EP0638661B1 - Procédé pour améliorer la résistance à l'usure et à la corrosion de pièces en métaux ferreux - Google Patents

Procédé pour améliorer la résistance à l'usure et à la corrosion de pièces en métaux ferreux Download PDF

Info

Publication number
EP0638661B1
EP0638661B1 EP94401716A EP94401716A EP0638661B1 EP 0638661 B1 EP0638661 B1 EP 0638661B1 EP 94401716 A EP94401716 A EP 94401716A EP 94401716 A EP94401716 A EP 94401716A EP 0638661 B1 EP0638661 B1 EP 0638661B1
Authority
EP
European Patent Office
Prior art keywords
bath
parts
salts
oxygenated
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94401716A
Other languages
German (de)
English (en)
Other versions
EP0638661A1 (fr
Inventor
Jean Polti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Stephanois de Recherches Mecaniques Hydromecanique et Frottement SA
Original Assignee
Centre Stephanois de Recherches Mecaniques Hydromecanique et Frottement SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Stephanois de Recherches Mecaniques Hydromecanique et Frottement SA filed Critical Centre Stephanois de Recherches Mecaniques Hydromecanique et Frottement SA
Publication of EP0638661A1 publication Critical patent/EP0638661A1/fr
Application granted granted Critical
Publication of EP0638661B1 publication Critical patent/EP0638661B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/70Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using melts
    • C23C22/72Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the present invention relates to a method for improving the resistance to wear and corrosion of ferrous metal parts, making it possible to guarantee a high degree of reproducibility of the results whatever the type of parts treated.
  • thermochemical diffusion treatments and in particular those designated by nitriding, is known for improving the wear resistance of ferrous metal parts.
  • Patent FR 2 306 268 from 1976 describes an oxidizing salt bath composed of alkali hydroxides, optionally with an alkali nitrate in an amount of 2 to 20% by weight.
  • This salt bath at preferred operating temperatures of 200 to 300 ° C, is essentially intended to simultaneously achieve controlled cooling of ferrous metal parts nitrides, leaving a cyanate / cyanide nitriding bath, and the destruction by oxidation of the cyanides entrained by the parts.
  • Patent FR 2,525,637 of 1982 describes a process for treating ferrous metal parts in an oxidizing salt bath to improve their resistance to corrosion, parts containing sulfur.
  • This document teaches to immerse the parts in an oxidizing bath, comprising alkali hydroxides, nitrates and / or alkali nitrites and possibly alkali carbonates, with in addition from 0.5 to 15% by weight of a strong oxidant, in the species of oxygenated alkali metal salts whose normal redox potential compared to the hydrogen reference electrode is less than or equal to - 1 volt.
  • Bichromates, permanganates, peroxycarbonates, iodates and periodates are cited as oxygenated salts, the alkali metals being sodium and potassium.
  • the process described in this patent is further characterized in that an oxygen-containing gas is injected into the salt bath and in that the weight content of the bath in insoluble particles is kept at less than 3%.
  • This process provides even better performance. It not only improves the corrosion resistance of the parts this time by a factor of almost 4, but also does not alter their resistance to wear and fatigue and even improve their anti-seizure properties in dry friction.
  • EP-A-0 497 663 describes a process aimed at improving the corrosion resistance of ferrous metal parts which have undergone nitriding and oxidation in a bath corresponding to the teaching of FR-A-2 525 637, by depositing on the surface of the treated parts, a coating of a polymer, for example FEP (fluoroethylene-propylene), having a thickness of 3 to 20 ⁇ m.
  • FEP fluoroethylene-propylene
  • the subject of the present invention is a process, associating thermochemical diffusion and passivation by oxidation, making it possible to substantially improve the wear and corrosion resistance of parts made of ferrous metals, while guaranteeing a high degree of reproducibility , therefore a minimum dispersion.
  • the invention covers any composition containing other alkali metal salts than sodium, taken alone or in mixtures, and the percentages of which are converted into sodium salts are those indicated above.
  • concentrations will be expressed in% by weight corresponding to the sodium salts and designated by the expression “sodium unit”, which will serve to "normalize” the different mixtures, regardless of the associated metal cation (for example Na + , K + , Li + ).
  • the temperature of the bath is between 350 and 550 ° C. and preferably between 450 and 530 ° C., and the duration of immersion of the parts in the bath is greater than 10 minutes.
  • composition according to the invention is, from a qualitative point of view, of the same type as that cited in the patent FR 2 525 637 previously mentioned. In quantitative terms, however, it stands out in a very significant way. This can be explained as follows.
  • the improvement in the wear resistance is due to the nitrided layer essentially while the improvement in the corrosion resistance depends on both the nitrided layer and the oxidized layer: both providing anodic protection.
  • the effectiveness of this protection depends directly on the integrity of the barrier layer: it is sought to have an oxidized, continuous and waterproof surface layer.
  • the nature of the layer forming in the oxidizing bath is known and consists essentially of iron oxide type Fe 3 O 4 , which is perfectly inert. It was therefore not a question of doing better in terms of the nature of the layer but of finding a solution to guarantee its sealing.
  • the oxidizing bath composition which is the subject of the present application differs from known baths by the fact that it combines a percentage of powerful oxidizing salt which is clearly lower than that cited in patent FR 2 525 637, in combination with nitrates and also different hydroxides.
  • the cationic species of the bath are only defined by the nature of the corresponding metals, namely the alkali metals. It is indeed of little importance that one or more cations are present and in the case where at least two cations are present simultaneously, the relationships between them have only a slight influence.
  • composition according to the invention makes it possible to reconcile all of the criteria listed above.
  • thermochemical treatment prior to oxidation produces on the surface of the parts a layer mainly composed of nitrides and / or carbonitrides, with also free iron in a minority proportion essentially present at the level of the defects of the layer. previous. It is probably this free iron which is responsible for the poor resistance to corrosion of parts that are simply nitrided, or carbonitrided.
  • Nitrates are, however, oxidizing agents of medium activity and if they are capable of oxidizing the free iron present in the layer, they would not however be powerful enough to destabilize the nitrides or carbonitrides.
