EP0885980A2 - Procédé pour la formation, par traitement thermochimique sans plasma, d'une couche superficielle présentant une dureté élevée - Google Patents

Procédé pour la formation, par traitement thermochimique sans plasma, d'une couche superficielle présentant une dureté élevée Download PDF

Info

Publication number
EP0885980A2
EP0885980A2 EP98401235A EP98401235A EP0885980A2 EP 0885980 A2 EP0885980 A2 EP 0885980A2 EP 98401235 A EP98401235 A EP 98401235A EP 98401235 A EP98401235 A EP 98401235A EP 0885980 A2 EP0885980 A2 EP 0885980A2
Authority
EP
European Patent Office
Prior art keywords
treatment
parts
gas
nitrogen
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98401235A
Other languages
German (de)
English (en)
Other versions
EP0885980B1 (fr
EP0885980A3 (fr
Inventor
Patrick Jacquot
Sylvain Foissey
Gérard Veyssiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bodycote SAS
Original Assignee
Innovatique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovatique SA filed Critical Innovatique SA
Publication of EP0885980A2 publication Critical patent/EP0885980A2/fr
Publication of EP0885980A3 publication Critical patent/EP0885980A3/fr
Application granted granted Critical
Publication of EP0885980B1 publication Critical patent/EP0885980B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Definitions

