EP2066829A2 - Couche d'alliage d'or comprenant des atomes d'azote inseres, procédé de traitement associé - Google Patents

Couche d'alliage d'or comprenant des atomes d'azote inseres, procédé de traitement associé

Info

Publication number
EP2066829A2
EP2066829A2 EP07823862A EP07823862A EP2066829A2 EP 2066829 A2 EP2066829 A2 EP 2066829A2 EP 07823862 A EP07823862 A EP 07823862A EP 07823862 A EP07823862 A EP 07823862A EP 2066829 A2 EP2066829 A2 EP 2066829A2
Authority
EP
European Patent Office
Prior art keywords
equal
gold alloy
gold
ions
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07823862A
Other languages
German (de)
English (en)
Inventor
Denis Busardo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ionics France SA
Original Assignee
Quertech Ingenierie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quertech Ingenierie SA filed Critical Quertech Ingenierie SA
Publication of EP2066829A2 publication Critical patent/EP2066829A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation

Definitions

  • the subject of the invention is a layer of gold alloy comprising inserts of nitrogen, as well as a process for treating a gold alloy, in order to obtain such a layer.
  • the invention also relates to a part comprising at least a portion on the surface of which is disposed such a layer.
  • the invention implements a device for ion implantation segregation of a gold alloy piece from a beam of nitrogen ions emitted by an ion source.
  • the invention also relates to a method of mtruration of a gold alloy piece implementing such a device.
  • the invention has applications for example in the field of goldsmithery or watchmaking or it is important to treat gold alloy parts to harden the surface and thus prevent the appearance of scratches.
  • the invention can also find applications in the field of electrical circuits and / or electronics.
  • Gold a noble metal like copper and silver.
  • the peripheral electron of gold is strongly attached to its atom.
  • Gold is very difficult to ionize, it does not oxidize and does not corrode.
  • the cfc structure of x'or contains very romantic sliding planes.
  • pure gold is very ductile and very malleable. gold pure is not hard enough to find applications for example in the field of tools.
  • Goldsmithing uses very little pure gold, which is too soft; it prefers gold alloys with better mechanical properties. In contrast, pure gold is very popular in the field of microelectronics for its good electrical conductivity and its stainless character.
  • the hardness of gold depends on many factors including the composition of the alloys and the manner in which the pieces are worked.
  • the pure gold can be hardened mechanically, by Tartexant, by folding it, by rolling it. Its structure is called ecrouie. Gold thus makes it brighter and more resistant to wear.
  • a heating effect for example at a temperature above about 300 ° C., it is possible to eliminate the internal stresses, the defects crystalline and dislocations: gold regains its original malleability.
  • gold alloys are classified according to the amount of gold they comprise (expressed as mass%).
  • 24 carat gold is substantially pure gold; 22 carat gold comprises substantially 91.6% of gold, between 0 and 8.4% of silver and between 0 and 8.4% of copper; 18-carat gold comprises substantially 75% gold, between 4.5 and 25% silver and between 0 and 20.5% copper; the 14 carat gold comprises substantially 58.5% of gold, between 9 and 41.5% of silver and between 8 and 32.5% of copper.
  • the hardness of these annealed alloys varies in general between 20 and 150 HV (Vickers hardness) depending on the silver and copper levels. These alloys can be hardened by work hardening which can substantially double their hardness and reach respectively hardnesses of the order of 50 to 300 HV. It is customary to consider that hardness greater than 300 HV can not be achieved with conventionally processed gold alloys.
  • chlorine or acidity from sweat may tarnish a gold alloy by reacting with some non-gold atomic species of the alloy.
  • metal nitrides are well known in metallurgy to increase the hardness, reduce the corrosive action of acids or chlorine.
  • nitrides are found nitrides of aluminum, titanium or those produced in steels.
  • the application concerns the field of microelectronics. This process consists in creating a nitrogen plasma by RF excitation, then accelerating the ions on a gold sheet put under a voltage of a few hundred volts. Sputtered gold ions mix with the nitrogen ions to give rise to gold nitride deposition on a silicon substrate.
  • the gold nitride deposition has the advantage of preserving the electrical properties of gold and has a hardness of 50% higher than that of pure gold of origin.
  • nitrogen is combined with gold to form an Au 3 N compound, and is not inserted into the gold network.
  • the purpose of the invention is to remedy the disadvantages and problems of the techniques described above.
  • This object is achieved by a layer of gold alloy comprising nitrogen atoms inserted over a thickness greater than or equal to 0.05 ⁇ m, for example greater than or equal to 0.1 ⁇ m, even for example greater than or equal to 0.2 ⁇ m, or even greater than or equal to 0.5 ⁇ m.
  • N / (Au + N) is greater than or equal to 5%, for example greater than or equal to 10%, or even greater than or equal to 20% over a thickness greater than or equal to 0.05 ⁇ m;
  • the atomic concentration N / (Au + N) is less than or equal to 75%, for example less than or equal to 50% over the entire depth of the alloy layer comprising insertional nitrogen atoms;
  • the concentration profile of the nitrogen as a function of the thickness of the layer is a curve resulting from the sum of at least two Gaussian curves;
  • the quarter-height width of the nitrogen concentration profile is greater than or equal to 0.05 ar, for example greater than or equal to 0.1 ⁇ m, even by example greater than or equal to 0.2 ⁇ m, or even greater than or equal to 0.4 ⁇ m;
  • the concentration profile of the nitrogen has a plateau over a depth greater than or equal to 0.1 ⁇ m, for example greater than or equal to 0.2 ⁇ m;
  • the content, expressed in% by weight, of gold (Au) of the gold alloy is greater than or equal to 50%, for example greater than or equal to 75%, or even greater than or equal to 90%. It is found that the hardness is very significantly increased from 5% atomic concentration of nitrogen, that it increases substantially linearly up to 30%, then that the curve of increase of hardness is squeezed between substantially 30% and 50% atomic concentration of nitrogen.
  • the implantation of mono-energy ions leads to a distribution curve of the ions as a function of the thickness, called the concentration profile, of substantially Gaussian form. It is possible to obtain concentration profiles resulting from the sum of at least two Gaussian curves by implanting ions different energies that penetrate to different depths.
  • the gold alloy layers having the above characteristics are remarkable in that their hardness is considerably increased in comparison with a gold alloy layer of the same alloy composition without inserting nitrogen atoms .
  • the thickness may aim a distance from said surface, as a distance from a point below said surface.
  • the nitrogen concentration N / fAu + N) is chosen for example in order to obtain a desired hardness as a function of parameters related in particular to the treatment time, the cost of treatment.
  • the width of the concentration profile measured for a nitrogen atomic concentration equal to one-quarter of the maximum value of the nitrogen concentration of said profile is denoted width to quarter of a height.
  • a nitrogen concentration profile can be measured experimentally, for example by using a measurement method known by ESCA.
  • the invention also relates to a part comprising at least a portion on the surface of which is disposed a gold alloy layer according to the previous embodiments.
  • the piece is made of gold alloy and the layer of gold alloy comprising nitrogen atoms is in continuity of material with the gold alloy.
  • the part is at least partially coated with a gold alloy and the gold alloy layer comprising nitrogen atoms is in continuity of material with said gold alloy.
  • Such a piece may include, but not limited to, a piece of goldsmithery, a timepiece, a piece of electrical circuit and / or eiectronique.
  • the invention also relates to a part comprising at least one part on the surface of which is disposed a layer of gold comprising nitrogen atoms and whose surface nano-hardness is greater than or equal to 3.5 GPa, for example greater than or equal to 4 GPa, and / or the Vickers hardness is greater than or equal to 350 for a load of 50 g.
  • a hardness exceeds the known hardness values of gold alloys, even when not in use.
  • the invention also relates to a process for treating a gold alloy comprising a step of implantation of nitrogen ions, emitted by a source of energy greater than or equal to 10 keV (kilo electron volts) for example greater than or equal to 20 keV, even for example greater than or equal to 30 keV, or even greater than or equal to 50 keV.
  • the xmplant nitrogen ions are multi-energy ions
  • the multi-energy nitrogen ions implants comprise nitrogen ions of at least two states of charge selected from the list comprising N +, N 2 +, N 3 +, N 4 +, N 5 +;
  • the source is an electron cyclotron resonance (ECR) source
  • the electron cyclotron resonance source delivers accelerated ions by an extraction voltage and first adjustment means of an initial beam of ions emitted by said source into an implantation beam; the multi-energy nitrogen ions are simultaneously implanted at a depth controlled by the extraction voltage of the source.
  • the nitrogen ions are energy ions and are implanted in the room at a temperature less than or equal to 300 ° C .;