  • Too much oxidizing agent on the other hand would lead to a weakening of the layer by the effect of the residual stresses of which it is the seat with the appearance of cracks, corrosion and scaling, detrimental to its tribological properties.
  • the presence of carbonates would go in the direction of a moderation of these oxidation reactions.
  • the temperature of the bath below a certain threshold, fixed by the carbonate content of the bath, it does not make it possible to achieve sufficient fluidity of the molten salts, which on the practical level leads to significant consumption. of salts by removal with the charges of parts, as well as a significant decantation at the bottom of the crucible. Too high a temperature leads to premature degeneration of the bath, with a concomitant decrease in its effectiveness.
  • the oxidation operation which is carried out according to reactions in heterogeneous liquid / solid phase, acts primarily and preferentially on the outer part of the nitrided, sulfonitrided or carbonitrided layer. It is therefore understandable that the morphology and the degree of porosity of this layer can have a significant influence on the intensity levels and on the kinetics of the reactions.
  • Parts made of non-alloy steel with 0.38% carbon were used, which were first subjected to a sulfonitriding treatment according to the teachings of the patents FR 2 171 993 and FR 2 271 307, by immersion for 90 minutes in a salt bath containing by weight 37% of cyanate ions and 17% of carbonate ions, the rest being alkaline cations K + , Na + and Li + , with in addition 10 to 15 ppm of S 2- ions.
  • the temperature of the molten salts was 570 ° C.
  • Friction tests the test pieces in this case were rings with a diameter of 35 mm and parallelepipedic plates with dimensions 30 x 18 x 8 mm. The friction test is carried out dry, pressing the ring against the large face of the plate, with a regularly increasing load from the initial value of 10 daN and with a sliding speed of 0.55 m / s. The results obtained are summarized in the following table:
  • Example 1 The other operating conditions, as regards the prior nitriding, the duration of immersion of the parts in the oxidizing bath, and the final washing / drying operations, were the same as in Example 1.
  • results obtained were qualified according to two reproducibility criteria, taking into account one of the color of the parts, the other of their resistance to corrosion in standardized salt spray.
  • the color it can go from dark black (which is the optimum sought, for reasons of presentation of the treated parts), to reddish brown (which one seeks to avoid).
  • Example 2 The procedure was as in Example 1, but varying from 0 to 1% the content of the oxidizing bath in Cr 2 O 7 2- anions.
  • the introduction into the dichromate bath makes it possible to find a regular black color of the parts and there is concomitantly an increase in the corrosion potential above 1000 mV / DHW.
  • the effect begins with 0.05% Cr 2 O 7 2- anion in the bath.
  • the optimal influence is obtained with 0.2% Cr 2 O 7 2- ; beyond 0.2%, no further improvement is observed up to 0.5%; more than 0.5% of Cr 2 O 7 2- leads to a weakening of the layer which tends to flake.
  • Example 2 As in Example 2, the results obtained were qualified, on the one hand by the color regularity of the treated parts, on the other hand by their resistance to corrosion with standardized salt spray:
  • the carbonate content of the bath increases. This is due to the fact that when leaving the preliminary nitriding bath, the parts carry with them salts of said bath, which are composed essentially of carbonates and alkaline cyanates. These in turn transform into carbonates by reaction with the oxidizing salts.
  • thermochemical diffusion is carried out by ionic or gas route it is the same, except that the conduct of the oxidizing bath is modified compared to what was described in Example 5: in this case in fact it there is no longer the entrainment of the nitriding salts; the carbonation of the oxidizing bath, as well as its drop in level, are slower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Luminescent Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Coating With Molten Metal (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • La présente invention concerne un procédé pour améliorer la résistance à l'usure et à la corrosion de pièces en métaux ferreux, permettant de garantir un degré élevé de reproductibilité des résultats quelque soit le type de pièces traitées.
  • La grande variété des traitements de surface s'explique en partie par la multiplicité des situations auxquelles est confronté le technicien dans la pratique industrielle, ainsi que par l'imbrication extrême des phénomènes qui conduisent à l'altération des surfaces.
  • Par ailleurs, les exigences deviennent sans cesse plus sévères et un nombre de plus en plus grand de pièces doivent résister à des sollicitations faisant intervenir plusieurs phénomènes, par exemple en mécanique : frottement, usure, corrosion, voire en plus choc et fatigue. Dans ces cas, les procédés traditionnels s'avèrent insuffisants.
  • Outre cette amélioration des performances, le technicien, poussé par la demande industrielle, s'attache de plus en plus à conforter l'industrialisation des procédés en termes de qualité, fiabilité et reproductibilité, autrement dit à rechercher le "zéro-défaut".
  • On connaît l'intérêt que présentent les traitements thermochimiques de diffusion et notamment ceux désignés sous le nom de nitrurations, en vue d'améliorer la résistance à l'usure de pièces en métaux ferreux.
  • On sait aussi qu'une amélioration substantielle de résistance à la corrosion humide peut être obtenue par croissance, par dessus la couche nitrurée, d'une couche superficielle oxydée.
  • La littérature sur ces traitements d'oxydation est très abondante. On peut notamment citer les brevets suivants.
  • Le brevet FR 2 306 268 de 1976, décrit un bain de sels oxydant composé d'hydroxydes alcalins, avec éventuellement un nitrate alcalin à raison de 2 à 20 % en poids. Ce bain de sels, à des températures d'emploi préférentielles de 200 à 300°C, est essentiellement destiné à réaliser simultanément un refroidissement contrôlé de pièces en métal ferreux nitrurées, au sortir d'un bain de nitruration cyanate/cyanure, et la destruction par oxydation des cyanures entraînés par les pièces.
  • Par ailleurs, selon le brevet FR 2 463 821 de 1980, ce même bain composé d'hydroxyde alcalin, contenant de 2 à 20 % en poids de nitrate alcalin, confère aux pièces nitrurées une augmentation importante de résistance à la corrosion, si elles sont immergées dans le bain entre 250 et 450°C pendant une durée suffisante, comprise entre 15 et 50 minutes. L'étude de ce brevet et notamment de ses exemples, qui se rapportent à un bain comprenant en poids 37,4 % d'hydroxyde de sodium, 52,6 % d'hydroxyde de potassium et 10 % de nitrate de sodium, fait ressortir des améliorations de résistance à la corrosion au brouillard salin, qui se traduisent par des durées d'exposition, avant apparition de traces de corrosion, presque doublées.