  • the present invention relates to a method for forming, by processing thermochemical without plasma, a surface layer having a hardness high and with tribological properties, on alloy parts sensitive or reactive towards nitrogen, carbon and / or oxygen.
  • a titanium-based alloy or zirconium in an atmosphere which may include ammonia, a hydrocarbon and / or an oxidizing gas or even a gaseous composition including one or more of these compounds.
  • thermochemical treatments of this kind In general, we know that there are currently various techniques thermochemical treatments of this kind.
  • the oldest, namely the salt bath tends to disappear from the fact that it is particularly polluting and dangerous due to the release of toxic gases and rinsing water it generates.
  • ion bombardment treatments involve a relative vacuum heat treatment installation specially equipped with so as to generate a luminescent discharge on the parts to be treated in a process gas atmosphere.
  • This technique has the disadvantage of being relatively expensive and not suitable for complex shaped parts and, in particular, tubular in shape due to the hollow cathode.
  • thermochemical treatments carried out under a gaseous atmosphere at atmospheric pressure such as gaseous nitriding, consist of carrying the parts at a temperature of the order of 500 ° C to 600 ° C and to sweep them with a gas nitriding such as ammonia.
  • This treatment has the disadvantage of being long, to consume large amounts of process gas and therefore to be relatively polluting.
  • This process which provides excellent results for the treatment of steel and steel alloys has the disadvantage of using a relatively expensive process gas composition and installation sophisticated to ensure uniform scanning of the parts to be treated by gases treatment.
  • Another disadvantage of this process lies in the fact that in temperature and pressure conditions suitable for processing steel it does not work on titanium or zirconium alloys.
  • the catalyst used is incompatible with the treatment of titanium and zirconium alloys because it would form a diffusion barrier to nitrogen (layer of Ti or Zr oxide)
  • the object of the invention is a method for treating this type of alloy.
  • a treatment method consisting in bringing the pieces to treat at a temperature above 500 ° C inside an enclosure whose the atmosphere is maintained at a pressure less than or equal to 0.1 mbar, at inject a treatment gas comprising ammonia and / or a hydrocarbon and / or an oxidizing gas, the pressure inside the enclosure then establishing itself at a value below atmospheric pressure, but greater than 100 bar for a period which can range from a few tens minutes to more than 24 hours, depending on the depth of treatment desired.
  • This treatment makes it possible both to improve the mechanical characteristics of the parts treated, in particular as regards resistance to friction and surface hardness, and to give them a pale yellow more or less shiny appearance, particularly aesthetic.
  • This aspect is a function of the initial surface state and the stoichiometry of the Ti x N y layer.
  • this processing is a diffusion processing: it therefore does not generate significant modification of the initial roughness of the parts and it eliminates any risk of separation of the titanium nitride layer.
  • Another advantage of this process is that the fact that it operates at low pressure (always lower than atmospheric pressure) it consumes only very little treatment gas and is therefore not polluting in relation to the processes high pressure which require the use of specific ovens and constraints of safety due to high pressure.
  • the process according to the invention may also include a post-processing phase intended to dehydrogenate the treated alloy.
  • This dehydrogenation treatment can be carried out by bringing the parts to a temperature of the order of 700 to 900 ° C. for a period which can range from 1 to 5 hours, in a vacuum of 10 -3 to 10 -4 mbar.
  • a titanium alloy of the TH6V type, dehydrogenated at 790 ° C. for 2 hours, under vacuum of 5 10 -4 mbar will see its hydrogen content drop from 256 to 11 ppm.
  • the treatment installation used involved a vacuum treatment of conventional structure equipped with a turbine circulation of process gases.
  • This oven includes a sealed enclosure containing a muffle made of a material (metal or graphite) which cannot retain polluting elements (in particular oxygen or water vapor) likely to affect the quality of treatment.
  • a muffle made of a material (metal or graphite) which cannot retain polluting elements (in particular oxygen or water vapor) likely to affect the quality of treatment.
  • electrical heating resistors mainly by radiation and convection
  • This enclosure is connected on the one hand to pumping equipment capable of achieve a primary vacuum P ⁇ 0.1 mbar and, on the other hand, two gas sources (one nitrogen source and ammonia source) through a distribution.
  • the parts to be treated (here prostheses made of alloy titanium TA6V) were placed in the muffle, preferably on a mounting titanium alloy having previously undergone the same treatment.
  • the rooms On this assembly the rooms have been arranged so as to be spaced from each other by a few millimeters so that the diffusion is the most homogeneous possible on their surface.
  • the temperature of the nitrogen convection oven (injected from the nitrogen source) and / or by radiation (resistances) until a temperature level between 500 ° C and 900 ° C, here of the order of 900 ° C.
  • Temperature maintenance at this level was continued for a sufficient period of time to ensure the homogeneity of the room temperature.
  • a primary vacuum was then applied to the enclosure to ensure elimination of the nitrogen previously injected and then at the start of the diffusion thanks to an ammonia injection at a pressure P between 100 and 900 mbar, here 300 mbar, the temperature being above 500 ° C.
  • This dissemination phase was continued for approximately 7 hours so as to obtain a diffusion layer of approximately 0.040 mm in average thickness.
  • the treated parts exhibited on the extreme surface a compact and homogeneous yellow layer of titanium nitride Ti x N y with a thickness of the order of 4 ⁇ m and very high hardness (> 1000 HV), and therefore very good resistance to friction. and excellent wear resistance.
  • the diffusion layer (a few hundredths of a millimeter thick and hardness> 400 HV) was then likely to improve the resistance to fatigue (the hardness at the core being 339 HV)
  • An important advantage of this process is that it provides a very good homogeneity of the treatment even in the case of shaped parts and complex geometries including hollow shapes.
  • the treatment extends to the contact areas of the parts on their support.
  • the treatment gas could be other than ammonia and could for example consist of a hydrocarbon-based atmosphere (C 2 H 2 , C 3 H 8 , CH 4 ....) in order to cement superficially these alloys.
  • a surface layer of metallic gray color of great hardness and having increased tribological properties, is obtained.
  • the treatment atmosphere could include an oxidizing gas such as oxygen so as to obtain a surface layer (Ti0, Ti0 2 , Ti 2 0 3 , Zr0 2 ..) having various colors (blue, green, purple ) and great hardness.
  • an oxidizing gas such as oxygen so as to obtain a surface layer (Ti0, Ti0 2 , Ti 2 0 3 , Zr0 2 ..) having various colors (blue, green, purple ) and great hardness.
  • This layer of Ti x O y oxide is compact and homogeneous over the entire surface of the part.
  • the colors that we obtain are brilliant and very varied. It considerably improves the friction resistance of the parts.
  • the appearance of the parts is a function of the initial surface condition and the stoichiometry of the layer of Ti x O y .
  • the treatment atmosphere could also consist of a combination of NH 3 + CH 4 so as to obtain a surface layer of carbonitrides TiC x N y or Zr CN of pink or butter color.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Le procédé selon l'invention consiste à porter les pièces à traiter à une température supérieure à 500°C à l'intérieur d'une enceinte dont l'atmosphère est maintenue à une pression inférieure ou égale à 0,1 mbar, puis à injecter sur les pièces un gaz de traitement, la pression s'établissant alors à une valeur inférieure à la pression atmosphérique pendant une durée pouvant aller de quelques dizaines de minutes à vingt quatre heures ou plus en fonction de la profondeur de traitement désirée.
L'invention s'applique au traitement de pièces en titane ou en zirconium.