  • the ion beam especially the energies, moves relative to the workpiece, for example at a constant speed or for example at a variable speed taking account of the angle of incidence of the ion beam, by relative to the surface of the piece or is disposed the layer of gold alloy to be treated.
  • the implantation of the nitrogen atoms can be carried out at a low temperature, for example at a temperature of less than or equal to 300 ° C., which can make it possible to preserve a metallurgical structure, in particular a hardening, of the workpiece. It is even possible to treat a piece of temperatures up to 100 0 C, for example between 50 and 60 0 C.
  • FIG. 1 represents a functional diagram of a device implemented in one embodiment of the method according to the invention.
  • FIGS 2 to 5 show examples of implant ion distribution in gold according to different embodiments of the process of the present invention.
  • Selor jn non jji ⁇ j.tatif embodiment the treatment of a piece er gold alloy is done by simultaneous implantation of multi-energy ions. These latter are, for example, obtained by extracting, with the same single extraction voltage, mono- and multi-ring ions created in the plasma chamber of an electron cyclotron resonance ion source source (ECR source).
  • ECR source electron cyclotron resonance ion source
  • each ion produced by said source has an energy that is proportional to its state of charge. It follows that the ions with the highest charge state, and therefore the highest energy, are implanted in the gold alloy part at greater depths.
  • this implantation is fast and inexpensive since it does not require a high extraction voltage of the ion source. Indeed, to increase the implantation energy of an ion, it is economically preferable to increase its state of charge rather than increase its extraction voltage.
  • this device allows processing a workpiece without altering its mechanical properties obtained by hardening (for example by treating a gold piece has a temperature below 300 0 C).
  • Said ion implantation device in a gold alloy part comprises a source delivering accelerated ions by an extraction voltage and first adjustment means for an initial beam of ions emitted by said source into a beam implantation.
  • Such a device is mainly recognizable in that said source is an electron cyclotron resonance source producing multi-energy ions that are implanted in the room, for example a a temperature below 300 ° C., the implantation of the ions of the implantation beam being carried out simultaneously at a depth controlled by the extraction voltage of the source.
  • an embodiment of the method according to the invention proposes to use multi-energy nitrogen ions produced by the source of RCE ions within which nitrogen has been introduced beforehand. implanting the ions produced simultaneously into the gold alloy part, which generates interstitial nitrogen ions in the gold structure, gold nitride microcrystals in turn inducing an increase in hardness.
  • the simultaneous implantation of these nitrogen ions can be done at varying depths, depending on the needs and the shape of the room. These depths depend on the ion implantation energies of the implantation beam; they can for example vary from 0 to about 1 micron.
  • the same implanted ion concentration profile is not obtained according to, for example, that it is implanted simultaneously.
  • the successive implantation by state of charge of increasing order gives a profile of wide thickness but low concentration.
  • the successive implantation by decreasing order of charge gives a profile of narrow thickness but of high concentration.
  • the simultaneous implantation is a compromise between the two previous types of implantation, we obtain a profile of average thickness and average concentration.
  • One embodiment of the method of the invention recommends the simultaneous implantation of multi-energy ions with a multi-energy beam and is therefore both technically advantageous and advantageous in terms of the physical compromise obtained (concentration profile). balance). It is possible to obtain a concentration profile comprising a plate of large thickness, the height of which can be controlled. This plateau height may be below a critical concentration determined by an unacceptable color of the room.
  • the increase in the hardness of the gold alloy is related to the concentration of implanted nitrogen ions.
  • the embodiment of the method of the invention using an ECR source has an additional advantage over the implantation carried out with a mono-energy nitrogen ion beam: for the same concentration of implant ions, it is preferable to effect with a beam of multi-energy nitrogen ions the appearance of gold nitride.
  • the simultaneous implantation of multi-energy ions can generate by collisions and cascades an efficient mixing of the different layers of gold nitride (which occur at different depths of implantation in the treated thickness; efficiency of the fragmentation processes and ⁇ e microc ⁇ stals of which are constituted the Gold foil layers can allow additional hardness increase achieved by implantation with a multi-energy nitrogen ion beam.
  • the method of the invention provides a surface hardness close to that of steel, while maintaining the massive mechanical properties due to the hardening.
  • the device used advantageously further comprises second means for adjusting the relative position of the workpiece and the ion source.
  • second means for adjusting the relative position of the workpiece and the ion source.
  • the second adjustment means comprise a workpiece which is movable to move the workpiece during its treatment.
  • it is the source of ions that is displaced relative to the workpiece; the latter embodiment can be implemented when the parts to be treated together represent a too important poes.
  • the workpiece is for example equipped with cooling means for evacuating the heat produced in the room during the implantation of the multi-energy ions.
  • the first means of adjusting the ion beam also comprise a mass spectrometer for sorting the ions produced by the source as a function of their size and mass.
  • the first means of adjusting the initial ion beam may comprise optical focusing means, a profiler, an intensity transformer and a shutter.
  • the device can be confined in an enclosure equipped with a vacuum pump.
  • the second means for adjusting the relative position of the part and the ion source may comprise means for calculating this position from information relating to the nature of the ion beam, to the geometry of the part, at the speed of movement of the workpiece relative to the source and the number of passes previously made.
  • the treatment of the gold alloy by ion implantation implements a multi-energy ion beam that moves relative to the workpiece at a constant speed.
  • the multi-energy ion beam moves relative to the workpiece at a variable speed taking into account the angle of incidence of the multi-energy ion beam relative to the surface of the room.
  • the relative speed of movement between the workpiece and the ion source may be constant or variable depending on the angle of incidence of the beam relative to the surface, for example during the treatment time.
  • the velocity may lose beam throughput, implant ion concentration profile, and number of passes.
  • the speed can vary according to the angle of incidence of the beam with respect to the surface, for example to compensate for the weakness of the depth of implantation by increasing the number of implant ions.
  • the multi-energy ion beam can be emitted with a rate and emission energies that are constant and controlled by the ion source.
  • the method of the invention can make it possible to act on the penetration depths of the multi-energy ions in the room. These penetration depths, which can occur in the treated thickness, may vary depending on the different ion input energies at the surface of the workpiece.
  • Implantation of the nitrogen ions in the crystalline structure of the part to be treated has the effect of inserting interstitial nitrogen ions and possibly creating gold nitride microcrystals (beyond a certain concentration of 'Nitrogen in gold) which are extremely hard blocking dislocation sliding planes at the origin of material deformations.
  • the fact of implanting nitrogen ions in the part to be treated makes it possible to increase the surface hardness of the part and in particular to make it very resistant to wear.
  • the process according to the invention can also, by the phenomenon of superficial spraying induced by the passage of the incident ions, to erase the micro-roughness of the part, in other words to improve the surface condition and thus the room's oriance. .
  • the process according to the invention also makes it possible to considerably reduce the corrosion of the species the atomic component of the alloy, by implanting beneath the surface a barrier of nitrogen atoms, known for their chemical inertness or their neutralizing effect acids. The process is thus likely to prevent the tarnishing of gold alloys.
  • a device implemented in one embodiment of the method according to the present invention is placed in a vacuum chamber 3 by means of a vacuum pump 2.
  • This vacuum is intended to prevent the interception of the beam by residual gases and to avoid contamination of the surface of the room by these same gases during implantation.
  • This device comprises an electron cyclotron resonance ion source 6, known as ECR source.
  • ECR source This source RCE 6 delivers an initial beam fl 'ions multi-energies nitrogen for a total current of about 7.5 m ⁇ (all loads N +, N2 +, etc.), under an extraction voltage that can vary from 20 KV to 200 KV.
  • the RCE source 6 emits the ion beam fl 'towards first adjustment means 7-11 which ensure the focusing and adjustment of the initial beam fl' emitted by the source RCE 6 into an ion implantation beam f1. who comes to hit a room to be treated 5.
  • These first adjustment means ⁇ -ll comprise, from the source RCE 6 to the piece 5, the following elements:
