EP0779942A1 - Verfahren zur herstellung von cellulosefasern - Google Patents

Verfahren zur herstellung von cellulosefasern

Info

Publication number
EP0779942A1
EP0779942A1 EP95931179A EP95931179A EP0779942A1 EP 0779942 A1 EP0779942 A1 EP 0779942A1 EP 95931179 A EP95931179 A EP 95931179A EP 95931179 A EP95931179 A EP 95931179A EP 0779942 A1 EP0779942 A1 EP 0779942A1
Authority
EP
European Patent Office
Prior art keywords
compounds
groups
alkyl
polyisocyanates
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95931179A
Other languages
English (en)
French (fr)
Other versions
EP0779942B1 (de
Inventor
Wolfgang Schrott
Wolfram Badura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP99123391A priority Critical patent/EP0985747B1/de
Priority to EP99123392A priority patent/EP0984084B1/de
Publication of EP0779942A1 publication Critical patent/EP0779942A1/de
Application granted granted Critical
Publication of EP0779942B1 publication Critical patent/EP0779942B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/02Chemical after-treatment of artificial filaments or the like during manufacture of cellulose, cellulose derivatives, or proteins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/355Heterocyclic compounds having six-membered heterocyclic rings
    • D06M13/358Triazines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/395Isocyanates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • D06M13/419Amides having nitrogen atoms of amide groups substituted by hydroxyalkyl or by etherified or esterified hydroxyalkyl groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • D06M13/432Urea, thiourea or derivatives thereof, e.g. biurets; Urea-inclusion compounds; Dicyanamides; Carbodiimides; Guanidines, e.g. dicyandiamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/568Reaction products of isocyanates with polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/572Reaction products of isocyanates with polyesters or polyesteramides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/35Abrasion, pilling or fibrillation resistance

Definitions

  • the present invention relates to a new process for the production of cellulose fibers spun from solvents with a reduced tendency to fibrillate by treating the fibers with certain reactive compounds.
  • GB-A-2 043 525 describes the production of cellulose fibers by spinning a cellulose solution in a suitable solvent, e.g. an N-oxide of a tertiary amine, such as N-methylmorpholine-N-oxide, is known. In such a spinning process, the cellulose solution is extruded through a suitable nozzle and the resulting fiber precursor is washed in water and then dried. Such fibers are referred to as "solvent spun fibers".
  • Such cellulose fibers spun from solvents offer many technical advantages, but tend to fibrillate. These are the splicing off of the finest fiber fibrils, which can lead to problems when processing the cellulose fibers in textile production.
  • WO-A-92/07124 recommends treating the cellulose fibers with an aqueous solution or dispersion of a polymer which has a large number of cationically ionizable groups, e.g. a polyvinylimidazoline.
  • EP-A-538 977 teaches the use of compounds which have 2 to 6 functional groups which can react with cellulose, e.g. Products based on dichlorotriazine, for this purpose.
  • the object of the present invention was to provide a new process for the production of cellulose fibers spun from solvents with a reduced tendency to fibrillate, which is based on other chemical defibrillation reagents.
  • the compounds (A) used are N-methylol ethers of the general formula I.
  • R 1 represents a C 1 -C 8 -alkyl group which may be interrupted by non-adjacent oxygen atoms
  • R 2 denotes hydrogen, the group CH - OR 1 or a Ci-C ⁇ -alkyl radical, which additionally carries hydroxyl groups and / or C 1 -C 4 -alkoxy groups as substituents and is replaced by non-adjacent oxygen atoms and / or C ⁇ -C - Nitrogen atoms carrying alkyl groups can be interrupted, and
  • R 3 is hydrogen, a -C-C ⁇ o-alkyl radical, a C ⁇ -C ⁇ o-alkoxy radical which can be interrupted by non-adjacent oxygen atoms, or the group (-NR 2 -CH 2 OR 1 ) means
  • radicals R 2 and R 3 are connected to form a five- or six-membered ring and, in the case of R 3 - (-NR 2 -CH 2 OR 1 ), two such rings are also connected via the C atoms which are ⁇ to the amide nitrogen the radicals R 2 can be condensed to form a bicyclic system.
  • N-methylol ethers I are by customary reaction, usually in aqueous solution, of the corresponding N-methylol compounds of the general formula II R 2 0
  • the radical R 1 represents an optionally interrupted by non-adjacent oxygen atoms C veterinary Situation-C ⁇ o-alkyl group such as -CH 2 CH 2 OCH 3 , -CH 2 CH 2 OCH 2 CH 3 or -CH 2 CH 2 OCH 2 CH 2 OCH 3 .