Description

La présente invention concerne un procédé pour la formation, par un traitement thermochimique sans plasma, d'une couche superficielle présentant une dureté élevée et possédant des propriétés tribologiques, sur des pièces en alliages sensibles ou réactifs vis à vis de l'azote, du carbone et/ou de l'oxygène.
Elle s'applique notamment mais non exclusivement à un traitement sous atmosphère contrôlée à haute température, d'un alliage à base de titane ou de zirconium dans une atmosphère pouvant inclure de l'ammoniaque, un hydrocarbure et/ou un gaz oxydant voire même une composition gazeuse incluant un ou plusieurs de ces composés.
D'une manière générale on sait qu'il existe à l'heure actuelle diverses techniques de traitements thermochimiques de ce genre.
La plus ancienne, à savoir le bain de sel tend à disparaítre du fait qu'elle est particulièrement polluante et dangereuse en raison des rejets de gaz toxiques et des eaux de rinçage qu'elle engendre.
Plus récents, les traitements par bombardement ionique font intervenir une installation de traitement thermique sous vide relatif spécialement équipée de manière à engendrer sur les pièces à traiter une décharge luminescente dans une atmosphère de gaz de traitement. Cette technique présente l'inconvénient d'être relativement coûteuse et de ne pas convenir pour des pièces de forme complexe et, en particulier, de forme tubulaire et ce, en raison de cathode creuse.
Par ailleurs les traitements thermochimiques effectués sous atmosphère gazeuse à pression atmosphérique tels que les nitrurations gazeuses, consistent à porter les pièces à une température de l'ordre de 500°C à 600°C et à les balayer avec un gaz de nitrurations tel que de l'ammoniac. Ce traitement présente l'inconvénient d'être long, de consommer de grandes quantités de gaz de traitement et donc d'être relativement polluant.
Pour tenter de résoudre ces problèmes, la demanderesse a déjà proposé (brevet fiançais n° 94 05062) un procédé de nitruration à basse pression réalisée à une température du même ordre que précédemment et faisant intervenir un gaz de traitement comprenant de l'ammoniac ainsi qu'un catalyseur. Ce catalyseur a pour but de favoriser la dissociation de l'ammoniac au contact des pièces à traiter et de s'opposer à la recombinaison de l'azote actif provenant de cette dissociation en azote moléculaire.
Ce procédé qui permet d'obtenir d'excellents résultats pour le traitement de l'acier et des alliages d'acier présente cependant l'inconvénient d'utiliser une composition de gaz de traitement relativement coûteuse et une installation sophistiquée pour assurer un balayage homogène des pièces à traiter par les gaz de traitement. Un autre inconvénient de ce procédé réside dans le fait que dans des conditions de température et de pression appropriées au traitement de l'acier il est inopérant sur des alliages de titane ou de zirconium. De plus le catalyseur utilisé est incompatible avec le traitement des alliages de titane et de zirconium car il formerait une barrière de diffusion à l'azote (couche d'oxyde de Ti ou de Zr)
Or justement l'invention a pour but un procédé de traitement de ce type d'alliages.
A cet effet elle propose un procédé de traitement consistant à porter les pièces à traiter à une température supérieure à 500°C à l'intérieur d'une enceinte dont l'atmosphère est maintenue à une pression inférieure ou égale à 0,1 mbar, à injecter sur les pièces un gaz de traitement comprenant de l'ammoniaque et/ou un hydrocarbure et/ou un gaz oxydant, la pression à l'intérieur de l'enceinte s'établissant alors à une valeur inférieure à la pression atmosphérique, mais supérieure à 100 bar pendant une durée pouvant aller de quelques dizaines de minutes à plus de 24 heures, en fonction de la profondeur de traitement désiré.
Dans le cas d'un traitement de nitruration, ce procédé n'utilise en tant que gaz de traitement que de l'ammoniaque, c'est-à-dire un gaz relativement courant et bon marché. L'installation de traitement s'en trouve également considérablement simplifiée. Le substrat traité en alliage de titane ou de zirconium joue le rôle de catalyseur de dissociation des molécules d'ammoniaque qui se rajoute à l'effet de dissociation thermique.