  • a mass spectrometer 7 capable of filtering the ions as a function of their charge and their mass. This eiement is optional; indeed, in the case where one injects a pure nitrogen gas (N2), it is possible to recover all the mono and multi-charge nitrogen ions produced by the source to obtain a multi-energy nitrogen ion beam.
  • N2 pure nitrogen gas
  • the mass spectrometer is a very expensive element is greatly reduced the cost of the device using a nitrogen ion beam multi energ-.es obtained from a pure nitrogen gas l ⁇ vre bottled.
  • lenses 8 whose role is to give the initial beam of ions a chosen shape, for example cylindrical, with a chosen radius.
  • a profiler 9 whose role is to analyze the intensity of the beam in a perpendicular section plane.
  • This analysis instrument becomes optional as long as the lenses 8 are definitively adjusted during the first implantation.
  • an intensity transformer 10 which continuously measures the intensity of the initial beam fl 'without intercepting it. The essential function of this instrument is to detect any interruption of the initial beam f1 and to allow the recording of the intensity variations of the beam f1 during the treatment.
  • a shutter 11 which may be a Faraday cage, whose role is to interrupt the trajectory of the ions at certain times, for example during a displacement without treatment of the part.
  • the part 5 is movable relative to the source RCE 6.
  • the part 5 is mounted on a movable workpiece 12 ⁇ ont the displacement esc command by a numerically controlled machine 4, itself driven by a postprocessor calculated by a CAD / CAM system (computer-aided design and manufacturing) 1.
  • the displacement of the part 5 takes into account the radius of the beam fl, the external and internal contours of the zones ⁇ deal with the part 5, a constant speed of displacement, or variable depending on the angle of the beam fl relative to the surface and a number of passes previously made.
  • Control information (mfl) is transmitted from the RCE source 6 to the digital control machine 4. This control information relates to the state of the beam. In particular, the RCE source 6 informs the machine 4 when the ion beam is ready to be sent.
  • Other control information (inf2) is transmitted by the machine 4 to the shutter 11, to the source RCE 6 and possibly to one or more machines outside the device. This control information may be the values of the ion beam radius, its ⁇ ebit and any other known values of the machine 4.
  • the workpiece holder 12 is equipped with a cooling circuit 13 for evacuating the heat produced in the workpiece 5 during the implantation of the multi-energy ions.
  • the enclosure 3 enclosing the device is closed, the cooling circuit 13 of the workpiece carrier 12 is optionally turned on, the vacuum pump 2 is started up so as to obtain a vacuum in the chamber 3,
  • the production and adjustment of the ion beam is carried out by means of adjustment means 7-11, when the beam is adjusted, the shutter 11 is raised and the numerically controlled machine 4 ⁇ ui then executes the displacement in position and speed of the part 5 in front of the beam in one or more passes,
  • the shutter 11 When the required number of passes is reached, the shutter 11 is lowered to cut the beam fl, the production of the beam fl 'is stopped, the vacuum is broken by opening the chamber 3 to the ambient air, it is eventually stopped. the cooling circuit 13 and the treated part 5 is taken out of the enclosure 3.
  • the heat related treatment can either reduce the power of the beam fl (thus increase the treatment time), or turn on the cooling circuit 13 housed in the door piece 12,
  • Figure 2 shows an example of distribution of N-ions implanted in gold.
  • the ion source is an ECR source and delivers N +, N2 +, N3 +, N4 + and N5 + ions which are all extracted with a single extraction voltage, for example. example, of 200 KV.
  • the N + ions emitted by the ion source have an energy of 200 KeV
  • the N2 + ions have an energy of 400 KeV
  • the N3 + ions have an energy of 600 KeV
  • the N4 + ions have an energy of 800 KeV
  • the ions N5 ⁇ have an energy of 1000 KeV.
  • these distributions have the appearance of Gaussian characterized by average implantation depths (relative to the ion implantation energy) and a standard deviation specific to the statistical nature of the path of the ions in the material.
  • the N + ions reach a depth of 0.16 ⁇ m +/- 0.075 ⁇ m.
  • the N2 + ions reach a depth of about 0.3 ⁇ m +/- 0.11 ⁇ m
  • the N3 + ions a depth of about 0.4 ⁇ m +/- 0.15 ⁇ m
  • the N4 + ions a depth of about 0.48 ⁇ m + / - 0.17 ⁇ m
  • the N5 + ions a depth of approximately 0.58 ⁇ m +/- 0.18 ⁇ m.
  • the maximum distance reached by ions in this example is about 1 ⁇ m.
  • RCE 6 ion source lies in the fact that it delivers mono- and multi-charge ions, which makes it possible to simultaneously implant multi-energy ions with the same extraction voltage. It is thus possible to obtain simultaneously, over the entire thickness treated, an implantation profile more or less well distributed.
  • FIG. 3 represents the atomic concentration profile obtained with a beam having the following characteristics: N + (2.5mA), N2 + (2.8mA / , N3 + (1.2mA), N4 + (0.25mA), N5 + (0, Q4miU , an extraction voltage of 35 K.
  • the beam is concentrated on a surface of 1 cm 2 for 15 seconds, this profile represents, on the ordinate, the atomic concentration N ⁇ Au + N), in%, of implanted nitrogen ions as a function of the implantation depth expressed in Angstrom
  • the maximum atomic concentration is 33% (1 nitrogen atom for 2 gold atoms) and is observed on the surface of the material This distribution is the result of a sum of atomic concentrations relative to N +, N2 + and to a lesser extent to N3 +
  • the spraying of the surface produced by the N +, N2 +, N3 + ions causes a shift of the global concentration towards the surface, explaining on the one hand its asymmetry, on the other hand the maximum atomic concentration of 33%. maximum is about 0.17 ⁇ m.
  • the quarter-height width is of the order of 0.08 ⁇ m, for a nitrogen atomic concentration of about 8%.
  • FIG. 4 represents an atomic concentration profile N / (N + Au), in%, as a function of Angstrorr depth of implantation, obtained with a beam where the intensities are the same as those of the preceding beam, but where Extraction voltage is 200 KV, and the beam is concentrated on a surface of 1 cm for 70 seconds. The spraying being less strong, they will reach a maximum atomic concentration of 5OO (a nitrogen atom for a hydrogen atom or r).
  • the implantation depth is approximately 0.72 ⁇ m, ie 4 to 5 times that obtained at 35 KV.
  • the width at quarter height is of the order of 0.43 microns, for a nitrogen atomic concentration of about 12.5%.
  • FIG. 5 represents an atomic concentration profile, N / (N + Au), in%, which can lead to particularly advantageous properties, as a function of the implantation depth in Angstrom, obtained with a multicharge ion beam and equidistributed
  • the extraction voltage is 200 KV
  • the beam is concentrated on a surface 1 cii ⁇ Z for 210 seconds.
  • the equipartition of the states of charge of the nitrogen makes it possible to obtain a broad plateau with a maximum concentration of approximately 48% (approximately 1 nitrogen atom for a gold atom) over a thickness of approximately 5000 Angstroms.
  • the maximum implantation depth is of the order of 1 ⁇ m.
  • the quarter-height width is of the order of 0.73 ⁇ m, for a nitrogen atomic concentration of about 12%.
  • samples have been made where 18 carat gold has been treated according to one embodiment of the invention, by inserting nitrogen ions emitted by a source ECR so as to obtain the profile of concentration of Figure 3.
  • a treated air sample was subjected to Vickers hardness measurement according to a procedure according to ISO 4516.
  • the applied load is 50 grams.
  • the Vickers hardness, for a load of 50 g, of a treated surface was measured at 3 ⁇ n HV (with a dispersion of +/- 13 HV) compared to the Vickers hardness of an untreated surface measured at 212 HV. (with a dispersion of +/- 10 HV).
  • Microhardness measurement is understood to mean measurements made with a microdurometer according to a methodology known to those skilled in the art. In this case, a Vickers tip was used, the measurement was performed at room temperature, a 10 gram load was applied and the tip remained in contact for 15 seconds on the surface of the sample. Ten measurement points were made on the same area. An average value of 4.21 GPa is obtained for areas where nitrogen has been implanted compared to an average value of 2.53 GPa for untreated areas. In addition, samples thus treated are subjected to corrosion tests.
  • the test consists of immersing the gold alloy in a millet containing potassium cyanide and ammonium persulfate. an untreated part of the sample is rapidly ossified while a treated part remains free from corrosion and remains clear, of color and shine unchanged.
  • the invention is not limited to these types of embodiments and must be interpreted in a nonlimiting manner, encompassing any gold alloy having the characteristics and / or properties described.
  • the method according to the invention is not limited to the use of a source ECR, and although it may be thought that other sources would be less advantageous, it is possible to implement the method according to the invention. , and obtain samples comprising a remarkable gold alloy layer, with monozone sources or other multi-ion sources.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Adornments (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Couche d'alliage d'or comprenant des atomes d'azote insérés sur une épaisseur supérieure ou égale à 0,05 µm, par exemple supérieure ou égale à 0,1 µm, même par exemple supérieure ou égale à 0,2 µm, voire supérieure ou égale à 0,5 µm. Procédé associé.

