réduire le temps et les coûts de production, sans toutefois dégrader la qualité de la pièce obtenue, notamment ses bonnes propriétés de dureté, de résistance à l’usure et de tenue à la corrosion.
Le procédé selon l’invention s’applique donc avantageusement, mais non exclusivement, à des pièces en alliage de fer qui nécessitent habituellement une dégraphitisation, notamment des pièces en fonte grise.
Selon d’autres aspects, le procédé de traitement selon l’invention présente les différentes caractéristiques suivantes prises seules ou selon leurs combinaisons techniquement possibles : le bain de sels fondus ne contient pas de soufre ; les chlorures comprennent des chlorures de métal alcalin ; les chlorures de métal alcalin sont des chlorures de lithium, de sodium et/ou de potassium ; le bain de sels fondus comprend des ions cyanates CNO’, des ions carbonates (CCL)2', et des ions alcalins de préférence choisis parmi les ions lithium Li+, et/ou les ions potassium K+, et/ou les ions sodium Na+ ; le bain de sels fondus de nitruration comprend :
• de 25% à 60% de chlorures de métal alcalin,
• de 10% à 40% de carbonates de métal alcalin, • de 20% à 50% de cyanates de métal alcalin,
• 3% ou moins d’ions cyanures, les pourcentages étant exprimés en poids par rapport au poids total du bain; la teneur en ions zinc, manganèse et fer dans le bain de phosphatation est ajustée de la manière suivante, selon l’alliage de la pièce traitée et les performances attendues :
• lorsque le bain de phosphatation contient des ions zinc mais pas d’ions manganèse, lesdits ions zinc sont présents à une concentration massique comprise entre 1 g/L et 40 g/L (gramme par litre), de préférence entre 5 g/L et 20 g/L, par rapport au volume total du bain de phosphatation ;
• lorsque le bain de phosphatation contient des ions manganèse mais pas d’ions zinc, lesdits ions manganèse sont présents à une concentration massique comprise entre 1 g/L et 40 g/L, de préférence entre 5 g/L et 20 g/L, par rapport au volume total du bain de phosphatation ;
• lorsque le bain de phosphatation contient des ions zinc et des ions manganèse, le total de ces ions est présent à une concentration massique comprise entre 1 g/L et 40 g/L, de préférence entre 5 g/L et 20 g/L. En outre et de manière optionnelle, les ions manganèse peuvent représenter entre 10% et 90% en poids, préférentiellement entre 25% et 75% en poids, et avantageusement entre 40% et 60% en poids du poids total des ions zinc et des ions manganèse ;
• les ions fer étant dans tous les cas présents dans le bain de phosphatation à une concentration massique comprise entre 1 g/L et 8 g/L, de préférence entre 1 g/L et 6 g/L, et plus préférablement entre 1 g/L et 5 g/L ;
• le bain comprenant éventuellement de l’acide nitrique ou des nitrates ;
• le reste du bain étant essentiellement constitué d’eau. la couche de phosphatation présente une épaisseur comprise entre 3 pm et 40 pm, de préférence entre 5 pm et 30 pm, et encore préférentiellement entre 5 pm et 20 pm ; la couche de combinaison mesure entre 5 pm et 40 pm d’épaisseur, et de préférence entre 15 pm et 25 pm ; la pièce est en fonte grise.
Le procédé de l’invention, dans le cas où le bain de phosphatation ne contient pas d’ions manganèse, s’applique tout particulièrement à un disque de frein. L’invention concerne donc également un procédé de traitement d’une pièce en fonte grise pour améliorer sa résistance à la corrosion, le procédé étant tel que décrit précédemment.
Un autre objet de l’invention est une pièce en alliage de fer susceptible d’être obtenue par le procédé de traitement décrit précédemment, comprenant :
- une couche de nitruration à la surface de l’alliage de fer, comprenant une couche de combinaison contenant des nitrures,
- une couche de phosphatation agencée sur et au contact de la couche de nitruration, comprenant des phosphates métalliques, principalement caractérisée en ce que les phosphates métalliques comprennent du zinc et/ou du manganèse, et du fer.
L’invention se rapporte également à une pièce en fonte grise susceptible d’être obtenue par le procédé de traitement décrit précédemment, comprenant :
- une couche de nitruration à la surface de la fonte grise, comprenant une couche de combinaison contenant des nitrures,
- une couche de phosphatation agencée sur et au contact de la couche de nitruration, comprenant des phosphates métalliques, principalement caractérisée en ce que les phosphates métalliques comprennent du zinc et/ou du manganèse, et du fer.
De préférence, la couche de phosphatation de la pièce présente une épaisseur comprise entre 3 pm et 40 pm, de préférence entre 5 pm et 30 pm, et encore préférentiellement entre 5 pm et 20 pm.
De préférence, la couche de combinaison présente une épaisseur comprise entre 5 pm et 40 pm, de préférence comprise entre 15 pm et 25 pm. La pièce présente des inclusions de graphite au niveau d’une surface de la pièce sur laquelle est formée la couche de combinaison, dans la mesure où elle n’a pas subi de dégraphitisation préalable. Ces inclusions de graphite sont situées au moins au niveau d’une surface de la pièce sur laquelle est formée la couche de combinaison.