  • Le brevet FR 2 525 637 de 1982 décrit un procédé de traitement de pièces en métal ferreux en bain de sels oxydant pour améliorer leur résistance à la corrosion, les pièces contenant du soufre. Ce document enseigne d'immerger les pièces dans un bain oxydant, comprenant des hydroxydes alcalins, des nitrates et/ou nitrites alcalins et éventuellement des carbonates alcalins, avec en plus de 0,5 à 15 % en poids d'un oxydant puissant, en l'espèce des sels oxygénés de métaux alcalins dont le potentiel normal d'oxydoréduction par rapport à l'électrode de référence à hydrogène est inférieur ou égal à - 1 volt. Comme sels oxygénés sont cités les bichromates, permanganates, peroxycarbonates, iodates et periodates, les métaux alcalins étant sodium et potassium. Le procédé décrit dans ce brevet est en outre caractérisé en ce qu'on insuffle dans le bain de sels un gaz contenant de l'oxygène et en ce qu'on maintient la teneur pondérale du bain en particules insolubles à moins de 3 %. Ce procédé permet d'obtenir de meilleures performances encore. Il permet d'améliorer non seulement la résistance à la corrosion des pièces cette fois d'un facteur de près de 4, mais également de ne pas altérer leur tenue à l'usure et à la fatigue et même d'améliorer leurs propriétés anti-grippantes en frottement sec.
  • Toutefois, on s'est aperçu que ces performances ne pouvaient être en fait atteintes avec les degrés de fiabilité et de reproductibilité requis par les exigences industrielles. En laboratoire, les écarts de performances sont relativement peu visibles. Ils deviennent par contre beaucoup plus nets dès lors qu'il s'agit de traiter des séries industrielles. Ils sont particulièrement observés lorsque l'on doit conditionner, selon la technologie dite du "vrac", de grandes quantités de petites pièces, ou bien des pièces dont les états de surface sont imparfaits : la présence de zones perturbées telles que bavures d'emboutissage ou de poinçonnage, replis de sertissage ou de pliage, hétérogénéités de soudage est autant de sources de défauts, donc d'amorces de corrosion.
  • Or, sur des pièces telles que des tiges de vérins ou d'amortisseurs, ou bien encore des axes d'essuie-glaces ou de démarreurs automobiles, une tenue aléatoire à la corrosion est absolument inacceptable. La solution a longtemps été de procéder à des retouches successives des bains au cas par cas et selon les comportements plus ou moins aberrants observés. Toutefois, cette solution n'est pas satisfaisante compte tenu notamment des exigences industrielles expliquées précédemment. Il a donc été nécessaire de rechercher de nouvelles solutions. Un travail approfondi d'étude entrepris par la Demanderesse a permis la mise au point d'un procédé qui permet de maîtriser à l'échelle industrielle les impondérables que l'on rencontrait auparavant.
  • EP-A-0 497 663 décrit un procédé visant à améliorer la résistance à la corrosion de pièces en métal ferreux qui ont subi une nitruration et une oxydation dans un bain correspondant à l'enseignement de FR-A-2 525 637, en déposant à la surface des pièces traitées un enduit d'un polymère, par exemple de FEP (fluoroéthylène-propylène), ayant 3 à 20 µm d'épaisseur.
  • Ainsi, la présente invention a pour objet un procédé, associant une diffusion thermochimique et une passivation par oxydation, permettant d'améliorer substantiellement la résistance à l'usure et à la corrosion de pièces en métaux ferreux, tout en garantissant un degré élevé de reproductibilité, donc une dispersion minimale.
  • A cet effet, elle propose un procédé pour améliorer la résistance à la corrosion et à l'usure de pièces en métaux ferreux où l'on immerge les pièces ayant subi au préalable une diffusion thermochimique du type soit nitruration, soit sulfonitruration, soit carbonitruration, dans un bain de sels fondus composé de carbonates, nitrates, hydroxydes, ainsi que sels oxygénés de métaux alcalins choisis parmi les bichromates, chromates, permanganates, peroxycarbonates, iodates et periodates, caractérisé en ce que les quantités relatives pondérales anioniques de carbonates, nitrates et hydroxydes, exprimées pour des sels de sodium et correspondant à la phase active c'est-à-dire liquide du bain, sont les suivantes : 11 < CO 3 2- < 23
    Figure imgb0001
    19 < NO 3 - < 37
    Figure imgb0002
    6 < OH - < 19
    Figure imgb0003
    tandis que la quantité pondérale de sels oxygénés de métaux alcalins, exprimée en équivalent Cr2O72- est la suivante : 0,05 < anions oxygénés < 0,5
    Figure imgb0004
  • L'invention couvre toute composition contenant d'autres sels de métaux alcalins que le sodium, pris seuls ou en mélanges, et dont les pourcentages convertis en sels de sodium sont ceux ci-dessus indiqués.
  • Pour la suite de la description et pour faciliter sa compréhension, toutes les concentrations seront exprimées en % pondéraux correspondant aux sels de sodium et désignées par l'expression "unité sodium", qui servira à "normer" les différents mélanges, quel que soit le cation métallique associé (par exemple Na+, K+, Li+).
  • La température du bain est comprise entre 350 et 550°C et de préférence entre 450 et 530°C, et la durée d'immersion des pièces dans le bain est supérieure à 10 minutes.
  • On peut constater que la composition selon l'invention est, sur le plan qualitatif, du même type que celle citée dans le brevet FR 2 525 637 précédemment évoquée. Au plan quantitatif par contre elle s'en distingue de façon tout à fait significative. Ceci s'explique de la manière suivante.
  • On a pu déterminer que la cause première des dispersions observées était liée à l'existence de défaut de compacité des couches nitrurées et oxydées.
  • On a pu par ailleurs déterminer que l'amélioration de la résistance à l'usure est le fait de la couche nitrurée essentiellement tandis que l'amélioration de la résistance à la corrosion dépend à la fois de la couche nitrurée et de la couche oxydée : l'une comme l'autre apportant une protection anodique. L'efficacité de cette protection dépend directement de l'intégrité de la couche barrière : on cherche à avoir une couche superficielle oxydée, continue et étanche. La nature de la couche se formant dans le bain oxydant est connue et constituée essentiellement d'oxyde de fer type Fe3 O4, lequel est parfaitement inerte. Il n'a donc pas été question de faire mieux au niveau de la nature de la couche mais de trouver une solution pour garantir son étanchéité. Ce qui a donc importé a donc été de trouver un mode de mise en oeuvre de cette couche formant barrière qui soit tel que le résultat escompté soit atteint dans tous les cas, c'est-à-dire sur tous les types de pièces et sur toutes les pièces d'une même charge ou de plusieurs charges successives, ce que ne permettent pas les bains connus, comme il ressortira des exemples décrits plus loin.
  • La composition de bain oxydant objet de la présente demande se différencie des bains connus par le fait qu'elle associe un pourcentage de sel oxydant puissant nettement plus faible que celui cité dans le brevet FR 2 525 637, en combinaison avec des teneurs en nitrates et hydroxydes aussi différentes.