Description

COUCHE D'ALLIAGE D'OR COMPRENANT DES ATOMES D'AZOTE INSERES, PROCÉDÉ DE TRAITEMENT ASSOCIÉ
L'invention a pour objet une couche d'alliage d'or comprenant des atomes d'azote insères, ainsi qu'un procède de traitement d'un alliage d'or, en vu d'obtenir une telle couche. L'invention vise également une pièce comprenant au moins une partie a la surface de laquelle est disposée une telle couche.
A ce titre elle met en œuvre un dispositif de mtruration par implantation ionique d'une pièce en alliage d'or a partir d'un faisceau d'ions d'azote émis par une source d'ions. L'invention a également pour objet un procède de mtruration d'une pièce en alliage d'or mettant en œuvre un tel dispositif.
L'invention trouve des applications par exemple dans le domaine de l'orfèvrerie ou de l'horlogerie ou il est important de traiter des pièces en alliage d'or pour durcir la surface et empêcher ainsi l'apparition de rayures. L'invention peut egalemert trouver des applications dans le domaine des circuits électriques et/eu électroniques.
L'or un métal noble comme le cuivre et l'argent. L'électron périphérique de l'or est fortement attache a son atome. L'or est très difficile a ioniser, il ne s'oxyde pas ec ne se corrode pas. La structure c.f.c de x'or comporte de très rombreux plans de glissement. De ce fait l'or pur est très ductile et très malléable. L'or pur n'est pas assez dur pour pouvoir trouver des applications par exemple dans le domaine de l'outillage.
L'orfèvrerie utilise assez peu l'or pur qui est trop mou, elle préfère plutôt les alliages d'or qui présentent de meilleures propriétés mécaniques. A contrario, l'or pur est très apprécie dans le domaine de la microelectronique pour sa bonne conductibilité électrique et son caractère inoxydable.
La dureté de l'or dépend de plusieurs facteurs incluant la composition des alliages et la manière avec laquelle les pièces sont travaillées.
Allier l'or avec d'autres éléments a pour effet de renforcer sa dureté, sa résistance mécanique, et de réduire en contrepartie sa ductilité et sa malléabilité. Les atomes d'argent étant légèrement plus gros que les atomes d'or, allier l'or avec de l'argent améliore modérément la dureté et la résistance mécanique de l'alliage. Le cuivre a une taille beaucoup plus petite que l'or. On obtient avec le cuivre un renforcement de l'alliage plus marque que celui obtenu avec l'argent : le cuivre force la structure cristalline et bloque ainsi le mouvement des dislocations. D'autres espèces atomiques comme le nickel, l'arsenic, le plomb peuvent être ajoutes mais présentent l'inconvénient d'être allergeniques ou bien encore dangereux pour la santé.
On peut durcir l'or pur mécaniquement, en le Tartexant, en le pliant, en le laminant. Sa structure est dite ecrouie. Or le rend ainsi plus brillant et plus résistant a l'usure. Par un chauffage effectue, par exemple a une température supérieure a environ 3000C, on peut supprimer les contraintes internes, les défauts cristallins et les dislocations : l'or retrouve sa malléabilité d'origine.
De manière usuelle, on classifie les alliages d'or en fonction de la quantité d'or qu'ils comprennent (exprimée en % massique) .
A titre d'exemple, l'or 24 carat est sensiblement de l'or pur ; l'or 22 carat comprend sensiblement 91, 6 % d'or, entre 0 et 8,4 % d'argent et entre 0 et 8,4 % de cuivre ; l'or 18 carat comprend sensiblement 75 % d'or, entre 4,5 et 25 % d'argent et entre 0 et 20,5 % de cuivre ; l'or 14 carat comprend sensiblement 58, 5 % d'or, entre 9 et 41,5 % d'argent et entre 8 et 32,5 % de cuivre .
La dureté de ces alliages recuits varie en générai entre 20 et 150 HV (dureté Vickers) en fonction des taux d'argent et de cuivre. Ces alliages peuvent être durcis par écrouissage ce qui peut permettre de sensiblement doubler leur dureté et d'atteindre respectivement des duretés de l'ordre de 50 à 300 HV. On considère de manière usuelle qu'une dureté supérieure à 300 HV ne peut pas être atteinte avec des alliages d'or traités de manière conventionnelle.
En outre, le chlore ou l'acidité provenant de la sueur peuvent ternir un alliage d'or en réagissant avec certaines espèces atomiques de l'alliage autres que l'or.
On cherche de plus en plus, notamment dans le domaine de l'orfèvrerie, à renforcer fortement et superficiellement des pièces en alliage d'or de manière à ce que celles-ci conservent le plus longtemps possible leur état de surface d'origine. Les rayures dues aux chocs dégradent l'état de surface de la pièce (montre, bijoux...) et rend son aspect moins brillant. Comme on l'a vu la sueur peut également ternir l'éclat en réagissant chimiquement avec certains éléments de l'alliage d'or.
En règle générale, les nitrures métalliques sont bien connus dans la métallurgie pour augmenter la dureté, réduire l'action corrosive des acides ou du chlore. Parmi ces nitrures on trouve, les nitrures d'aluminium, de titane ou bien encore ceux produits dans les aciers.
Pour l'or, la nitruration est cependant plus difficile, voire exceptionnelle.
Un procédé de nitruration de l'or dont le résultat conduit à un dépôt de nitrure d'or sur une plaque de silicium est décrit du document WO2005121395
(KRISHNAMURTY et al). L'application concerne le domaine de la microélectronique. Ce procédé consiste à créer un plasma d'azote par excitation RF, puis à accélérer les ions sur une feuille d'or mise sous une tension de quelques centaines de volts. Les ions d'or pulvérisés se mélangent avec les ions d'azote pour donner naissance à un dépôt de nitrure d'or sur un substrat en silicium. Le dépôt de nitrure d'or a l'avantage de conserver les propriétés électriques de l'or et de posséder une dureté de 50 % supérieure à celle de l'or pur d'origine. Ainsi dans le domaine de la microélectronique, on peut remplacer des connecteurs en or pur, par des connecteurs en nitrure d'or, plus durs donc moins épais. On réduit ainsi les quantités d'or nécessaire à la fabrication et on diminue les coûts de production des composants électroniques. Ce procède n'est cependant pas adapte aux besoins de l'orfèvrerie car des problèmes d'adhérence de dépôt sur une pièce en alliage d'or en résultent, ou encore un contrôle insuffisant de la composition du dépôt, qui influe sur la couleur.
On note que, selon ce document, l'azote est combine a l'or pour former un compose Au3N, et n'est pas insère dans le reseau de l'or.
L'irvention a pour but de remédier aux inconvénients et problèmes des techniques exposées précédemment.
Il est notamment vise par la présente invention de proposer un alliage d'or dont la dureté superficielle est améliorée.
Ce but est atteint par une couche d'alliage d'or comprenant des atomes d'azote insères sur une épaisseur supérieure ou égale a 0,05 μm, par exemple supérieure ou égale a 0,1 μm, même par exemple supérieure ou égale a 0,2 μm, voire supérieure ou égale a 0,5 μm.
Selon différents modes de réalisation, qui peuvent notamment être combines :
- la concentration atomique maximale, N/ (Au+N) , est supérieure ou égale a 5 %, par exemple supérieure ou égale a 10 %, voire supérieure ou égale a 20 % sur une épaisseur supérieure ou égale a 0,05 μm ;
- la concentration atomique N/ (Au+N) est inférieure ou égale a 75 %, par exemple inférieure ou égale a 50 % sur l'ensemble de la profondeur de la couche d'alliage comprenant des atomes d'azote insères ;
- le profil de concentration de l'azote en fonction de l'épaisseur de la couche est une courbe résultant de la somme d'au moins deux courbes gaussiennes ; la largeur a quart de hauteur du profil de concentration de ±'azote est supérieure ou égale a 0,05 ar>, par exemple supérieure ou égale a 0,1 μm, même par exemple supérieure ou égale a 0,2 μm, voire supérieure ou égale a 0,4 μm ;
- le profil de concentration de l'azote présente un plateau sur une profondeur supérieure ou égale a 0,1 μm, par exemple supérieure ou égale a 0,2 μm ;
- la teneur, exprimée en % poids, en or (Au) de l'alliage d'or est supérieure ou égale a 50 %, par exemple supérieure ou égale a 75 % , voire supérieure ou égale a 90 %. On constate que la dureté est très significativement augmentée a partir de 5% de concentration atomique d'azote, qu'elle augmente sensiblement linéairement jusqu'à 30%, puis que la courbe d'augmentation de dureté s' infléchit entre sensiblement 30% et 50% de concentration atomique d'azote.
A titre d'exemple, pour de l'or 18 carat, on peut atteindre une nanodurete de l'ordre de 3,5 GPa pour une concentration atomique d'azote de 15%, de l'ordre de 4 GPa pour une concentration atomique d'azote de 30%, et on peut escompter une nanodurete de l'ordre de 5 GPa pour 50% de concentration atomique d'azote.
Dans certains cas, on peut constater des défauts si la concentration atomique d'azote dépasse 75%, voire parfois 50%. De manière générale, l'implantation d'ions mono énergie conduit a une courbe de répartition des ions en fonction de l'épaisseur, dite profil de concentration, de forme sensiblement gaussienne. Il est possible d'obtenir des profils de concentration résultant de la somme d'au moins deux courbes gaussiennes en implantant des ions d'énergies différentes qui pénètrent a des profondeurs différentes .
Les couches d'alliages d'or présentant les caractéristiques ci-dessus sont remarquable en ce que leur dureté est considérablement augmentée en comparaison d'une couche d'alliage d'or de même composition d'alliage dépourvue d'atomes d'azote insères.