  • R 1 include: n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, 2-ethylhexyl and 2-methoxyethyl; of particular interest are the C 1 -C 3 -alkyl groups ethyl, n-propyl, isopropyl and in particular methyl.
  • the radical R 2 denotes hydrogen, the group CH 2 OR 1 and in particular a C 1 -C 6 -alkyl radical which also carry additional hydroxyl groups and / or C 1 -C 4 alkoxy groups as substituents and by non-adjacent oxygen atoms and / or can be interrupted by C ⁇ ⁇ C 4 alkyl groups bearing nitrogen atoms.
  • the radical R 3 is hydrogen, a -CC-alkyl radical, a -C-alkoxy radical, which can be interrupted by non-adjacent oxygen atoms, and in particular the group (-NR 2 -CH 2 OR 1 ).
  • N-methylol ethers I in which the radicals R 2 and R 3 are linked to form a five- or six-membered ring are particularly suitable for the process according to the invention.
  • R 3 (-NR 2 -CH 2 OR 1 )
  • two such rings can also be condensed to form a bicyclic system via the C atoms of the radicals R 2 which are ⁇ -amide nitrogen.
  • N-methylol ether I which can be used in the process according to the invention are:
  • Ci-Cn-carboxylic acids for example formic acid, acetic acid, propionic acid, butyric acid or valeric acid, which carry one or two CH- ⁇ OR 1 groups on nitrogen,
  • - Carbamates with -CC-* alkyl groups in the ester residue which can be interrupted by non-adjacent oxygen atoms, for example methyl, ethyl, n-propyl, isopropyl, 2-meth oxyethyl or n-butyl, which carry two CH 2 OR 1 groups on the nitrogen,
  • radicals X are different or preferably the same and represent hydrogen, hydroxyl groups or -CC 4 alkoxy groups, for example methoxy or ethoxy,
  • Y represents CH 2 , CHOH, C (CH 3 ) 2 , a 0 atom or a N atom bearing a C 1 -C 4 alkyl group and Z denotes hydrogen or a C 1 -C 4 alkoxy group, for example methoxy or ethoxy ,
  • melamine derivatives of the general formula IV are used as compounds (A)
  • radicals A are the same or different and represent hydrogen or the group CH 2 OR 1 , where at least one of the radicals A must have the meaning CH OR 1 and R 1 has the meaning given above.
  • the melamine derivatives IV are, by customary reaction, usually in aqueous solution, the corresponding N-methylolmelamines of the general formula V
  • radicals B analogous to A denote hydrogen or the group CH 2 OH, readily available with alcohols of the general formula III.
  • Examples of melamine derivatives IV which can be used in the process according to the invention are methoxymethylmelamine, bis (methoxymethyl) melamine, tris (methoxymethyl) melamine, tetrakis (methoxymethyl) melamine, pentakis (methoxymethyl) melamine and hexakis (methoxymethyl) melamine and to call analog ethoxymethyl and isopropyloxymethyl compounds.
  • the compounds (A) are known in the textile field as crosslinking agents in the low-formaldehyde finishing (high finishing) of cellulose-containing textile materials.
  • R 4 and R 5 are hydrogen or C ⁇ -C 3 alkyl with the proviso that at least one of the radicals R 4 and R 5 is a C 1 -C 3 alkyl group, and R 6 and R 7 are Are hydrogen or -CC 4 alkyl, a.
  • the compounds (B) are known in the textile field as crosslinking agents in the formaldehyde-free finishing (high finishing) of cellulose-containing textile materials.
  • hydrophilically modified polyisocyanates (C) are generally used in the process according to the invention in the form of aqueous dispersions which are essentially free from organic solvents and other emulsifiers.
  • hydrophilically modified polyisocyanates used according to the invention are customary diisocyanates and / or customary higher-functionality polyisocyanates with an average NCO functionality of 2.0 to 4.5. These components can be present alone or in a mixture.
  • customary diisocyanates are aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate (1,6-diisocyanate hexane), octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate, trimethylhexane diisocyanate or tetramethylhexane diisocyanate or 1,4-tetramethylhexane such as cyclodiisocyanate or 1,4-diisocyanate or tetramethylhexane diisocyanate or 1,4-diisocyanate or tetramethylhexane such as aliphatic diisocyanate or tetramethylhexane 1,2-diisocyanatocyclohexane, 4,4'-di (isocyanatocyclohexyl) methane
  • Triisocyanates such as 2, 4, 6-triisocyanatotoluene or 2, 4, 4'-triisocyanatodiphenyl ether or the mixtures of di-, tri- and higher polyisocyanates, which are obtained by phosgenation of corresponding aniline / formaldehyde, are suitable as customary higher functional polyisocyanates. Condensates are obtained and represent polyphenyl polyisocyanates having methylene bridges.