  • On peut remarquer aussi que les espèces cationiques du bain ne sont définies que par la nature des métaux correspondants, à savoir les métaux alcalins. Il est en effet de peu d'importance qu'un seul, ou plusieurs cations soient présents et dans le cas où au moins deux cations sont présents simultanément, les rapports entre eux n'ont qu'une faible influence.
  • Il n'est pas nécessaire d'insister à nouveau sur la complexité des bains de sels fondus et sur la difficulté qu'il y a à en appréhender les mécanismes d'action et à en prévoir le comportement par une approche théorique, basée sur un raisonnement logique. C'est donc par la voie expérimentale que l'on a procédé à la mise au point de la formulation du bain selon l'invention et de ses conditions opératoires. A cet effet, les critères d'appréciation suivants ont été retenus : la résistance à la corrosion des pièces traitées, leur résistance à l'usure, la fluidité du bain, la couleur des pièces, ainsi que la dispersion des résultats.
  • Grâce à des expérimentations choisies judicieusement, on s'est aperçu que la composition selon l'invention permettait de concilier l'ensemble des critères ci-dessus énumérés.
  • Même si le mécanisme d'action du bain n'a pu être totalement élucidé, on peut néanmoins apporter un certain nombre de précisions et avancer quelques explications vraisemblables.
  • Quel que soit son mode de réalisation, le traitement thermochimique préalable à l'oxydation réalise à la surface des pièces une couche composée majoritairement de nitrures et/ou carbonitrures, avec aussi du fer libre en proportion minoritaire essentiellement présent au niveau des défauts de la couche précédente. C'est vraisemblablement ce fer libre qui est responsable de la médiocre résistance à la corrosion des pièces simplement nitrurées, ou carbonitrurées.
  • Les nitrates sont cependant des agents d'oxydation d'activité moyenne et s'ils sont capables d'oxyder le fer libre présent dans la couche, ils ne seraient par contre pas assez puissants pour déstabiliser les nitrures ou carbonitrures.
  • Au contraire un oxydant puissant tel un bichromate ou un chromate, ou un permanganate pourrait oxyder non seulement le fer libre mais aussi une partie des nitrures, conduisant ainsi à l'élaboration d'une couche plus étanche.
  • Trop d'agent oxydant par contre conduirait à une fragilisation de la couche par effet des contraintes résiduelles dont elle est le siège avec apparition de fissures, amorces de corrosion et d'écaillages, nuisibles à ses propriétés tribologiques. La présence de carbonates irait dans le sens d'une modération de ces réactions d'oxydation.
  • Quant à la température du bain, en dessous d'un certain seuil, fixé par la teneur en carbonates du bain, elle ne permet pas d'atteindre une fluidité suffisante des sels en fusion, ce qui sur le plan pratique conduit à une consommation importante de sels par enlèvement avec les charges de pièces, ainsi qu'à une importante décantation au fond du creuset. Une température trop élevée conduit à des dégénérescences prématurées du bain, avec une baisse concomitante de son efficacité.
  • On notera enfin que l'opération d'oxydation, qui s'effectue selon des réactions en phase hétérogène liquide/solide, agit prioritairement et préférentiellement sur la partie extérieure de la couche nitrurée, sulfonitrurée ou carbonitrurée. On conçoit donc que la morphologie et le degré de porosité de cette couche puissent avoir une influence non négligeable sur les niveaux d'intensité et sur les cinétiques des réactions.
  • A ce titre une disposition préférée de la mise en oeuvre de l'invention consiste à plonger dans le bain oxydant des pièces ayant au préalable subi la diffusion thermochimique avec un réglage des paramètres approprié pour réaliser une couche en deux parties :
    • une partie compacte au contact du substrat d'épaisseur comprise entre 6 et 12 µm
    • une partie externe finement poreuse, d'épaisseur comprise entre 3 et 6 µm, le diamètre moyen des pores étant compris entre 0,1 et 2 µm.
  • Les caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, relative à des modes particuliers de mise en oeuvre et assortis d'exemples qui permettront notamment de préciser les rôles respectifs des différents constituants du bain oxydant.
  • EXEMPLE 1 : Description d'un mode préféré de réalisation et des propriétés des pièces traitées.
  • On a utilisé des pièces en acier non allié à 0,38 % de carbone auxquelles on a d'abord fait subir un traitement de sulfonitruration selon les enseignements des brevets FR 2 171 993 et FR 2 271 307, par immersion pendant 90 minutes dans un bain de sels contenant en poids 37 % d'ions cyanates et 17 % d'ions carbonates, le reste étant des cations alcalins K+, Na+ et Li+, avec en plus 10 à 15 ppm d'ions S2-. La température des sels en fusion était de 570°C.
  • A leur sortie du bain, les pièces ont été immergées pendant 20 minutes dans un autre bain, maintenu à la température de 475°C et ayant la composition suivante, exprimée en "unités sodium" :
  • CO32- : 13,1 %
    NO3- : 36,5 %
    OH- : 11,3 %
    Cr2O72- : 0,1 %
    équivalent Na+ : 39 %
  • Les pièces ont ensuite été lavées dans une eau à pH 13,5 puis séchées. Enfin elles ont fait l'objet de caractérisations, d'une part en essais de corrosion, d'autre part en essais de frottement.
  • a) Essais de corrosion : les éprouvettes étaient dans ce cas des plaques carrées, de 50 mm de côté, protégées sur les tranches par un vernis. On a effectué des tracés de courbes intensité/potentiel en milieu acide aéré, qui ont conduit aux résultats suivants :
       (voir TABLEAU page suivante)
  • NATURE DES EPROUVETTES POTENTIEL DE CORROSION (ou de piquration) en mV/ECS*
    non traitées 130 à 150
    simplement nitrurées 175 à 225
    nitrurées puis oxydées selon le procédé de l'invention 1 000 à 1 300
    * électrode au calomel saturé.
  • On notera qu'aux valeurs de 1 000 à 1 300 Mv/ECS obtenues avec les éprouvettes nitrurées puis oxydées, l'expression "potentiel de corrosion" est pratiquement un abus de langage, car à ce niveau ce n'est plus un potentiel de piquration qui est mesuré mais plutôt le potentiel d'oxydation de la solution aqueuse : la protection apportée par la couche nitrure/oxydée est pratiquement parfaite.
  • b) Essais de frottement : les éprouvettes étaient dans ce cas des bagues de diamètre 35 mm et des plaquettes parallélépipédiques de dimensions 30 x 18 x 8 mm. L'essai de frottement est conduit à sec, en appuyant la bague contre la grande face de la plaquette, avec une charge régulièrement croissante depuis la valeur initiale de 10 daN et avec une vitesse de glissement de 0,55 m/s. Les résultats obtenus sont récapitulés dans le tableau suivant:
  • Nature des éprouvettes Durée de l'essai (min) Usure cumulée des deux pièces (µm) Coefficient de frottement
    Non traitées 2 grippage grippage
    simplement nitrurées 30 50 0,40
    Nitrurées/Oxydées selon l'invention 60 35 0,25
  • EXEMPLE 2 : Comparaison du procédé de l'invention avec le procédé décrit dans le brevet FR 2 525 637.