On constate en outre, que ces couches sont particulièrement résistantes a la corrosion. Selon l'invention, on dénomme « épaisseur », une partie d'une couche située sensiblement perpendiculairement a sa surface extérieure.
L'épaisseur peut viser une distance a partir de ladite surface, tout comme une distance a partir d'un point situe sous ladite surface.
La concentration d'azote N/fAu+N) est choisie par exemple de manière a obtenir une dureté désirée en fonction de paramètres lies notamment au temps de traitement, au coût du traitement. On dénomme largeur a quart de hauteur la largeur du profil de concentration mesure pour une concentration atomique d'azote égale au quart αe la valeur maximale de la concentration d'azote dudit profil.
On note qu'un profil de concentration d'azote peut être mesure expérimentalement, par exemple en utilisant une méthode de mesure connue par ESCA.
L'invention porte également sur une pièce comprenant au moins une partie a la surface de laquelle est disposée ane couche d'alliage d'or selon les modes de réalisation précédents . Selon un mode de réalisation, la pièce est en alliage d'or et la couche d'alliage d'or comprenant des atomes d' azote est en continuité de matière avec ^' alliage d' or . Selon un autre mode de réalisation, la pièce est au moins partiellement revêtue d'un alliage d'or et la couche d'alliage d'or comprenant des atomes d'azote est en continuité de matière avec ledit alliage d'or.
Une telle pièce peut notamment, mais de manière non limitative, être une pièce d'orfèvrerie, une pièce d'horlogerie, une pièce de circuit électrique et/ou eiectronique .
L'invention vise également une pièce comprenant au moins une partie a la surface de laquelle est disposée une couche d'or comprenant des atomes d'azote et dont la nano-durete de surface est supérieure ou égale a 3,5 GPa, par exemple supérieure ou égale a 4 GPa, et/ou la dureté Vickers est supérieure ou égale a 350 pour une charge de 50 g. De manière remarquable, une telle dureté dépasse les valeurs de dureté connues des alliages d'or, même ecrouis .
L'invention concerne également un procède de traitement d'un alliage d'or comprenant une étape d'implantation d'±ons d'azote, émis par une source d'énergie supérieure ou égale a 10 keV (kilo électron volt) par exemple supérieure ou égale a 20 keV, même par exemple supérieure ou égale a 30 keV, voire supérieure ou égale a 50 keV. Selon différents modes αe réalisation, qui peuvent notamment être combines : - les ions d'azote xmplantes sont des ions multi énergies ; les ions d'azote multi énergies implantes comprennent des ions d'azote d'au moins deux états de charge choisis parmi la liste comprenant N+, N2+, N3+, N4+, N5+ ;
- la source est une source a résonance cyclotronique électronique (RCE) ;
- la source a résonance cyclotronique électronique délivre des ions accélères par une tension d'extraction et des premiers moyens de réglage d'un faisceau initial d'ions émis par ladite source en un faisceau d' implantation ; les ions d'azote multi énergies sont implantes simultanément a une profondeur contrôlée par la tension d'extraction de la source.
De manière générale, on constate que des faibles énergies, notamment entre 10 et 20 keV, peuvent conduire a augmenter les phénomènes de pulvérisation des atomes d'or en surface. Ce phénomène peut être avantageusement mis a profit pour obtenir une surface dépourvue de rugosités. Si on souhaite limiter les phénomènes de pulvérisation et/ou implanter profondement les ions d'azote, on aura tendance a augmenter leur énergie et on peut envisager des énergies par exemple de l'ordre de 100 ou 200 keV pour les ions N+ . Dans le cas d'une source RCE, émettant des ions Nf4- a N5+ , l'énergie des ions N2τ, N3+, N4+, N5+ sera respectivement double, triple, quadruple, quintuple. L' invention concerne égarement le traxtement d'une pièce comprenant au moins une partie a la surface de laquelle est disposée une couche d'alliage d'or et ou ladite couche d'alliage d'or est traitée.
Selon différents modes de réalisation .
- les ions d'azote sont des ions muiti énergies et sont implantes dans la pièce a une terrperature inférieure ou égale a 300° C ;
- le faisceau d'ions, notamment mαlti énergies, se déplace de façon relative par rapport a la pièce, par exemple a vitesse constante ou par exemple a une vitesse variable tenant compte de l'angle d'incidence du faisceau d'ions, par rapport a la surface de la pièce ou est disposée la couche d'alliage d'or a traiter.
L'implantation des atomes d'azote peut se faire a basse température, par exemple a une température inférieure ou égale a 3000C, ce qui peut permettre de conserver une structure métallurgique, notamment un ecrouissage, de la pièce a traiter. Il est même possible de traiter une pièce a des températures inférieures ou égales a 1000C, par exemple entre 50 et 600C. L'invention sera détaillée ci-apres a l'aide d'exemples non limitatifs, notamment illustres par les figures suivantes :
La figure 1 représente un diagramme fonctionnel d'un dispositif mis en œuvre dans un mode de réalisation du procède selon l'invention.
Les figures 2 a 5 représentent des exemples de distribution d'ion implantes dans de l'or selon différents modes de realisat±on du procède de la présente ifventxon . Selor jn mode de réalisation non j.j.iτj.tatif, la traitement d'une pièce er alliage d'or se fait par implantation simultanée d'ions multi-energies . Ces αerniers sont par exemple, obtenus en extrayant avec une même et unique tension d'extraction des ions mono- et muiti-cnarges crées dans ia chambre a plasma d' une source d'ions a résonance cyclotronique électronique (source RCE) . Dans ce cas, chaque ion produit par ladite source présence une énergie qui est proportionnelle a son état de charge. Il en découle que les ions dont l'état de charge est le plus eleve, donc d'énergie la plus élevée, s'implantent dans la pièce en alliage d'or à des profondeurs plus importantes.
On notera a ce stade de la description que cette implantation est rapide et peu coûteuse puisqu'elle ne nécessite pas une tension d'extraction élevée de la source d'ions. En effet, pour augmenter l'énergie d'implantation d'un ion, il est économiquement préférable d'augmenter son état de charge plutôt que d'augmenter sa tension d'extraction.
On notera également que ce dispositif permet de traiter une pièce sans altérer ses propriétés mécaniques obtenues par écrouissage (par exemple en traitant une pièce en or a une température inférieure à 3000C) .
Ledit dispositif d'implantation d'ions dans une pièce en alliage d'or comporte une source délivrant des ions accélérés par une tension d'extraction et des premiers moyens de réglage d'un faisceau initial d'ions émis par ladite source en un faisceau d'implantation.
Un tel dispositif est principalement reconnaissable en ce que ladite source est une source a résonance cyclotronique électronique produisant des ions multi- energies qux sort implantes αans la pièce, par exemple a une température inférieure à 3000C, l'implantation des ions du faisceau d'implantation étant effectuée simultanément à une profondeur contrôlée par la tension d'extraction de la source. Plus particulièrement, un mode de réalisation du procède selon l'invention propose d'utiliser des ions d'azote multi-energies produits par la source d'ions RCE a l'intérieur de laquelle de l'azote a été préalablement introduit et d'implanter les ions produits simultanément dans la pièce en alliage d'or, ce qui engendre des ions d'azote en interstitiel dans la structure de l'or, des microcristaux de nitrure d'or induisant à leur tour une augmentation de la dureté. L'implantation simultanée de ces ions d'azote peut se faire à des profondeurs variables, en fonction des besoins et de la forme de la pièce. Ces profondeurs dépendent des énergies d'implantation des ions du faisceau d'implantation ; elles peuvent par exemple varier de 0 à environ 1 μm.
Compte tenu d'un effet de pulvérisation différent selon l'énergie donc l'état de charge de l'ion incident, on n'obtient pas le même profil de concentration d'ions implantés selon, par exemple, que l'on implante simultanément N+, N2+, N3+, ou que l'on implante successivement par état de charge d'ordre croissant N+, N2+, puis N3+, ou encore que l'on implante successivement par état de charge d'ordre décroissant N3+, N2+, puis N+ . Selon ce mode de réalisation, l'implantation successive par état de charge d'ordre croissant donne un profil d'épaisseur large mais de faible concentration. L'implantation successive par état de charge d'ordre décroissant donne un profil d'épaisseur étroite mais de forte concentration. L'implantation simultanée est un compromis entre les deux types d'implantation précédents, on obtient un profil d'épaisseur moyenne et de concentration moyenne. Il est coûteux en termes de temps d'implanter des ions successivement par ordre croissant et décroissant. Un moαe de réalisation du procède de l'invention préconise l'implantation simultanée d'ions multi-energies avec un faisceau multi-energies et est de ce fait a la fois avantageux techniquement et avantageux sur le plan du compromis physique obtenu (profil de concentration équilibre) . Il est possible d'obtenir un profil de concentration comportant un plateau de large épaisseur, dont on peut contrôler la hauteur. Cette hauteur de plateau peut se situer en dessous d'une concentration critique fixée par une coloration inadmissible de la pièce.