La pièce est de préférence un disque de frein. Dans ce cas, la phosphatation est une phosphatation zinc-fer. L’invention concerne donc également un disque de frein présentant les caractéristiques de la pièce en fonte grise décrite précédemment.
Description des figures
D’autres avantages et caractéristiques de l’invention apparaîtront à la lecture de la description suivante donnée à titre d’exemple illustratif et non limitatif, en référence aux figures annexées suivantes :
[Fig. 1] La figure 1 est une micrographie d’une pièce selon un mode de réalisation de l’invention, ladite pièce étant un disque de frein en fonte lamellaire.
[Fig. 2] La figure 2 est une photographie de la pièce de la figure 1 après traitement de nitmration-phosphatation et avant un test au brouillard salin.
[Fig. 3] La figure 3 est une photographie d’une pièce non conforme à l’invention, ladite pièce étant un disque de frein en fonte lamellaire.
[Fig. 4] La figure 4 est une micrographie de la pièce de la figure 3 après traitement de nitmration-phosphatation et avant un test au brouillard salin.
Description détaillée de modes de réalisation de l’invention
La démarche du Demandeur a été de réaliser plusieurs séries d’essais mettant en œuvre différents traitements d’une pièce (P) en fonte grise.
La première problématique adressée consiste à trouver un procédé conférant à la pièce (P) une résistance à la corrosion suffisante, malgré le fait que le bain de nitruration ne contient pas de soufre et qu’au surplus ladite pièce soit en fonte grise non-dégraphitisée et donc particulièrement difficile à protéger de la corrosion.
Les pièces (P) traitées ont été soumises à un brouillard salin, et leur résistance à la corrosion est évaluée à partir de la durée d’apparition d’un seuil de piqûres et/ou de coulures de rouille.
Ensuite, la seconde problématique a été de valider le bon fonctionnement de la pièce (P) ainsi traitée, selon une utilisation particulière de disque de frein : des mesures comparatives de coefficient de frottement ont donc été menées.
En particulier, le demandeur a étudié les effets des deux opérations suivantes.
En référence à la micrographie illustrée sur la figure 1 , le traitement de nitrocarburation ARCOR (marque déposée par le Demandeur) apporte, de la surface vers le cœur de pièce (P), une couche de combinaison (1) et une zone de diffusion (1 ’) juxtaposées. La couche de combinaison (1) a typiquement une épaisseur comprise entre 5 et 30 pm, et se forme au niveau de la surface du substrat (S) qui compose la pièce (P).
La zone de diffusion (1 ’) a typiquement une épaisseur de quelques dizaines ou centaines de microns, par exemple 300 pm, et se mesure depuis la surface du substrat (S) de la pièce (P), en direction du cœur de ladite pièce.
La nitmration a été réalisée en bain de sels fondus.
La phosphatation apporte, à la surface de la pièce (P), au-dessus de la couche de combinaison (1), une couche de phosphate métallique (2). La couche de phosphate métallique (2) a typiquement une épaisseur d’environ 20 pm.
Sur la micrographie de la figure 1, une couche supplémentaire (a) est visible : il s’agit d’une couche d’aluminium ne faisant pas partie de la pièce (P), mais déposée en vue de réaliser la coupe nécessaire à la micrographie. On peut en outre observer les inclusions (G) de graphite, de forme lamellaire, qui débouchent à la surface de la pièce (P).
Une première série d’essais de résistance à la corrosion a été conduite. Les pièces (P) fabriquées à base de fonte grise, puis traitées, sont placées dans une enceinte et soumises à un test au brouillard salin.
L’enceinte est ensuite ouverte toutes les 24h afin de vérifier l’apparition de points de corrosion, qui témoignent d’un début de corrosion localisée. Ces points sont comptés, et si leur nombre est supérieur à un seuil prédéfini, par exemple 50, alors la pièce (P) est considérée comme corrodée et le test s’arrête. Plus la durée est importante avant que le seuil ne soit atteint, plus la pièce est résistante à la corrosion. La résistance à la corrosion minimale est fixée par le Demandeur à une durée supérieure ou égale à 96h.
Le Tableau 1 ci-dessous illustre les essais de corrosion les plus pertinents pour comprendre l’invention : [Table 1]
Figure imgf000013_0001
Une nitruration « ARCOR L » est un procédé de nitrocarburation ferritique avec des températures de traitement pouvant varier entre 530°C et 650°C en fonction de l’acier à traiter et de la spécification demandée. Elle correspond à ce qui est décrit dans le brevet FR2972459. Le bain de nitruration « ARCOR L » contient des ions chlorure.
Une nitmration « ARCOR V » est un procédé de nitrocarburation ferritique avec des températures de traitement pouvant varier entre 500°C et 700°C en fonction de l’acier à traiter et de la spécification demandée. Elle correspond à la partie nitruration qui est décrite dans le brevet FR2812888. Le bain de nitruration « ARCOR V » ne contient pas d’ions chlorure.