Par ailleurs aux températures élevées où s'effectue le traitement, le problème de dissociation et de recombinaison précédemment évoqué ne se pose plus et il devient possible d'obtenir une bonne homogénéité du traitement sans avoir à utiliser de dispositions particulières ni de gaz catalyseur. Seul un brassage de l'atmosphère intérieure du four, par exemple à l'aide de turbines usuelles, pourra être éventuellement mais non nécessairement effectué pour accroítre l'homogénéité.
Dans ce cas le traitement thermochimique selon l'invention conduit à l'obtention d'une diffusion d'azote sans plasma sur des pièces en alliage de titane, et plus particulièrement :
  • en extrême surface d'une couche de combinaison de type Tix Ny présentant une épaisseur de quelques microns
  • d'une sous-couche de diffusion de dureté plus élevée que celle du substrat.
Ce traitement permet à la fois d'améliorer les caractéristiques mécaniques des pièces traitées notamment en matière de résistance au frottement et de dureté superficielles et de leur donner un aspect jaune pâle plus ou moins brillant, particulièrement esthétique. Cet aspect est fonction de l'état de surface initial et de la stoechiométrie de la couche Tix Ny
En outre ce traitement est un traitement de diffusion : il n'engendre donc pas de modification importante de la rugosité initiale des pièces et il écarte tout risque de décollement de la couche de nitrure de titane.
Grâce à ces particularités le procédé selon l'invention s'applique au traitement de pièces utilisées dans de nombreux domaines d'applications, à savoir, notamment
  • le domaine biomédical : instruments et prothèses
  • les sports et loisirs
  • le domaine automobile et aérodynamique
  • l'armement
  • le domaine des arts décoratifs
  • la chimie et la pétrochimie
Un autre avantage de ce procédé consiste en ce que du fait qu'il s'opère à basse pression (toujours inférieure à la pression atmosphérique) il ne consomme que très peu de gaz de traitement et n'est donc pas polluant relativement aux procédés haute pression qui exigent l'emploi de fours spécifiques et des contraintes de sécurité dues à la haute pression.
Avantageusement, dans le cas où le traitement est un traitement de nitruration, le procédé selon l'invention pourra en outre comprendre une phase de posttraitement destinée à déshydrogéner l'alliage traité.
On constate en effet que l'apport d'azote atomique en surface d'une pièce au moyen de la dissociation thermique et catalitique de molécules d'ammoniac peut conduire, aux températures de nitruration utilisées, à un enrichissement en hydrogène et à la formation d'hydrures, par exemple d'hydrures de titane de type TiH jusqu'à TiH2.
En conséquence, il s'avère judicieux, dans certains cas, de procéder à une phase de traitement supplémentaire, après le traitement de nitruration basse pression de l'alliage (par exemple de l'alliage de titane) en vue d'extraire cet hydrogène qui pourrait être défavorable à la tenue à la fatigue de la pièce avec notamment une résistance amoindrie à la propagation de fissures.
Ce traitement de déshydrogénation pourra être réalisé en portant les pièces à une température de l'ordre de 700 à 900°C pendant une période pouvant aller de 1 à 5 heures, dans un vide de 10-3 à 10-4 mbar.
A titre d'exemple, un alliage de titane de type TH6V, déshydrogéné à 790°C durant 2 heures, sous vide de 5 10-4 mbar verra sa teneur de hydrogène chuter de 256 à 11 ppm.
Un exemple de mise en oeuvre du procédé selon l'invention sera décrit ci-après à titre d'exemple non limitatif.
Dans cet exemple l'installation de traitement utilisée faisait intervenir un four de traitement thermique sous vide de structure classique équipé d'une turbine de circulation des gaz de traitement. Ce four comprend une enceinte étanche renfermant un moufle réalisé en une matière (métal ou graphite) ne pouvant pas retenir d'éléments polluants (en particulier l'oxygène ou la vapeur d'eau) susceptible de nuire à la qualité du traitement. A l'intérieur du moufle sont installées des résistances électriques de chauffage (essentiellement par rayonnement et par convection) capables de porter la température des pièces à plus de 1000°C.
Cette enceinte est raccordée d'une part à un équipement de pompage apte à réaliser un vide primaire P<0,1 mbar et, d'autre part, à deux sources de gaz (une source d'azote et une source d'ammoniaque) par l'intermédiaire d'un circuit de distribution.