L'augmentation de la dureté de l'alliage d'or est liée a la concentration en ions d'azote implantes.
Le mode de réalisation du procède de l'invention utilisant une source RCE présente un avantage supplémentaire par rapport a l'implantation effectuée avec un faisceau d'ions d'azote mono-energie : pour une même concentration d'ions implantes, on favorise en effet avec un faisceau d'ions d'azote multi-energies l'apparition de nitrure d'or. En outre, l'implantation simultanée d' ions rnulti-energies peut engendrer par collisions et cascades un brassage efficace des différentes couches de nitrure d'or (qui s'etagent a différentes profondeurs d' implantation dans l'épaisseur traitée; . L'efficacité des processus de fragmentation et αe des microcπstaux dont sont constituées les couches de mtrure d'or peut permettre un accroissement supplémentaire de dureté obtenu grâce a l'implantation avec un faisceau d'ions d'azote multi-energies .
Dans une application a des pièces en alliage d'or, le procède de l'invention permet d'obtenir une dureté superficielle proche de celle de l'acier, tout en conservant les propriétés mécaniques massives dues a l ' ecrouissage .
Le dispositif utilise comporte en outre avantageusement des deuxièmes moyens de réglage de la position relative de la pièce et de la source d'ions. On comprendra qu'un déplacement relatif entre la source d' ions et la pièce peut être mis en œuvre pour pouvoir traiter cette dernière. Selon une forme de réalisation du dispositif utilise dans la présente invention dans laquelle la pièce est mobile par rapport a la source, les deuxièmes moyens de réglage comportent un porte-pièce qui est mobile pour déplacer la pièce au cours de son traitement. Dans une autre forme de réalisation du dispositif, c'est la source d'ions qui est déplacée par rapport a la pièce a traiter; cette dernière forme de réalisation pouvant être mise en œuvre lorsque les pièces a traiter représentent ensemble un poiαs trop important. Le porte-pièce est par exemple équipe de moyens de refroidissement pour évacuer la chaleur produite dans la pièce lors de l'implantation des ions multi-energies .
Les premiers moyens de réglage du faisceau d' ions comportent accessoirement un spectrometre de masse pour trier les ions produits par la source en fonction de leur cnarge et de leur masse. Les premiers moyens de réglage du faisceau initial d'ions peuvent comporter des moyens optiques de focalisation, un profileur, un transformateur d'intensité et un obturateur. Le dispositif peut être confine dans une enceinte équipée d'une pompe a vide.
Les deuxièmes moyens de réglage de la position relative de la pièce et de la source d'ions peuvent comporter des moyens de calcul de cette position a partir d'informations relatives a la nature du faisceau d'ions, a la géométrie de la pièce, a la vitesse de déplacement du porte-pièce par rapport a la source et au nombre de passes précédemment réalisées.
Selon un mode de réalisation, le traitement de l'alliage d'or par implantation ionique met en œuvre un faisceau d' ions multi-energies qui se déplace de façon relative par rapport a la pièce a une vitesse constante.
Selon un autre mode de réalisation, le faisceau d'ions multi-energies se déplace de façon relative par rapport a la pièce a une vitesse variable tenant compte de l'angle d'incidence du faisceau d'ions multi-energies par rapport a la surface de la pièce.
La vitesse de déplacement relative entre la pièce a traiter et la source d'ion peut être constante ou variable en fonction de l'angle d'incidence du faisceau par rapport a la surface, par exemple pendant la durée de traitement. La vitesse peut deperdre du débit du faisceau, du profil de concentration des ions implantes et du nombre de passes. La vitesse peut varier en fonction αe l'angle d'incidence du faisceau par rapport a la surface, par exemple pour compenser la faiblesse de la profondeur d'implantation par une augmentation du nombre d'ions implantes.
Le faisceau d' ions multi-energies peut être émis avec un débit et des énergies d'émission qui sont constants et commandes par la source d'ions. Comme explique précédemment, le procède de l'invention peut permettre d'agir sur les profondeurs de pénétration des ions multi-energies dans la pièce. Ces profondeurs de pénétration, qui peuvent s'etager dans l'épaisseur traitée, peuvent varier en fonction des différentes énergies d'entrée des ions au niveau de la surface de la pièce .
L'implantation des ions d'azote dans la structure cristalline de la pièce a traiter a pour effet d' insérer des ions d'azote en interstitiel et possiblement de créer des microcristaux de nitrure d'or (au delà d'une certaine concentration d'azote dans l'or) extrêmement durs qui bloquent les plans de glissement des dislocations a l'origine des déformations du matériau. En d'autres termes, le fait d'implanter des ions d'azote dans la pièce a traiter permet d'augmenter la dureté superficielle de la pièce et notamment de la rendre ainsi très résistante a l'usure.
Le procède selon l'invention peut également permettre, par le phénomène de pulvérisation superficielle induit par le passage des ions incidents, de gommer les micro-rugosites de la pièce, autrement dit d'amencrer l'état de surface donc la oriilance de la pièce . Le procède selon l' invention permet en outre de réduire considérablement la corrosion des espèces atomiques composant l'alliage, en implantant sous la surface une barrière d'atomes d'azote, reputes pour xeur inertie chimiαue ou encore ieur effet de neutralisation des acides. Le procède est ainsi susceptible d'empêcher le ternj-ssement des alliages d'or.
Il resuite de ces dispositions que le procède selon l'invention permet de traiter efficacement des pièces en alliage d'or.
Sur la figure 1, un dispositif mis en œuvre dans un mode de réalisation du procède selon la présente invention est place dans une enceinte 3 mise sous vide grâce a une pompe a vide 2. Ce vide a pour but d'empêcher l'interception du faisceau par des gaz résiduels et d'éviter la contamination de la surface de la pièce par ces mêmes gaz lors de l'implantation.
Ce dispositif comporte une source d'ions 6 a résonance cyclotronique électronique, dite source RCE. Cette source RCE 6 délivre un faisceau initial fl' d'ions multi-energies d'azote pour un courant total d'environ 7,5 mΛ (toutes charges confondues N+, N2+, etc.), sous une tension d'extraction pouvant varier de 20 KV a 200 KV. La source RCE 6 émet le faisceau d'ions fl' en direction de premiers moyens de réglage 7-11 qui assurent la focalisation et le réglage du faisceau initial fl' émis par la source RCE 6 en un faisceau fl d'implantation d'ions qui vient frapper une pièce a traiter 5.
Ces premiers moyens de réglage π-ll comportent, de ia source RCE 6 vers ia pièce 5, les éléments suivants :
- un spectrorretre de masse 7 apte a filtrer les ions en fonction de leur charge et de xeur masse. Cet eiement est facultatif ; en effet, dans le cas ou l'on injecte un gaz d'azote pur (N2), il est possible de récupérer l'ensemble des ions d'azote mono et multi-charges produits par la source pour obtenir un faisceau d' ions d'azote multi-energies . Le spectrometre de masse étant un élément très cher on réduit fortement le coût du dispositif en utilisant un faisceau d'ions d'azote multi- energ-.es obtenus a partir d'un gaz d'azote pur l^vre en bouteille .
- des lentilles 8 dont le rôle est de donner au faisceau initial fl' d'ions une forme choisie, par exemple cylindrique, avec un rayon choisi. un profileur 9 dont le rôle est d'analyser l' intensité du faisceau dans un plan de coupe perpendiculaire. Cet instrument d'analyse devient facultatif des lors que les lentilles 8 sont réglées définitivement lors de la première implantation. un transformateur d' intensité 10 qui mesure en continu l' intensité du faisceau initial fl' sans l'intercepter. Cet instrument a pour fonction essentielle de détecter toute interruption du faisceau initial fl' et de permettre l'enregistrement des variations d' intensité du faisceau fl durant le traitement. un obturateur 11 qui peut être une cage de Faraday, dont le rôle est d'interrompre la trajectoire des ions a certains moments, par exemple lors d'un déplacement sans traitement de la pièce.
Selon un mode de réalisation du dispositif utilise dars le cadre du procède selon l'invention et représentée sur la figure 1, la pièce 5 est mobile par rapport a ia source RCE 6. La pièce 5 est montée sur un porte-pièce mobile 12 αont le déplacement esc commande par une machine a commande numérique 4, elle-même pilotée par un post-processeur calcule par un système de CFAO (conceptior et fabrication assistées par ordinateur) 1.