  • Cette comparaison a été établie à partir de deux bains oxydants de capacité 120 kg de sels, fonctionnant tous les deux à la température de 460°C et ayant les compositions respectives suivantes :
  • Composition du Bain CO32- NO3- OH- Cr2O72- Na+ équivalent
    selon FR 2 525 637 6,5 24,7 20,7 4,6 43,5
    selon l'invention 13,1 36,5 11,3 0,1 39
  • Dans chacun de ces bains on a traité une dizaine de charges de pièces, en l'occurrence des axes en acier non allié de diamètre 10 mm et de longueur 100 mm, présentant à l'une de leurs extrémités un filetage. Chaque charge comportait 100 axes, pour un poids total de la charge de 10 kg.
  • Les autres conditions opératoires, tant en ce qui concerne la nitruration préalable, que la durée d'immersion des pièces dans le bain oxydant, que les opérations de lavage/séchage finales, étaient les mêmes qu'à l'exemple 1.
  • Les résultats obtenus ont été qualifiés selon deux critères de reproductibilité, tenant compte l'un de la couleur des pièces, l'autre de leur résistance à la corrosion en brouillard salin normalisé.
  • En ce qui concerne la couleur, elle peut passer du noir foncé (qui est l'optimum recherché, pour des raisons de présentation des pièces traitées), au brun rouge (que l'on cherche à éviter).
  • Sur l'ensemble des pièces traitées on a obtenu les résultats suivants :
  • Selon FR 2 525 637 Selon l'invention
    Couleur noire 65 % 95 %
    Couleur brune 35 % 5 %
  • Pour ce qui est des essais de corrosion, leur durée correspond au laps de temps entre l'introduction des pièces dans l'enceinte de brouillard salin et l'apparition de la première piqûre, celle-ci ayant lieu dans la majorité des cas au niveau de la partie filetée des échantillons. Cette zone est en effet très perturbée sur le plan métallurgique, ce qui génère de nombreuses imperfections de la couche nitrurée, qui sont autant d'amorces possibles de corrosion par piqûres.
  • Les essais de brouillard salin ont été conduits sur des prélèvements de cinq pièces dans chaque charge et on a obtenu les résultats suivants, après apparition de la première piqûre:
  • Selon FR 2 525 637 Selon l'invention
    Intervalles de variation des durées d'exposition au brouillard salin (heures) jusqu'à apparition de la première piqûre de 10 à 480 de 144 à 504
    Moyenne 245 280
    Ecart type 220 105
  • EXEMPLE 3 : Influence de la teneur du bain d'oxydation en bichromates ou autres sels oxydants.
  • On a opéré comme à l'exemple 1, mais en faisant varier de 0 à 1 % la teneur du bain oxydant en anions Cr2O7 2-.
  • En l'absence de bichromate et quelle que soit la température du bain comprise entre 350 et 550°C, on observe une importante dispersion de la couleur des pièces entre le brun et le noir. De plus, en essais de corrosion par tracé des courbes intensité/potentiel, on relève des potentiels de corrosion (ou de piquration) faibles, variant de 100 à 300 mV/ECS, ce qui est caractéristique de la présence de défauts d'étanchéité de la couche passive.
  • L'introduction dans le bain de bichromate permet de retrouver une couleur noire régulière des pièces et on relève de façon concomitante une augmentation du potentiel de corrosion au dessus de 1 000 mV/ECS.
  • L'effet commence avec 0,05 % d'anion Cr2O72- dans le bain. L'influence optimale est obtenue avec 0,2 % Cr2O72- ; au-delà de 0,2 %, aucune amélioration supplémentaire n'est observée jusqu'à 0,5 % ; plus de 0,5 % de Cr2O72- conduit à une fragilisation de la couche qui a tendance à s'écailler.
  • Les mêmes effets, avec les mêmes teneurs, sont obtenus en remplaçant le bichromate par du permanganate, ou par du chromate.
  • EXEMPLE 4 : Influence de la nature des composants du bain d'oxydation.
  • On a effectué trois essais, en opérant comme à l'exemple 2, avec des bains dont les compositions étaient :
  • CO32- NO3- OH- Cr2O72- Na+ équivalent
    bain N° 1 15,6 21,7 18 0,16 40,44
    bain N° 2 19,4 21,8 15,1 0,09 43,61
    bain N° 3 5,7 21,9 25,2 0 47,2
    la composition des bains N°1 et N°2 étant conforme à l'invention tandis que la composition du bain N°3 ne l'est pas.
  • Comme à l'exemple 2, on a qualifié les résultats obtenus, d'une part par la régularité de couleur des pièces traitées, d'autre part par leur résistance à la corrosion au brouillard salin normalisé :
  • % DE PIECES PRESENTANT UNE COULEUR NOIRE REGULIERE
    bain N° 1 96 %
    bain N° 2 70 %
    bain N° 3 45 %
  • En ce qui concerne les essais de corrosion, des lots de 5 éprouvettes prélevées dans des charges traitées dans chacun des bains 1 à 3 ont conduit à des durées moyennes de tenue avant apparition de la première piqûre qui sont récapitulées dans le tableau suivant :
  • Bain Durée moyenne de tenue avant apparition de la première piqûre (heure) Ecart type
    N°1 270 95
    N°2 250 120
    N°3 120 95
  • EXEMPLE 5 : Conduite d'un bain d'oxydation.
  • On a utilisé un bain expérimental de même composition qu'à l'exemple 1, dans lequel on a pendant plusieurs jours traité régulièrement des charges de pièces en acier. On a pu faire les observations suivantes :
  • a) au fur et à mesure du traitement des charges, la teneur en carbonates du bain s'accroît. Ceci est dû au fait qu'en sortant du bain de nitruration préalable, les pièces entraînent avec elles des sels dudit bain, lesquels sont composés essentiellement de carbonates et de cyanates alcalins. Ces derniers se transforment à leur tour en carbonates par réaction avec les sels oxydants.
  • Lorsque le seuil de saturation est dépassé, les carbonates décantent au fond du creuset : il convient donc de les éliminer.
    • b) à leur sortie du bain oxydant, les pièces entraînent là encore des sels. Cette perte, jointe à celle liée à l'élimination des carbonates, se traduit par une baisse du niveau du bain oxydant.
    • c) pour réajuster le niveau, on rajoute dans le bain du sel neuf, c'est-à-dire qu'on le réalimente en éléments actifs nitrates et bichromates (ou sels oxygénés équivalents). On trouve là l'explication du fait que, même s'ils ne sont présents dans le bain qu'en très faible quantité, les sels oxygénés ne disparaissent pas au fur et à mesure du traitement des charges de pièces et que leur effet est durable.
    • d) en dehors de ce qui précède, la composition chimique du bain n'évolue que très peu dans le temps de façon naturelle.
    EXEMPLE 6 : Autres modes de diffusion thermochimique préalable.
  • Si on remplace la sulfonitruration des pièces en acier par une nitruration ou une carbonitruration en bain de sels, on observe les mêmes effets que ceux précédemment décrits.
  • Si maintenant on réalise la diffusion thermochimique par voie ionique ou gazeuse il en est de même, à ceci près que la conduite du bain oxydant se trouve modifiée par rapport à ce qui a été décrit à l'exemple 5 : dans ce cas en effet il n'y a plus l'entraînement des sels de nitruration ; la carbonatation du bain oxydant, ainsi que sa baisse de niveau, sont moins rapides. Pour maintenir constant le pouvoir oxydant du bain, on est donc conduit à lui faire des rajouts périodiques de sel oxygéné, en contrôlant régulièrement la composition du bain par analyse.