Après un dégraissage soigné, les pièces à traiter (ici des prothèses en alliage de titane TA6V) ont été disposées dans le moufle, sur un montage de préférence en alliage de titane ayant subi préalablement le même traitement. Sur ce montage les pièces ont été disposées de manière à être distantes les unes des autres de quelques millimètres de façon à ce que la diffusion soit la plus homogène possible à leur surface.
Une fois la charge préparée et l'enceinte refermée hermétiquement, un vide poussé à été établi (P < 0,1 mbar) puis maintenu une dizaine de minutes de manière à éliminer le plus d'éléments polluants possible. L'atmosphère est alors une atmosphère neutre composée d'azote, exempte d'oxygène et de vapeur d'eau.
A l'issue de cette phase préparatoire on a procédé à une montée en température du four par convection à l'azote (injecté à partir de la source d'azote) et/ou par rayonnement (résistances) jusqu'à obtenir un niveau de température compris entre 500°C et 900°C, ici de l'ordre de 900°C.
Un maintien en température à ce niveau (palier de température) a été poursuivi pendant une période de temps suffisante pour s'assurer de l'homogénéité de la température des pièces.
Il a été ensuite procédé à une mise sous vide primaire de l'enceinte pour assurer une élimination de l'azote précédemment injecté puis au démarrage de la phase de diffusion grâce à une injection d'ammoniaque à une pression P comprise entre 100 et 900 mbars, ici de 300 mbars, la température étant supérieure à 500°C.
Cette phase de diffusion a été poursuivie pendant environ 7 heures de manière à obtenir une couche de diffusion d'environ 0,040 mm d'épaisseur moyenne.
A la fin de la phase de diffusion on a effectué une nouvelle mise sous vide primaire de l'enceinte pour éliminer l'ammoniaque puis on a procédé à un reffoidissement du four jusqu'à la température ambiante. On a ensuite ouvert le four et défourné la charge.
Les pièces traitées présentaient en extrême surface une couche jaune compacte et homogène de nitrure de titane Tix Ny d'épaisseur de l'ordre de 4µm et de dureté très élevée (>1000 HV), et par conséquent une très bonne résistance aux frottements et une excellente tenue à l'usure. La couche de diffusion (épaisse de quelques centièmes de mm et de dureté >400 HV) était alors de nature à améliorer la résistance à la fatigue (la dureté à coeur étant de 339 HV)
Un avantage important de ce procédé consiste en ce qu'il permet d'obtenir une très bonne homogénité du traitement même dans le cas de pièces de formes et de géométries complexes y compris de formes creuses. En outre le traitement s'étend aux zones de contact des pièces sur leur support.
Bien entendu l'invention ne se limite pas au mode d'exécution précédemment décrit. En effet, le gaz de traitement pourrait être autre que de l'ammoniaque et pourrait par exemple consister en une atmosphère à base d'hydrocarbure (C2H2, C3H8, CH4....) en vue de cémenter superficiellement ces alliages. Dans ce cas on obtient une couche superficielle de couleur gris métallique, de grande dureté et possédant des propriétés tribologiques accrues.
De même l'atmosphère de traitement pourrait comprendre un gaz oxydant tel que l'oxygène de manière à obtenir une couche superficielle (Ti0, Ti02, Ti203, Zr02..) présentant des colorations diverses (bleu, vert, violet) et une grande dureté.
Cette couche d'oxyde Tix Oy, d'une épaisseur de quelques microns et de dureté supérieure à 1000 HV est compacte et homogène sur toute la surface de la pièce. Les couleurs que l'on obtient sont brillantes et très variées. Elle permet d'améliorer considérablement la résistance au frottement des pièces. Bien entendu l'aspect des pièces est fonction de l'état de surface initial et de la stoechiométrie de la couche de Tix Oy.
L'atmosphère de traitement pourrait également consister en une combinaison de NH3 + CH4 de manière à obtenir une couche superficielle en carbonitrures TiCx Ny ou Zr CN de couleur rosée ou beurre.
Elle pourrait en outre consister en un mélange d'oxygène et d'azote O2 + N2 ou N20 + N2 de manière à obtenir des couches d'oxynitrures : Ti Ox Ny ; Zr Ox Ny de colorations diverses.