Le déplacement de la pièce 5 prend en compte le rayon du faisceau fl, les contours externes et internes des zones α traiter de la pièce 5, une vitesse de déplacement constante, ou variable en fonction de l'angle du faisceau fl par rapport a la surface et un nombre de passes précédemment réalisées. Des informations de contrôle (mfl) sont transmises de la source RCE 6 vers la machine a commande numérique 4. Ces informations de contrôle concernent l'état du faisceau. En particulier, la source RCE 6 informe la machine 4 lorsque le faisceau fl d'ions est prêt a être envoyé. D'autres informations de contrôle (inf2) sont transmises par la machine 4 a l'obturateur 11, a la source RCE 6 et, éventuellement, a une ou plusieurs machines extérieures au dispositif. Ces informations de contrôle peuvent être les valeurs du rayon du faisceau d'ions, son αebit et toutes autres valeurs connues de la machine 4.
Par ailleurs, le porte-pièce 12 est équipe d'un circuit de refroidissement 13 pour évacuer la chaleur produite dans la pièce 5 lors de l'implantation des ions multi-energies .
Le fonctionnement dudit dispositif est le suivant : on onde la pièce a traiter 5 sur le porte-pièce 12,
- on ferme l'enceinte 3 abritant le dispositif, - on -net éventuellement en marche ie circuit de refroidissement 13 du porte-pièce 12, - on met en marche la pompe a vide 2 de man±ere a obtenir un vide pousse dans l'enceinte 3,
- des que les conditions de vide sont atteintes, on procède a la production et au réglage du faisceau fl' d'ions grâce aux moyens de réglage 7-11, lorsque le faisceau est règle, on levé l'obturateur 11 et on lance la machine a commande numérique 4 σui exécute alors le déplacement en position et en vitesse de la pièce 5 devant le faisceau en une ou plusieurs passes,
- lorsque le nombre de passes requis est atteint, on baisse l'obturateur 11 pour couper le faisceau fl, on arrête la production du faisceau fl', on casse le vide en ouvrant l'enceinte 3 a l'air ambiant, on arrête éventuellement le circuit de refroidissement 13 et on sort la pièce traitée 5 hors de l'enceinte 3.
Il existe deux manières de diminuer le pic en température lie au passage du faisceau fl en un point donne de la pièce 5: augmenter le rayon du faisceau (donc réduire la puissance par cm2) ou augmenter la vitesse de déplacement .
Si la pièce est trop petite pour évacuer par rayonnement la chaleur liée au traitement on peut soit diminuer la puissance du faisceau fl (donc augmenter la durée de traitement), soit mettre en marche le circuit de refroidissement 13 loge dans le porte pièce 12,
La figure 2 représente un exemple de distribution d'ions d'azote N implantes dans de l'or. Dans cet exemple, la source d'ions est une source RCE et délivre des ions N+, N2+, N3+, N4+ et N5+ qui sont tous extraits avec une seule et unique tension d'extraction, par exemple, de 200 KV. Ainsi les ions N+ émis par la source d'ions ont une énergie de 200 KeV, les ions N2+ ont une énergie de 400 KeV, les ions N3+ ont une énergie de 600 KeV, les ions N4+ ont une énergie de 800 KeV et les ions N5^ ont une énergie de 1000 KeV.
Dans ces exemples, on ne tient pas en compte de la pulvérisation qui a pour effet de faire glisser ces distributions vers l'extrême surface. Dans le cas présent, ces distributions ont l'allure de gaussiennes caractérisées par des profondeurs d'implantation moyennes (relatives a l'énergie d'implantation des ions) et un écart type propre a la nature statistique du parcours des ions dans la matière.
Les ions N+ atteignent une profondeur de 0,16 μm +/- 0.075 μm. Les ions N2+ atteignent une profondeur d'environ 0,3 μm +/- 0,11 μm, les ions N3+ une profondeur d'environ 0.4 μm +/- 0,15 μm, les ions N4+ une profondeur d'environ 0.48μm +/- 0,17 μm et les ions N5+ une profondeur d'environ 0.58μm +/- 0,18 μm. La distance maximale atteinte par des ions dans cet exemple est d' environ Iμm.
La spécificité d'une source d'ions RCE 6 réside dans le fait qu'elle délivre des ions mono- et multi-charges ce qui permet d'implanter simultanément des ions multi- énergies avec la même tension d'extraction. Il est ainsi possible d'obtenir simultanément sur toute l'épaisseur traitée un profil d'implantation plus ou moins bien reparti .
On obtient pour le profil d' implantation une répartition optimale en réglant les fréquences de la source 6 de manière a avo^r une distribution equirepartie des états de charge des ions de la source imême norrbre d'ions N+, N2+ , N3+, N4+ , N5+ par cm2 et par seconde).
La figure 3 représente le profil de concentration atomxque obtenu avec un faisceau présentant les caractéristiques suivantes : N+(2.5mA), N2+ (2, 8mA/ , N3+ (1,2mA), N4+ ( 0, 25mA) , N5+ ( 0, Q4miU , une tension d'extraction de 35 KV. Le faisceau est concentre sur une surface de 1 cm2 pendant 15 secondes. Ce profil représente en ordonnée la concentration atomique NΛAu+N), en %, d'ions azote implantes en fonction de la profondeur d'implantation exprimée en Angstrom. La concentration atomique maximale est de 33% (1 atome d'azote pour deux atomes d'or) et est observée a la surface du matériau. Cette distribution est le résultat d'une somme de concentrations atomiques relatives a N+, N2+ et en moindre proportion a N3+. La pulvérisation de la surface produite par les ions N+, N2+, N3+ provoque un glissement de la concentration globale vers la surface, expliquant d'une part son asymétrie, d'autre part le point concentration atomique maximale de 33%. La profondeur d'implantation maximale est de 0.17 μm environ. La largeur a quart de hauteur est de l'ordre de 0.08 μm, pour une concentration atomique d'azote d'environ 8 %. La figure 4 représente un profil de concentration atomique N/ (N+Au) , en %, en fonction de la profondeur d' implantation en Angstrorr, obtenu avec un faisceau ou les intensités sont les mêmes que celles du faisceau preceαent, mais ou la tension d'extraction est de 200 KV, et le faisceau est concentre sur une surface de 1 cm pendart 70 secondes. La pulvérisation étant moins forte, on atteint une concentration atomique maximale de 5Oo (un atome d'azote pour un atome dror) . La profondeur d'implantation est d'environ 0.72 μm, soit 4 a 5 fois celle obtenue à 35 KV. La largeur a quart de hauteur est de l'ordre de 0.43 μm, pour une concentration atomique d'azote d'environ 12.5 %.
La figure 5 représente un profil de concentration atomique, N/(N+Au),en %, qui peut conduire a des propriétés particulièrement avantageuses, en fonction de la profondeur d'implantation en Angstrom, obtenu avec un faisceau d'ions multicharges et équirépartis où : NMO, 5mA) , N2+(lmA), N3+( 1,5mA), N4+(2mA), N5+(2,5mA), la tension d'extraction est de 200 KV, et le faisceau est concentre sur une surface de 1 CÏÏ\Z pendant 210 secondes. L' equipartition des états de charge de l'azote permet d'obtenir un plateau large de concentration maximale d'environ 48% (environ 1 atome d'azote pour un atome d'or) sur une épaisseur d'environ 5000 Angstrom. La profondeur d'implantation maximale est de l'ordre de 1 μm. La largeur a quart de hauteur est de l'ordre de 0.73 μm, pour une concentration atomique d'azote d'environ 12 i .
A titre d'exemples, des échantillons ont été réalisés où de l'or 18 carat a été traité selon un mode de réalisation de l'invention, en insérant des ions d'azote émis par une source RCE de manière a obtenir le profil de concentration de la figure 3.
Un échantillon airsi traite a fait l' objet de mesure de dureté Vickers, selon un mode opératoire conforme a la norme ISO 4516. La charge appliquée est de 50 grammes.
Cinq points de mesure ont été effectues sur une surface traitée et cxnq points sur une surface non traitée, caractéristique de l'état de l'échantillon avant traitement .
La dureté Vickers, pour une charge de 50 g, d'une surface traitée a ete mesurée a 3ηn HV (avec une dispersion de +/- 13 HV) a comparer a la dureté Vickers d'une surface non traitée mesurée a 212 HV (avec une dispersion de +/- 10 HV) .
On constate donc une augmentation de plus de 50 % de la dureté Vickers entre un alliage d'or non traite et un alliage d'or traite selon la présente invention.
D'autres échantillons traités comme précédemment indiques ont fait l'objet de mesures de microdureté. On entend par mesure de microdureté des mesures effectuées avec un microdurometre selon une méthodologie connu de l'homme du métier. Dans le cas présent, une pointe Vickers a ete utilisée, la mesure a ete effectuée a température ambiante, une charge de 10 grammes a été appliquée et la pointe reste en contact 15 secondes à la surface de l'échantillon. Dix points de mesure ont ete effectués sur une même zone. On obtient une valeur moyenne de 4,21 GPa pour les zones où l'azote a ete implanté à comparer a une valeur moyenne de 2,53 GPa pour les zones non traitées. En outre des échantillons ainsi traités sont fait l'objet de tests de corrosion.
Le test consiste a immerger l'alliage d'or dans un mil_eu contenant au cyanure de potassium et du persulfate α' ammoni Jiïi. une partie non traitée de l ' échantillon s'ooscurcie rapidement alors qu'une partie traitée reste indemne de corrosion et reste claire, de couleur et de brillance inchangée.
L'invention ne se limite pas a ces types de réalisation et doit être interprétée de façon non limitative, en englobant tout alliage d'or ayant les caractéristiques et/ou les propriétés décrites.
De même, le procède selon l'invention n'est pas limite à l'utilisation d'une source RCE, et même si on peut penser que d'autres sources seraient moins avantageuses, on peut mettre en œuvre le procédé selon l'invention, et obtenir des échantillons comprenant une couche d'alliage d'or remarquable, avec des sources monozones ou d'autres sources multi-ions.