Claims (5)

  1. Procédé pour améliorer la résistance à la corrosion et à l'usure de pièces en métaux ferreux où l'on immerge les pièces, ayant subi au préalable une diffusion thermochimique du type soit nitruration, soit sulfonitruration, soit carbonitruration, dans un bain de sels fondus composé de carbonates, nitrates, hydroxydes, ainsi que sels oxygénés de métaux alcalins choisis parmi les bichromates, chromates, permanganates, peroxycarbonates, iodates et periodates, caractérisé en ce que les quantités relatives pondérales anioniques de carbonates, nitrates et hydroxydes, exprimées pour des sels de sodium et correspondant à la phase active c'est-à-dire liquide du bain, sont les suivantes : 11 < CO 3 2- < 23
    Figure imgb0005
    19 < NO 3 - < 37
    Figure imgb0006
    6 < OH - < 19
    Figure imgb0007
    tandis que la quantité pondérale de sels oxygénés de métaux alcalins, exprimée en équivalent Cr2O72- est la suivante : 0,05 < anions oxygénés < 0,5
    Figure imgb0008
  2. Procédé selon la revendication 1, caractérisé en ce que la température du bain est comprise entre 350 et 550°C.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la température du bain est comprise entre 450 et 550°C.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la durée d'immersion des pièces dans le bain est supérieure à 10 minutes.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on conduit la diffusion thermochimique de manière à réaliser à la surface de la pièce une couche présentant au contact du substrat une partie compacte d'épaisseur comprise entre 6 et 12 micromètres et à l'extérieur une partie finement poreuse, d'épaisseur comprise entre 3 et 6 micromètres, le diamètre moyen des pores étant compris entre 0,1 et 2 micromètres.
EP94401716A 1993-08-10 1994-07-26 Procédé pour améliorer la résistance à l'usure et à la corrosion de pièces en métaux ferreux Expired - Lifetime EP0638661B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9309814A FR2708941B1 (fr) 1993-08-10 1993-08-10 Procédé pour améliorer la résistance à l'usure et à la corrosion de pièces en métaux ferreux.
FR9309814 1993-08-10