Claims (12)

  1. Procédé pour la formation par un traitement thermochimique d'une couche superficielle présentant une dureté élevée et possédant des propriétés tribologiques, sur des pièces en alliages de métaux tels que du titane ou du zirconium, sensibles ou réactifs vis à vis de l'azote, du carbone et/ou de l'oxygène,
    caractérisé en ce qu'il consiste à porter lesdites pièces à une température supérieure à 500°C à l'intérieur d'une enceinte dont l'atmosphère est maintenue à une pression inférieure ou égale à 0,1 mbar, puis à injecter sur les pièces un gaz de traitement comprenant de l'ammoniaque et/ou un hydrocarbure et/ou un gaz oxydant, la pression s'établissant alors à une valeur inférieure à la pression atmosphérique mais supérieure à 100 mbars pendant une durée comprise entre quelques dizaines de minutes à 24 heures ou plus, en fonction de la profondeur de traitement désirée.
  2. Procédé selon la revendication 1,
    caractérisé en ce que les pièces sont en titane et en ce que le susdit traitement est un traitement thermochimique de diffusion d'azote sans plasma, ce traitement utilisant de l'ammoniaque en tant que gaz de traitement de manière à obtenir :
    en extrême surface, une couche de combinaison de type Tix Ny présentant une épaisseur de quelques microns
    une sous-couche de diffusion de dureté plus élevée que celle du substrat.
  3. Procédé selon la revendication 2,
    caractérisé en ce que la susdite atmosphère est une atmosphère neutre et exempte d'oxgène et de vapeur d'eau.
  4. Procédé selon la revendication 3,
    caractérisé en ce que la susdite atmosphère est composée d'azote.
  5. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'il comprend un brassage du gaz de traitement.
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'il comprend les phases successives suivantes :
    un dégraissage préalable des pièces à traiter
    l'enfournement des pièces à l'intérieur de l'enceinte
    une première mise sous vide de l'enceinte de manière à éliminer les éléments polluants
    une montée en température du four par convection à l'azote et/ou par rayonnement jusqu'à l'obtention d'une température de 500°C à 900°C
    le maintien de cette température pendant une durée déterminée de manière à obtenir une température homogène des pièces
    une deuxième mise sous vide éventuelle de l'enceinte pour assurer l'élimination de l'azote injecté à l'occasion de la montée en température du four
    l'injection de gaz de traitement à une pression comprise entre 100 et 900 mbars de préférence 300 mbars pendant une période pouvant atteindre 24 heures
    une troisième mise sous vide de l'enceinte pour éliminer le gaz de traitement et le refroidissement du four
    le défournement des pièces.
  7. Procédé selon l'une des revendications 2 à 6,
    caractérisé en ce qu'il comprend en outre un traitement supplémentaire de déshydrogénation destiné à extraire l'hydrogène engendré lors du traitement thermochimique.
  8. Procédé selon la revendication 7,
    caractérisé en ce que le traitement de déshydrogénation s'effectue en portant les pièces à une température de l'ordre de 700 à 900°C pendant une période comprise entre 1 et 5 heures, dans un vide de 10-3 10-4 à mbar.
  9. Procédé selon la revendication 1,
    caractérisé en ce que le susdit traitement est un traitement de cémentation et en ce que, dans ce cas le gaz de traitement comprend des hydrocarbures.
  10. Procédé selon la revendication 1,
    caractérisé en ce que le susdit traitement est un traitement d'oxydation et en ce que, dans ce cas, le gaz de traitement comprend un gaz oxydant tel que de l'oxygène.
  11. Procédé selon la revendication 1,
    caractérisé en ce que le susdit traitement est un traitement de carbonitruration et en ce que, dans ce cas le gaz de traitement est une combinaison NH3 + CH4.
  12. Procédé selon la revendication 1,
    caractérisé en ce que le susdit traitement est un traitement d'oxynitruration et en ce que dans ce cas le gaz de traitement consiste en un mélange d'oxgène et d'azote.
EP19980401235 1997-05-23 1998-05-22 Procédé pour la formation, par traitement thermochimique sans plasma, d'une couche superficielle présentant une dureté élevée Expired - Lifetime EP0885980B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9706518 1997-05-23
FR9706518A FR2763604B1 (fr) 1997-05-23 1997-05-23 Procede pour la formation, par un traitement thermochimique sans plasma, d'une couche superficielle presentant une durete elevee

Publications (3)

Publication Number Publication Date
EP0885980A2 true EP0885980A2 (fr) 1998-12-23
EP0885980A3 EP0885980A3 (fr) 2000-10-11
EP0885980B1 EP0885980B1 (fr) 2005-09-14