Claims

REVENDICATIONS
1 - Couche d'alliage d'or comprenant des atomes α' azote insères sur une épaisseur supérieure ou égale a 0,05 μm, par exemple supérieure ou égale a 0,1 μm, même par exemple supérieure ou égale a 0,2 μm, voire supérieure ou égale a 0,5 μm.
2 - Couche d'alliage d'or selon la revendication précédente caractérisée en ce que la concentration atomique maximale, N/ (Au+N) , est supérieure ou égale a 5 %, par exemple supérieure ou égale a 10 %, voire supérieure ou égale a 20 % sur une épaisseur supérieure ou égale a 0,05 μm.
3 - Couche d'alliage α'or selon l'une quelconque des revendications précédentes caractérisée en ce que la concentration atomique N/ Αu+N) est inférieure ou égale a 75 %, par exemple inférieure ou égale a 50 % sur l'ensemble de la profondeur de la couche d'alliage comprenant des atomes d'azote insères.
4 - Couche d'alliage d'or selon l'une quelconque des revendications précédentes caractérisée en ce que le profil αe concentration de l'azote en fonction de l'épaisseur de la couche est une courbe résultant de la somme d'au moins deux courbes gaussiennes.
5 - Couche d'alliage d'or selon l'une quelconque des revendications preceαentes caractérisée en ce que la largeur a αuart de hauteur au profil de concentration de l'azote est supérieure ou égaie a 0,05 μm, par exemple supérieure ou égale a 0,1 μm, même par exemple supérieure ou égale a 0,2 μm, voire supérieure ou égale a 0,4 μm.
6 - Couche d'alliage d'or selon l'une quelconque des revendications précédentes caractérisée en ce que le profil αe concentration de l'azote présente un plateau sur une profondeur supérieure ou égale a 0,1 μm, par exemple supérieure ou égale a 0,2 μm.
7 - Couche d'alliage d'or selon l'une quelconque des revendications précédentes caractérisée en ce que la teneur, exprimée en % poids, en or (Au) de l'alliage d'or est supérieure ou égale a 50 %, par exemple supérieure ou égale a 75 %, voire supérieure ou égale a 90 %.
8 - Pièce comprenant au moins une partie a la surface de laquelle est disposée une couche d'alliage d'or selon l'une quelconque des revendications précédentes .
9 - Pièce selon la revendication précédente caractérisée en ce que la pièce est en alliage d'or et la couche d'alliage d'or comprenant des atomes d'azote est en continuité de matière avec l'alliage d'or.
10 - Pièce selon la revendication 8 caractérisée en ce que la pièce est au moins partiellement revêtue d'un alliage d'or et la couche d'alliage d'or comprenant des atomes d'azote est en continuité de matière avec ledit alliage d'or.
11 - Pièce selon l'une quelconque des revendications 8 a 10 caractérisée en ce que la pièce est choisie parmi la liste comprenant une pièce d'orfèvrerie, une pièce α' horlogerie, une pièce de circuit électrique et/ou électronique. 12 - Pièce comprenant au moins une partie a la surface de laquelle est disposée une couche d'or comprenant des atomes d'azote et dont la nano-durete de surface est supérieure ou égale a 3,5 GPa, par exemple supérieure ou égale a 4 GPa, et/ou la dureté Vickers est supérieure ou égale a 350 pour une charge de 50 g.
13 - Procède de traitement d'un alliage d'or comprenant une étape d'implantation d'ions d'azote, émis par ure source d'énergie supérieure ou égale a 10 keV par exemple supérieure ou égale a 20 keV, même par exemple supérieure ou égale a 30 keV, voire supérieure ou égale a 50 keV.
14 - Procède selon la revendication précédente caractérise en ce que les ions d'azote implantes sont des ions multi énergies.
15 - Procède selon la revendication précédente caractérise en ce que les ions d'azote multi énergies implantes comprennent des ions d'azote d'au moins deux états de charge choisis parmi la liste comprenant N+, N2+, N3+, N4 +, N5+.
16 - Procède selon la revendication précédente caractérise en ce que la source est une source a résonance cyclotronique électronique (RCE/ .
17 - Procède selon la revendication précédente caractérise en ce que la source a résonance cyclotronique électronique délivre des iors accélères par une tension d'extraction et des premiers moyens de réglage d'un faisceau initial d'ions émis par ladite source en ur faisceau et' implantation . 18 - Procède selon l'une quelconque αes revendications 14 a 1? caractérise en ce que les ions d'azote multi énergies sont implantes simultanément a une profondeur contrôlée par la tension d'extraction de la source .
19 - Procédé de traitement d'une pièce comprenant au moins une partie à la surface de laquelle est disposée une couche d'alliage d'or et où ladite couche d'alliage d'or est traitée selon l'une quelconque des revendications 13 à 18.
20 - Procède selon la revendication précédente caractérise en ce que les ions d'azote sont des ions multi énergies et sont implantés dans la pièce a une température inférieure ou égale a 300° C.
21 - Procède selon l'une quelconque des revendications 19 ou 20 caractérisé en ce que le faisceau d'ions, notamment multi énergies, se déplace de façon relative par rapport a la pièce, par exemple à vitesse constante ou par exemple à une vitesse variable tenant compte de l'angle d'incidence du faisceau d'ions, par rapport à la surface de la pièce ou est disposée la couche d'alliage d'or à traiter.
EP07823862A 2006-09-26 2007-09-26 Couche d'alliage d'or comprenant des atomes d'azote inseres, procédé de traitement associé Withdrawn EP2066829A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0608403A FR2906261B1 (fr) 2006-09-26 2006-09-26 Dispositif de nitruration par implantation ionique d'une piece en alliage d'or et procede mettant en oeuvre un tel dispositif
PCT/FR2007/052017 WO2008037927A2 (fr) 2006-09-26 2007-09-26 Couche d'alliage d'or comprenant des atomes d'azote inseres, procédé de traitement associé

Publications (1)

Publication Number Publication Date
EP2066829A2 true EP2066829A2 (fr) 2009-06-10

Family

ID=38932911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07823862A Withdrawn EP2066829A2 (fr) 2006-09-26 2007-09-26 Couche d'alliage d'or comprenant des atomes d'azote inseres, procédé de traitement associé

Country Status (3)

Country Link
EP (1) EP2066829A2 (fr)
FR (1) FR2906261B1 (fr)
WO (1) WO2008037927A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021249891A1 (fr) 2020-06-08 2021-12-16 Ionics Sa Couche d'alliage or-nickel dans laquelle sont introduits des atomes d'azote et procédé de traitement associé

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939150B1 (fr) * 2008-12-01 2011-10-21 Quertech Ingenierie Procede de traitement d'une partie metallique par un faisceau d'ions
FR2939973B1 (fr) * 2008-12-16 2012-11-23 Quertech Ingenierie Procede de fabrication d'un element de connecteur comprenant un substrat sur lequel est deposee une couche d'or
FR2949236B1 (fr) 2009-08-19 2011-10-28 Aircelle Sa Procede d'implantation ionique pour la realisation d'une surface hydrophobe
EP3425085A1 (fr) * 2017-07-07 2019-01-09 The Swatch Group Research and Development Ltd Procede de traitement de surface de particules d'une poudre metallique et particules de poudre metallique obtenues grace a ce procede

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879625B1 (fr) * 2004-02-04 2007-04-27 Guernalec Frederic Dispositif de nitruration par implantation ionique d'une piece en alliage d'aluminium et procede mettant en oeuvre un tel dispositif

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008037927A3 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021249891A1 (fr) 2020-06-08 2021-12-16 Ionics Sa Couche d'alliage or-nickel dans laquelle sont introduits des atomes d'azote et procédé de traitement associé
BE1028380A1 (fr) 2020-06-08 2022-01-10 Ionics Sa Couche d'alliage nickel-or ayant des atomes d'azote insérés en son sein et procédé de traitement lie
BE1028380B1 (fr) * 2020-06-08 2022-01-17 Ionics Sa Couche d'alliage nickel-or ayant des atomes d'azote insérés en son sein et procédé de traitement lie

Also Published As

Publication number Publication date
WO2008037927A3 (fr) 2008-07-24
WO2008037927A2 (fr) 2008-04-03
FR2906261B1 (fr) 2010-02-26
FR2906261A1 (fr) 2008-03-28

Similar Documents

Publication Publication Date Title
CA2554921A1 (fr) Dispositif de nitruration par implantation ionique d'une piece en alliage d'aluminium et procede mettant en oeuvre un tel dispositif
FR2899242A1 (fr) Procede de durcissement par implantation d'ions d'helium dans une piece metallique
WO2008050071A2 (fr) Couche d ' alliage de nickel-titane comprenant des atomes d ' azote inseres, procede d ' implantation
WO2008037927A2 (fr) Couche d'alliage d'or comprenant des atomes d'azote inseres, procédé de traitement associé
EP2721190B1 (fr) Traitement de surface d'une piece metallique
EP2076617B1 (fr) Couche de cuivre comprenant des atomes d'azote inseres, procede d'implantation associe
WO2008047049A2 (fr) Couche de titane comprenant des atomes d ' azote inseres, procede d ' implantation associe
EP0801142B1 (fr) Procédé de traitement de surface d'une pièce métallique, pièce métallique obtenue et ses applications
WO2010037914A1 (fr) Procede de traitement d'une piece metallique par des ions multi-energies he+ et he2+
FR2939150A1 (fr) Procede de traitement d'une partie metallique par un faisceau d'ions
EP4162092B1 (fr) Couche d'alliage or-nickel dans laquelle sont introduits des atomes d'azote et procédé de traitement associé
WO2003060182A1 (fr) Procédé de traitement d'une pièce en vue de modifier au moins une de ses propriétés.
EP3583241A1 (fr) Procédé de traitement par un faisceau d'ions pour produire un saphir antireflet a haute transmittance résistant a la rayure
FR2896515A1 (fr) Procede de nitruration par implantation ionique d'une piece metallique et dispositif de mise en oeuvre du procede
Lu et al. Effect of stress-induced phase transformation on nanomechanical properties of sputtered amorphous carbon films
WO2019007699A1 (fr) Procede de traitement de surface de particules d'une poudre metallique et particules de poudre metallique obtenues grace a ce procede
FR2876390A1 (fr) Procede de nitruration par implantation ionique d'une piece metallique et dispositif de mise en oeuvre du procede
CH712923B1 (fr) Procédé de traitement de surface de particules d'une poudre métallique et particules de poudre métallique obtenues grâce à ce procédé.
Ying-Long et al. Influence of inert gas pressure on growing rate of nanocrystalline silicon film prepared by pulsed laser deposition
EP4323562A1 (fr) Procede de depot de chrome dense sur un substrat
FR2876391A1 (fr) Procede de nitruration pour implantation ionique d'une piece metallique et dispositif de mise en oeuvre du procede
EP1186683A1 (fr) Procédé de durcissement de la surface d'un substrat
Ivanov et al. Surface alloying of high-chromium steel: structure and properties
JPH04236760A (ja) 窒化チタン膜の形成方法
JPH0978238A (ja) 表面硬化処理方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090325

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121212

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130423