Publications (2)

Publication Number Publication Date
EP0638661A1 EP0638661A1 (fr) 1995-02-15
EP0638661B1 true EP0638661B1 (fr) 1997-01-22

Family

ID=9450082

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94401716A Expired - Lifetime EP0638661B1 (fr) 1993-08-10 1994-07-26 Procédé pour améliorer la résistance à l'usure et à la corrosion de pièces en métaux ferreux

Country Status (13)

Country Link
EP (1) EP0638661B1 (fr)
JP (1) JP3083453B2 (fr)
KR (1) KR100273924B1 (fr)
CN (1) CN1054891C (fr)
AT (1) ATE148178T1 (fr)
BR (1) BR9403101A (fr)
CA (1) CA2129162C (fr)
DE (1) DE69401551T2 (fr)
ES (1) ES2097012T3 (fr)
FR (1) FR2708941B1 (fr)
MY (1) MY111901A (fr)
PL (1) PL177228B1 (fr)
TW (1) TW259815B (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731232B1 (fr) * 1995-03-01 1997-05-16 Stephanois Rech Procede de traitement de surfaces ferreuses soumises a des sollicitations elevees de frottement
JP4487340B2 (ja) 1999-07-21 2010-06-23 日本精工株式会社 転がり軸受用保持器の製造方法
TW557330B (en) 2000-11-29 2003-10-11 Parker Netsushori Kogyo Kk Improved salt bath nitrogenating method for corrosion-resistant iron material and iron units
DE10124933A1 (de) * 2001-05-21 2002-11-28 Endress & Hauser Gmbh & Co Kg Anordnung aus einem metallischen Deckel und einem metallischem Gehäuse eines Meßgerätes und Verfahren zu deren Herstellung
EP2757423B1 (fr) * 2013-01-17 2018-07-11 Omega SA Pièce pour mouvement d'horlogerie
CN103451595B (zh) * 2013-09-02 2015-09-23 中国科学院金属研究所 镁合金表面熔盐氧碳硫共渗耐腐蚀陶瓷涂层及制备和应用
CN113897579A (zh) * 2021-09-30 2022-01-07 成都工具研究所有限公司 一种316l不锈钢工件低温qpq处理工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2639244A (en) * 1950-07-15 1953-05-19 Remington Arms Co Inc Metal finishing method
DE2934113C2 (de) * 1979-08-23 1985-05-09 Degussa Ag, 6000 Frankfurt Verfahren zur Erhöhung der Korrosionsbeständigkeit nitrierter Bauteile aus Eisenwerkstoffen
FR2525637B1 (fr) * 1982-04-23 1986-05-09 Stephanois Rech Mec Procede de traitement de pieces en metal ferreux en bain de sels oxydant, pour ameliorer leur resistance a la corrosion, les pieces contenant du soufre
JPH0234793A (ja) * 1988-07-26 1990-02-05 Kobe Steel Ltd スケール密着性の優れた加工用高強度熱延鋼板の製造方法
FR2672059B1 (fr) * 1991-01-30 1995-04-28 Stephanois Rech Mec Procede pour conferer a des pieces en metal ferreux, nitrurees puis oxydees, une excellente resistance a la corrosion tout en conservant les proprietes acquises de friction.