Family

ID=9507313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980401235 Expired - Lifetime EP0885980B1 (fr) 1997-05-23 1998-05-22 Procédé pour la formation, par traitement thermochimique sans plasma, d'une couche superficielle présentant une dureté élevée

Country Status (4)

Country Link
EP (1) EP0885980B1 (fr)
DE (1) DE69831530T2 (fr)
ES (1) ES2247665T3 (fr)
FR (1) FR2763604B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19909694A1 (de) * 1999-03-05 2000-09-14 Stiftung Inst Fuer Werkstoffte Verfahren zum Varbonitrieren bei Unterdruckverfahren ohne Plasmaunterstützung
WO2002053792A1 (fr) * 2000-12-28 2002-07-11 Centro Sviluppo Materiali S.P.A. Procede de traitement de surface de titanium, articles a base de titanium ou recouverts de titanium et traites selon ledit procede
WO2003097893A1 (fr) * 2002-05-15 2003-11-27 Linde Aktiengesellschaft Procede et dispositif de traitement thermique de pieces metalliques
WO2022184812A1 (fr) 2021-03-03 2022-09-09 Elos Medtech Pinol A/S Durcissement de surface de métaux du groupe iv

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028165A1 (de) * 2010-04-23 2011-10-27 Robert Bosch Gmbh Verfahren zur Carbonitrierung von metallischen Bauteilen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2136037A5 (fr) * 1971-04-05 1972-12-22 Metaux Precieux Sa
JPS63157852A (ja) * 1986-12-22 1988-06-30 Mitsubishi Heavy Ind Ltd Ti−6Al−4V合金の浸炭処理法
EP0449793A1 (fr) * 1990-03-21 1991-10-02 TISURF INTERNATIONAL Aktiebolag Produits en titane en alliage de titane pourvus d'une couche superficielle nitrurée et procédé de leur fabrication
EP0465333A1 (fr) * 1990-07-02 1992-01-08 Acieries Aubert Et Duval Procédé et installation de cémentation de pièces en alliage métallique à basse pression
DE4239392A1 (en) * 1991-11-29 1993-06-03 Volkswagen Ag Surface hardness increase of titanium material components - by deoxidising thermal treatment, and application of nitrogen diffusion coating
JPH0790541A (ja) * 1993-09-13 1995-04-04 Demutetsuku Kk ガス複合浸透改質方法及び装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630696B2 (ja) * 1985-08-23 1994-04-27 松下電工株式会社 電気カミソリ刃

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2136037A5 (fr) * 1971-04-05 1972-12-22 Metaux Precieux Sa
JPS63157852A (ja) * 1986-12-22 1988-06-30 Mitsubishi Heavy Ind Ltd Ti−6Al−4V合金の浸炭処理法
EP0449793A1 (fr) * 1990-03-21 1991-10-02 TISURF INTERNATIONAL Aktiebolag Produits en titane en alliage de titane pourvus d'une couche superficielle nitrurée et procédé de leur fabrication
EP0465333A1 (fr) * 1990-07-02 1992-01-08 Acieries Aubert Et Duval Procédé et installation de cémentation de pièces en alliage métallique à basse pression
DE4239392A1 (en) * 1991-11-29 1993-06-03 Volkswagen Ag Surface hardness increase of titanium material components - by deoxidising thermal treatment, and application of nitrogen diffusion coating
JPH0790541A (ja) * 1993-09-13 1995-04-04 Demutetsuku Kk ガス複合浸透改質方法及び装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 8714 Derwent Publications Ltd., London, GB; Class M13, AN 87-097023 XP002054660 & JP 62 044283 A (MATSUSHITA ELECTRIC WORKS LTD), 26 février 1987 (1987-02-26) *
F. PREISSER: "hochdrucknitrieren von titanwerkstoffen" HTM HARTEREI-TECHNISCHE MITTEILUNGEN, vol. 46, no. 6, novembre 1991 (1991-11) - décembre 1991 (1991-12), pages 361-366, XP000237447 MUNICH,DE *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 426 (C-542), 10 novembre 1988 (1988-11-10) & JP 63 157852 A (MITSUBISHI HEAVY IND LTD), 30 juin 1988 (1988-06-30) *
PATENT ABSTRACTS OF JAPAN vol. 095, no. 007, 31 août 1995 (1995-08-31) & JP 07 090541 A (DEMUTETSUKU KK), 4 avril 1995 (1995-04-04) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19909694A1 (de) * 1999-03-05 2000-09-14 Stiftung Inst Fuer Werkstoffte Verfahren zum Varbonitrieren bei Unterdruckverfahren ohne Plasmaunterstützung
WO2002053792A1 (fr) * 2000-12-28 2002-07-11 Centro Sviluppo Materiali S.P.A. Procede de traitement de surface de titanium, articles a base de titanium ou recouverts de titanium et traites selon ledit procede
WO2003097893A1 (fr) * 2002-05-15 2003-11-27 Linde Aktiengesellschaft Procede et dispositif de traitement thermique de pieces metalliques
WO2022184812A1 (fr) 2021-03-03 2022-09-09 Elos Medtech Pinol A/S Durcissement de surface de métaux du groupe iv