  • Isocyanurate group-containing polyisocyanates of aliphatic and / or cycloaliphatic diisocyanates are particularly preferred.
  • the present isocyanurates are, in particular, simple tris-isocyanatoalkyl or triisocyanatocycloalkyl isocyanurates, which are cyclic trimers of the diisocyanates, or mixtures with their higher homologues having more than one isocyanurate ring.
  • the isocyanato isocyanurates generally have an NCO content of 10 to 30% by weight, in particular 15 to 25% by weight, and an average NCO functionality of 2.6 to 4.5.
  • uretdione diisocyanates with aliphatic and / or cycloaliphatic bound isocyanate groups, preferably derived from hexamethylene diisocyanate or isophorone diisocyanate.
  • Uretdione diisocyanates are cyclic dimers of diisocyanates.
  • polyisocyanates containing biuret groups with aliphatically bound isocyanate groups in particular tris (6-isocyanato-hexyl) biuret, or mixtures thereof with its higher homogenes.
  • These polyisocyanates containing biuret groups generally have an NCO content of 18 to 25% by weight and an average NCO functionality of 3 to 4.5.
  • Polyisocyanates containing urethane and / or allophanate groups with aliphatic or cycloaliphatic isocyanate groups such as those obtained by reacting Excess amounts of hexamethylene diisocyanate or isophorone diisocyanate can be obtained with simple polyhydric alcohols such as trimethylolpropane, glycerol, 1,2-dihydroxypropane or mixtures thereof.
  • These polyisocyanates containing urethane and / or allophanate groups generally have an NCO content of 12 to 20% by weight and an average NCO functionality of 2.5 to 3.
  • Polyisocyanates containing oxadiazinetrione groups preferably derived from hexamethylene diisocyanate or isophorone diisocyanate.
  • Such polyisocyanates containing oxadiazinetrione groups can be prepared from diisocyanate and carbon dioxide.
  • aliphatic diisocyanates and aliphatic higher-functional polyisocyanates are particularly preferred.
  • the described diisocyanates and / or higher functionalized polyisocyanates are converted to NCO-reactive compounds for conversion into non-ionically hydrophilically modified polyisocyanates, which are particularly preferred for the use according to the invention, and the hydrophilic structural elements with non-ionic groups or with polar Contain groups that cannot be converted into ion groups.
  • the diisocyanate or polyisocyanate is present in a stoichiometric excess so that the resulting hydrophilically modified polyisocyanate still has free NCO groups.
  • Hydroxyl group-terminated polyethers of the general formula VII in particular come as such NCO-reactive compounds with hydrophilicizing structural elements
  • R 8 represents C 1 -C 2 -alkyl, in particular C 1 -C 4 -alkyl, or C 2 - to C 2 o-alkenyl, cyclopentyl, cyclohexyl, glycidyl, oxethyl, phenyl, tolyl, benzyl, furfuryl or tetrahydrofurfuryl .
  • D means sulfur or especially oxygen
  • D means propylene or, above all, ethylene, where in particular mixed ethoxylated and propoxylated compounds can also occur in blocks, and
  • n stands for a number from 5 to 120, in particular 10 to 25,
  • non-ionically hydrophilically modified polyisocyanates which contain the polyethers VII incorporated is therefore also a preferred embodiment.
  • ethylene oxide or propylene oxide polyethers started on C 1-4 alkanol with average molecular weights of 250 to 7000, in particular 450 to 1500.
  • nonionically hydrophilically modified polyisocyanates from diisocyanate or polyisocyanate and polyalkylene glycols of the formula HO— (DO) n —H, in which D and n have the meanings given above. Both terminal OH groups of the polyalkylene glycol react with isocyanate.
  • non-ionically hydrophilically modified polyisocyanates are in the documents DE-A 24 47 135,
  • the described diisocyanates and / or more highly functionalized polyisocyanates are converted into NCO-reactive compounds for conversion into anionically hydrophilically modified polyisocyanates which contain hydrophilic anionic groups, in particular acid groups such as carboxyl groups, sulfonic acid groups or phosphonic acid groups.
  • the diisocyanate or polyisocyanate is present in a stoichiometric excess, so that the resulting hydrophilically modified polyisocyanate still has free NCO groups.
  • NCO-reactive compounds with anionic groups come especially hydroxycarboxylic acids such as 2-hydroxyacetic acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid or hydroxylpivalic acid as well as 2,2-bis- and 2,2,2-tris (hydroxymethyl) alkanoic acids, e.g. 2,2-bis (hydroxymethyl) acetic acid, 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butyric acid or 2,2,2-tris (hydroxymethyl) acetic acid, into consideration.