Un post-traitement « Oxydation 1 » est un procédé d’oxydation en bain de sels fondus à une température de 450°C.
Un post-traitement « Oxydation 2 » est un procédé d’oxydation en solution aqueuse avec des températures de traitement pouvant varier entre 120°C et 140°C. Les sels sont constitués essentiellement de nitrates, nitrites et carbonates associés à des cations alcalins Na+.
Un post-traitement « Ph (ZnFe) » est un procédé de phosphatation avec des températures de traitement pouvant varier entre 60°C et 70°C. Les sels utilisés sont de type (H2PO4)2Me et comprennent des ions Zn2+ (Me = Zn). Le Fer est apporté sous forme de poudre de fer.
Un post-traitement « Ph (ZnCa) » est un procédé de phosphatation avec des températures de traitement pouvant varier entre 80°C et 90°C. Les sels utilisés sont de type (H2PO4)2Me et comprennent des ions Zn2+ et Ca2+ (Me = Zn, Ca).
Un post-traitement « Ph (Zn) » est un procédé de phosphatation avec des températures de traitement pouvant varier entre 60°C et 70°C. Les sels utilisés sont de type (H2PO4)2Me et comprennent uniquement des ions Zn2+. Sur la base des essais de corrosion effectués, il est possible de tirer les conclusions suivantes.
En référence à la photographie de la figure 2, on voit qu’une pièce (P) selon l’invention ne présente aucun point de corrosion (photo prise au bout de 48h de test).
En référence à la photographie de la figure 3, une pièce (Cl 4) ne correspondant pas à l’invention présente, au bout de 48h de test, plus de 50 points de corrosion (pc). Le traitement référencé C14 ne donne donc pas satisfaction.
En référence à la figure 4, une micrographie d’une pièce (Cl 4) a été effectuée après traitement, et avant essai au brouillard salin. On constate que la frontière entre la couche de phosphatation (2) et la couche de combinaison (1) est moins nette que sur les pièces (P) selon l’invention. On peut supposer que le dépôt de la couche de phosphatation (2) ait attaqué la couche de combinaison (1), dans mesure où la phosphatation au Zn seul prélève des ions Fe dans le substrat. Contrairement à des substrats en alliage de fer phosphatés au zinc mais n’ayant pas subis de nitruration, nous observons que la phosphatation au zinc seul sur des pièces nitrurées ne donne pas une bonne protection corrosion. Une hypothèse à cette observation est que la dissolution du fer de la couche de combinaison rend la surface du substrat (S) trop rugueuse ce qui pourrait augmenter la porosité de la couche de phosphate.
Ce phénomène n’est pas observé lorsque le bain de phosphatation comprend des ions Zn2+ et des ions Fe2+ (essai CIO).
De toutes les différentes combinaisons de nitrurations et de phosphatations/oxy dations testées sur des pièces (P) n’ayant pas subi de dégraphitisation, seule la combinaison d’une nitruration « ARCOR L » et d’une phosphatation « Ph ((Zn et/ou Mn) + Fe) » permet d’obtenir une résistance à la corrosion suffisante (essai CIO). D’autres essais ont ensuite été menés afin de vérifier que les caractéristiques de la pièce (P) traitée sont compatibles avec une utilisation en tant que disque de frein.
On constate que la présence d’ions Manganèse dans le bain de phosphatation confère à la pièce (P) un coefficient de frottement plus faible, ce qui n’est pas compatible avec une utilisation en tant que disque de frein.
Néanmoins, une pièce (P) n’ayant pas subi de dégraphitisation, et ayant subi une nitruration « ARCOR L » et une phosphatation « Ph (ZnFe) » est tout à fait compatible avec une telle utilisation.
A ce sujet, les performances en frottement d’une telle pièce (P) sont proches de celles de l’art antérieur. Le procédé selon l’invention est donc particulièrement adapté au traitement des disques de frein.
Le procédé selon l’invention est toutefois moins onéreux que les solutions de l’art antérieur, car il permet de s’affranchir de la dégraphitisation. L’étape de nitruration en particulier est peu onéreuse, car les sels de nitruration utilisés (chlorures) sont économiques et leur dosage n’est pas critique.
En d’autres termes, le procédé selon l’invention nécessite uniquement une nitruration et une phosphatation pour modifier la chimie et la structure macroscopique de la pièce (P), et lui conférer ainsi de bonnes propriétés mécaniques, notamment de tenue mécanique, de résistance à usure, et de résistance à la corrosion.
De plus, la nitruration et la phosphatation étant toutes les deux réalisées par bain, il n’y a pas besoin de changer le montage des pièces pour passer d’une étape à l’autre et l’industrialisation est facilitée. En particulier, le temps de réalisation du traitement complet est largement réduit par rapport à une nitruration gazeuse équivalente. D’autres alliages ferreux peuvent être envisagés pour réaliser la pièce (P), tels que de l’acier ou de la fonte blanche. Toutefois, la fonte grise présente l’intérêt d’être le matériau le moins onéreux.