Also Published As

Publication number Publication date
PL177228B1 (pl) 1999-10-29
KR950006020A (ko) 1995-03-20
CN1054891C (zh) 2000-07-26
PL304595A1 (en) 1995-02-20
ATE148178T1 (de) 1997-02-15
JPH0776766A (ja) 1995-03-20
DE69401551T2 (de) 1997-07-03
CA2129162A1 (fr) 1995-02-11
CN1101684A (zh) 1995-04-19
ES2097012T3 (es) 1997-03-16
MY111901A (en) 2001-02-28
FR2708941B1 (fr) 1995-10-27
KR100273924B1 (ko) 2000-12-15
TW259815B (fr) 1995-10-11
EP0638661A1 (fr) 1995-02-15
FR2708941A1 (fr) 1995-02-17
JP3083453B2 (ja) 2000-09-04
DE69401551D1 (de) 1997-03-06
BR9403101A (pt) 1995-04-11
CA2129162C (fr) 2000-12-12

Similar Documents

Publication Publication Date Title
EP0524037B1 (fr) Procédé de traitement de pièces en métal ferreux pour améliorer simultanément leur résistance à la corrosion et leurs propriétés de friction
CA2825652C (fr) Bain de sels fondus pour la nitruration de pieces mecaniques en acier, et un procede de mise en oeuvre
EP0637637B1 (fr) Procédé de nitruration de pièces en métal ferreux, à résistance améliorée à la corrosion
EP0638661B1 (fr) Procédé pour améliorer la résistance à l&#39;usure et à la corrosion de pièces en métaux ferreux
WO2015001368A1 (fr) Procédé de traitement d&#39;une tôle pour réduire son noircissement ou son ternissement lors de son stockage et tôle traitée par un tel procédé
FR2713665A1 (fr) Acier inoxydable coloré résistant à la corrosion et procédé pour sa fabrication.
CA2343016C (fr) Toles d&#39;acier zingue revetues d&#39;une couche prelubrifiante d&#39;hydroxysulfate et procedes d&#39;obtention de cette tole
EP0497663B1 (fr) Procédé pour conférer à des pièces en métal ferreux, nitrurées puis oxydées, une excellente résistance à la corrosion tout en conservant les propriétés acquises de friction
EP1357206A2 (fr) Procédé d&#39;anodisation d&#39;une pièce en alliage d&#39;aluminium
FR3082528A1 (fr) Composition aqueuse et procede de traitement de surface d&#39;une piece en alliage d&#39;aluminium mettant en œuvre une telle composition
EP0667401B1 (fr) Composition de bains de sels à base de nitrates alcalins pour oxyder du métal ferreux et ainsi améliorer sa résistance à la corrosion
CA2442502C (fr) Procede de traitement par carboxylatation de surfaces metalliques
US5576066A (en) Method of improving the wear and corrosion resistance of ferrous metal parts
EP0298827B1 (fr) Solution et procédé de phosphatation mixte
US4230507A (en) Method for sulfurizing cast iron
EP0085626B1 (fr) Composition et procédé pour le traitement de surfaces métalliques phosphatées
FR2476144A1 (fr) Absorbeur selectif d&#39;energie solaire et procede pour sa fabrication
EP3999672B1 (fr) Composition, son utilisation pour le de-mordançage d&#39;alliages de magnesium, ainsi que procede de de-mordançage d&#39;alliages de magnesium
EP0493280B1 (fr) Tubes de cuivre à resistance à la corrosion améliorée et procédé pour les obtenir
FR3133394A1 (fr) Procede de traitement d’une piece en alliage de fer pour ameliorer sa resistance a la corrosion
BE1015224A3 (fr) Procede de revetement de surface metallique par une couche nanometrique d&#39;oxyde de cerium.
EP0890655B1 (fr) Procédé de traitement de surface de tôles d&#39;acier galvanisé allié et tôle obtenue.
FR3116066A1 (fr) Solution de désanodisation et procédé utilisant une telle solution
FR3140382A1 (fr) Procede de colmatage post-anodisation de l’aluminium et des alliages d’aluminium sans utiliser de chrome
FR2461017A1 (fr) Procede de revetement par diffusion d&#39;un substrat a base de fer et la piece ainsi obtenue

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB IT LI

17P Request for examination filed

Effective date: 19950311

17Q First examination report despatched

Effective date: 19950427

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB IT LI

REF Corresponds to:

Ref document number: 148178

Country of ref document: AT

Date of ref document: 19970215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970122

REF Corresponds to:

Ref document number: 69401551

Country of ref document: DE

Date of ref document: 19970306

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2097012

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: 0508;22MIFFUMERO BREVETTI S.N.C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CENTRE STEPHANOIS DE RECHERCHES MECANIQUES HYDROM

Free format text: CENTRE STEPHANOIS DE RECHERCHES MECANIQUES HYDROMECANIQUE ET FROTTEMENT SOCIETE DITE:#ZONE INDUSTRIELLE SUD RUE BENOIT FOURNEYRON#F-42160 ANDREZIEUX BOUTHEON (FR) -TRANSFER TO- CENTRE STEPHANOIS DE RECHERCHES MECANIQUES HYDROMECANIQUE ET FROTTEMENT SOCIETE DITE:#ZONE INDUSTRIELLE SUD RUE BENOIT FOURNEYRON#F-42160 ANDREZIEUX BOUTHEON (FR)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130716

Year of fee payment: 20

Ref country code: DE

Payment date: 20130709

Year of fee payment: 20

Ref country code: AT

Payment date: 20130625

Year of fee payment: 20

Ref country code: CH

Payment date: 20130718

Year of fee payment: 20

Ref country code: BE

Payment date: 20130731

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130719

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130710

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69401551

Country of ref document: DE

BE20 Be: patent expired

Owner name: *CENTRE STEPHANOIS DE RECHERCHES MECANIQUES HYDROM

Effective date: 20140726

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 148178

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140729

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20141120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140727