Also Published As

Publication number Publication date
DE69831530D1 (de) 2005-10-20
FR2763604A1 (fr) 1998-11-27
DE69831530T2 (de) 2006-06-14
FR2763604B1 (fr) 1999-07-02
ES2247665T3 (es) 2006-03-01
EP0885980B1 (fr) 2005-09-14
EP0885980A3 (fr) 2000-10-11

Similar Documents

Publication Publication Date Title
BE1017086A3 (fr) Procede de recuit et preparation en continu d&#39;une bande en acier a haute resistance en vue de sa galvanisation au trempe.
EP2459765B1 (fr) Procédé de traitement de pieces pour ustensiles de cuisine
CH660028A5 (fr) Procede de preparation par diffusion d&#39;une couche protectrice sur des alliages a base de nickel, cobalt et fer.
FR2660938A1 (fr) Systemes de revetement pour la protection du titane envers l&#39;oxydation.
EP0089885B1 (fr) Procédé de durcissement superficiel de pièces métalliques
EP0010484B1 (fr) Perfectionnement dans la chromisation des aciers par voie gazeuse
RU2418096C2 (ru) Способ создания макронеоднородной структуры материала при азотировании
FR2822851A1 (fr) Procede d&#39;oxydation avec un melange gazeux a haute temperature pour la passivation d&#39;alliages austenitiques
EP0885980B1 (fr) Procédé pour la formation, par traitement thermochimique sans plasma, d&#39;une couche superficielle présentant une dureté élevée
WO2018172859A1 (fr) Procede de traitement de surface et produit d&#39; un tel procede
EP1280943B1 (fr) Procede de cementation basse pression
EP0018263B1 (fr) Procédé de chromisation de pièces d&#39;acier et pièces d&#39;acier chromisées
CH668084A5 (fr) Procede de traitement thermique pour la realisation de pieces en acier resistant a la corrosion.
EP0801142A2 (fr) Procédé de traitement de surface d&#39;une pièce métallique, pièce métallique obtenue et ses applications
EP0707661B1 (fr) Procede pour la nitruration a basse pression d&#39;une piece metallique et four pour la mise en uvre dudit procede
EP3287857B1 (fr) Procédé d&#39;obtention d&#39;un article à base de zircone ayant un aspect métallique
JP6803156B2 (ja) タンタル又はタンタル合金部材を処理するための方法
EP1743952B1 (fr) Procédé de traitement d&#39;une pièce en titane ou alliage de titane et pièce obtenue.
EP0067098B1 (fr) Méthode de nitruration ionique d&#39;une pièce en acier déformée plastiquement au préalable
Xu et al. Plasma surface alloying
US7291229B2 (en) Method of surface treatment of titanium metal
JP3637255B2 (ja) アルミニウム窒化材およびその製造方法
JP4744019B2 (ja) チタン金属の表面処理方法
FR3023850A1 (fr) Procede de nitruration d&#39;une piece en acier inoxydable
US20020020476A1 (en) Method of surface treatment of titanium metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990126

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 23C 8/24 A, 7C 23C 8/20 B, 7C 23C 8/06 B

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BODYCOTE HIT

AKX Designation fees paid

Free format text: BE DE ES FR GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BODYCOTE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69831530

Country of ref document: DE

Date of ref document: 20051020

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2247665

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060615

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170412

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170511

Year of fee payment: 20

Ref country code: GB

Payment date: 20170517

Year of fee payment: 20

Ref country code: FR

Payment date: 20170410

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170517

Year of fee payment: 20

Ref country code: BE

Payment date: 20170410

Year of fee payment: 20

Ref country code: ES

Payment date: 20170608

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69831530

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180521

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180521

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20180522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180521

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180523