Claims

REVENDICATIONS
1. Procédé de traitement d’une pièce (P) en alliage de fer pour améliorer sa résistance à la corrosion et sa tenue mécanique, comprenant :
- une opération de nitruration ou de nitrocarburation en bain de sels fondus, formant sur la pièce (P) une couche de combinaison (1), puis
- une opération de phosphatation de la pièce (P) formant une couche de phosphatation (2) en surface de la pièce, caractérisé en ce que le bain de sels fondus contient des chlorures, et l’opération de phosphatation est effectuée dans un bain de phosphatation contenant des ions zinc et/ou des ions manganèse, et des ions fer.
2. Procédé selon la revendication 1, dans lequel le bain de sels fondus ne contient pas de soufre.
3. Procédé selon la revendication 1 ou la revendication 2, dans lequel les chlorures comprennent des chlorures de métal alcalin.
4. Procédé selon la revendication 3, dans lequel les chlorures de métal alcalin sont des chlorures de lithium, de sodium et/ou de potassium.
5. Procédé selon l’une quelconque des revendications précédentes, dans lequel le bain de sels fondus comprend :
- de 25% à 60% de chlorures de métal alcalin,
- de 10% à 40% de carbonates de métal alcalin,
- de 20% à 50% de cyanates de métal alcalin,
- 3% ou moins d’ions cyanures, les pourcentages étant exprimés en poids par rapport au poids total du bain.
6. Procédé selon l’une quelconque des revendications précédentes, dans lequel :
- lorsque le bain de phosphatation contient des ions zinc mais pas d’ions manganèse, lesdits ions zinc sont présents à une concentration massique comprise entre 1 g/L et 40 g/L, de préférence entre 5 g/L et 20 g/L, par rapport au volume total du bain de phosphatation ;
- lorsque le bain de phosphatation contient des ions manganèse mais pas d’ions zinc, lesdits ions manganèse sont présents à une concentration massique comprise entre 1 g/L et 40 g/L, de préférence entre 5 g/L et 20 g/L, par rapport au volume total du bain de phosphatation ;
- lorsque le bain de phosphatation contient des ions zinc et des ions manganèse, le total de ces ions est présent à une concentration massique comprise entre 1 g/L et 40 g/L, de préférence entre 5 g/L et 20 g/L ;
- les ions fer étant dans tous les cas présents dans le bain de phosphatation à une concentration massique comprise entre 1 g/L et 8 g/L, de préférence entre 1 g/L et 6 g/L, et plus préférablement entre 1 g/L et 5 g/L.
7. Procédé selon l’une quelconque des revendications précédentes, dans lequel la couche de phosphatation (2) présente une épaisseur comprise entre 3 pm et 40 pm, de préférence entre 5 pm et 30 pm, et plus préférentiellement entre 5 pm et 20 pm.
8. Procédé selon l’une quelconque des revendications précédentes, dans lequel la couche de combinaison (1) présente une épaisseur comprise entre 5 pm et 40 pm, de préférence entre 15 pm et 25 pm.
9. Procédé selon l’une quelconque des revendications précédentes, dans lequel la pièce (P) est en fonte grise.
10. Pièce (P) en fonte grise susceptible d’être obtenue par le procédé de traitement selon l’une quelconque des revendications précédentes, comprenant :
- une couche de nitruration en contact avec la fonte grise, comprenant une couche de combinaison (1) contenant des nitrures,
- une couche de phosphatation (2) agencée sur et au contact de la couche de combinaison (1), comprenant des phosphates métalliques, caractérisée en ce que les phosphates métalliques comprennent du zinc et/ou du manganèse, et du fer.
11. Pièce (P) selon la revendication 10, dans laquelle la couche de phosphatation (2) présente une épaisseur comprise entre 3 pm et 40 pm, de préférence entre 5 pm et 30 pm, et plus préférentiellement entre 5 pm et 20 pm.
12. Pièce (P) selon la revendication 10 ou la revendication 11, ladite pièce (P) présentant des inclusions de graphite (G) au niveau d’une surface de la pièce (P) sur laquelle est formée la couche de combinaison (1).
13. Pièce (P) selon l’une quelconque des revendications 10 à 12, ladite pièce étant un disque de frein.
PCT/FR2023/050087 2022-03-14 2023-01-20 Procede de traitement d'une piece en alliage de fer pour ameliorer sa resistance a la corrosion WO2023175249A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2202215 2022-03-14
FR2202215A FR3133394A1 (fr) 2022-03-14 2022-03-14 Procede de traitement d’une piece en alliage de fer pour ameliorer sa resistance a la corrosion

Publications (1)

Publication Number Publication Date
WO2023175249A1 true WO2023175249A1 (fr) 2023-09-21

Family

ID=82100755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050087 WO2023175249A1 (fr) 2022-03-14 2023-01-20 Procede de traitement d'une piece en alliage de fer pour ameliorer sa resistance a la corrosion

Country Status (2)

Country Link
FR (1) FR3133394A1 (fr)
WO (1) WO2023175249A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560641A1 (fr) 1992-03-10 1993-09-15 CENTRE STEPHANOIS DE RECHERCHES MECANIQUES HYDROMECANIQUE ET FROTTEMENT Société dite: Procédé de phosphatation de pièces en acier, pour améliorer leur résistance à la corrosion et à l'usure
US5753052A (en) * 1995-03-01 1998-05-19 Centre Stephanois De Recherches Mecaniques Hydromecanique Et Frottement Method of treating ferrous surfaces subjected to high friction strains
FR2812888A1 (fr) 2000-08-14 2002-02-15 Ct Stephanois De Recherches Mecaniques Procede de traitement superficiel de pieces mecaniques soumise a la fois a l'usure et a la corrosion
FR2972459A1 (fr) 2011-03-11 2012-09-14 Hydromecanique & Frottement Bains de sels fondus pour la nitruration de pieces mecaniques en acier, et un procede de mise en oeuvre
WO2016143712A1 (fr) 2015-03-06 2016-09-15 株式会社アドヴィックス Procédé de fabrication d'un disque de frein
US20170122392A1 (en) * 2014-06-14 2017-05-04 Daimler Ag Brake Disc for a Motor Vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531647A (en) * 1976-06-29 1978-01-09 Komatsu Mfg Co Ltd Surface treatment of frictional sliding face

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560641A1 (fr) 1992-03-10 1993-09-15 CENTRE STEPHANOIS DE RECHERCHES MECANIQUES HYDROMECANIQUE ET FROTTEMENT Société dite: Procédé de phosphatation de pièces en acier, pour améliorer leur résistance à la corrosion et à l'usure
US5389161A (en) * 1992-03-10 1995-02-14 Centre Stephanois De Recherches Mecaniques Hydromecanique Et Frottement Process for phosphating steel parts to improve corrosion and wear resistance
US5753052A (en) * 1995-03-01 1998-05-19 Centre Stephanois De Recherches Mecaniques Hydromecanique Et Frottement Method of treating ferrous surfaces subjected to high friction strains
FR2812888A1 (fr) 2000-08-14 2002-02-15 Ct Stephanois De Recherches Mecaniques Procede de traitement superficiel de pieces mecaniques soumise a la fois a l'usure et a la corrosion
FR2972459A1 (fr) 2011-03-11 2012-09-14 Hydromecanique & Frottement Bains de sels fondus pour la nitruration de pieces mecaniques en acier, et un procede de mise en oeuvre
US20170122392A1 (en) * 2014-06-14 2017-05-04 Daimler Ag Brake Disc for a Motor Vehicle
WO2016143712A1 (fr) 2015-03-06 2016-09-15 株式会社アドヴィックス Procédé de fabrication d'un disque de frein

Also Published As

Publication number Publication date
FR3133394A1 (fr) 2023-09-15

Similar Documents

Publication Publication Date Title
CA2627394C (fr) Procede de fabrication d'une piece a tres hautes caracteristiques mecaniques a partir d'une tole laminee et revetue
CA2870532C (fr) Tole d'acier munie d'un revetement a protection cathodique sacrificielle, procede de fabrication d'une piece par mise en oeuvre d'une telle tole et piece ainsi obtenue
CA2915780C (fr) Procede de traitement d'une tole pour reduire son noircissement ou son ternissement lors de son stockage et tole traitee par tel procede
EP3259380A1 (fr) Procede de fabrication d'une piece phosphatable a partir d'une tôle revêtue d'un revêtement a base d'aluminium et d'un revêtement de zinc
EP1143029A1 (fr) Procédé de réalisation d'une pièce à très hautes caractéristiques mécanique, mise en forme par emboutissage, à partir d'une bande de tôle d'acier laminée et notamment laminée à chaud et revêtue
EP0524037B1 (fr) Procédé de traitement de pièces en métal ferreux pour améliorer simultanément leur résistance à la corrosion et leurs propriétés de friction
EP2683845B1 (fr) Bain de sels fondus pour la nitruration de pieces mecaniques en acier, et un procede de mise en oeuvre
CA2863497C (fr) Utilisation d'une solution contenant des ions sulfates pour reduire le noircissement ou le ternissement d'une tole lors de son stockage et tole traitee par une telle solution
WO2023175249A1 (fr) Procede de traitement d'une piece en alliage de fer pour ameliorer sa resistance a la corrosion
EP0560641B1 (fr) Procédé de phosphatation de pièces en acier, pour améliorer leur résistance à la corrosion et à l'usure
EP0879901B1 (fr) Revêtement de protection de pièces métalliques ayant une bonne résistance à la corrosion en atmosphère saline, et pièces métalliques comportant un tel revêtement de protection.
EP0638661B1 (fr) Procédé pour améliorer la résistance à l'usure et à la corrosion de pièces en métaux ferreux
WO2021130460A1 (fr) Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux
EP1365046A1 (fr) Procédé de protection d'un substrat en acier ou alliage d'alumium contre la corrosion permettant de lui conferer des propriétés tribologiques, et substrat obtenu
WO1997021846A1 (fr) Procede de galvanisation de tole d'acier contenant des elements d'addition oxydables
CN108662083B (zh) 链条
BE1011315A6 (fr) Procede pour la formation d'un revetement zinc-aluminium sur une piece en acier et piece revetue de la sorte.
FR2656632A1 (fr) Procede de revetement de surfaces comprenant un depot metallurgique prealable d'au moins une couche d'aluminium et son anodisation dure, pieces traitees suivant ce procede, et procede de collage desdites pieces.
WO2022175325A1 (fr) Revêtement protecteur d'un substrat en alliage cuivreux et procédé correspondant
FR2763607A1 (fr) Procede de revetement d'une piece metallique par depot d'une couche de nickel, renfermant 5 a 20 % de phosphore
EP0285535A1 (fr) Procédé de traitement chimique de surface d'un produit alumineux en vue de sa phosphatation
EP0890655A1 (fr) Procédé de traitement de surface de tÔles d'acier galvanisé allié et tÔle obtenue.
FR2521578A1 (fr) Methode pour proteger de la corrosion un corps en, ou revetu d'un metal ou alliage non ferreux, peinture a cet effet et corps ainsi protege
BE495164A (fr)
FR2461017A1 (fr) Procede de revetement par diffusion d'un substrat a base de fer et la piece ainsi obtenue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23706397

Country of ref document: EP

Kind code of ref document: A1