  • the carboxyl groups can be partially or completely neutralized by a base in order to be in a water-soluble or water-dispersible form.
  • the base used here is preferably a tertiary amine, which is known to be inert to isocyanate.
  • the described diisocyanates and / or more highly functionalized polyisocyanates can also be reacted with a mixture of nonionically hydrophilically modifying and anionically hydrophobically modifying compounds which are added in succession or simultaneously, for example with a deficit of polyethers VII and the described hydroxycarboxylic acids .
  • anionically hydrophilically modified polyisocyanates are described in more detail in documents DE-A 40 01 783, DE-A 41 13 160 and DE-A 41 42 275.
  • the described diisocyanates and / or higher functionalized polyisocyanates are converted into cationically hydrophilically modified polyisocyanates with NCO-reactive compounds which contain chemically incorporated alkylatable or protonatable functions with formation of a cationic center.
  • NCO-reactive compounds which contain chemically incorporated alkylatable or protonatable functions with formation of a cationic center.
  • such functions are tertiary nitrogen atoms, which are known to be inert to isocyanate and are easily quaternized or protonated.
  • NCO-reactive compounds with tertiary nitrogen atoms are amino alcohols of the general formula VIII R Q
  • R 9 and R 10 are linear or branched C -.- to C 2 o-alkyl, in particular Ci- to Cs-alkyl, or together with the N atom form a five- or six-membered ring which is also an O atom or can contain a tertiary N atom, in particular a piperidine, morpholine, piperazine, pyrrolidine, oxazoline or dihydrooxazine ring, where the radicals R 2 and R 3 can additionally carry hydroxyl groups, in particular in each case one hydroxyl group, and
  • R 11 is a C 2 - to Cio-alkylene group, in particular a C 2 - to C ⁇ alkylene group which may be linear or branched, designated
  • amino alcohols VIII are N-methyldiethanolamine, N-methyldi (iso) propanolamine, N-butyldiethanolamine, N-butyldi (iso) propanolamine, N-stearyldiethanolamine, N-stearyldi (iso) propanolamine, N, N-dimethylethanolamine , N, N-dimethyl (iso) propanolamine, N, N-diethylethanolamine, N, N-diethyl (iso) propanolamine, N, N-dibutylethanolamine, N, N-dibutyl (iso) propanolamine, triethanolamine, tri (iso) propanol - amine, N- (2-hydroxyethyl) morpholine, N- (2-hydroxypropyl) morpholine, N- (2-hydroxyethyl) piperidine, N- (2-hydroxypropyl) piperidine, N-methyl-N '-
  • NCO-reactive compounds with tertiary nitrogen atoms are preferably diamines of the general formula IXa or IXb
  • R 9 to R 11 have the meanings mentioned above and R 12 denotes C 1 -C 4 -alkyl or forms a five- or six-membered ring, in particular a piperazine ring, with R 9 .
  • diamines IXa are N, N-dimethylethylene diamine, N, N-diethylethylene diamine, N, N-dimethyl-1, 3-diamino-2, 2-dimethylpropane, N, N-diethyl-1 , 3-propylenediamine, N- (3-aminopropyl) morpholine, N- (2-aminopropyl) morpholine, N- (3-aminopropyl) piperidine, N- (2-aminopropyl) piperidine, 4-amino-1 - (N, N-diethylamino) pentane, 2-amino-l- (N, N-dimethylamino) propane, 2-amino-l- (N, N-diethylamino) propane or 2-amino-l- (N, N -diethylamino) -2-methylpropane.
  • diamines IXb are N, N, N'-trimethylethylene diamine, N, N, N'-triethylethylene diamine, N-methylpiperazine or N-ethylpiperazine.
  • polyether (poly) ols with built-in tertiary nitrogen atoms which can be prepared by propoxylation and / or ethoxylation of starter molecules containing amine nitrogen, can also be used as NCO-reactive compounds.
  • Such polyether (poly) oles are, for example, the propoxylation and ethoxylation products of ammonia, ethanolamine, diethanolamine, ethylenediamine or N-methylaniline.
  • NCO-reactive compounds which can be used are polyester and polyamide resins having tertiary nitrogen atoms, polyols containing urethane groups and tertiary nitrogen atoms, and polyhydroxy polyacrylates having tertiary nitrogen atoms.
  • the described diisocyanates and / or higher functionalized polyisocyanates can also be reacted with a mixture of nonionically hydrophilically modifying and cationically hydrophilically modifying compounds which are added in succession or simultaneously, for example with a deficit of polyethers VII and amino alcohols VIII or the diamines IXa or IXb. Mixtures of nonionically hydrophilically modifying and anionically hydrophilically modifying compounds are also possible.
  • hydrophilically hydrophilically modified polyisocyanates are described in more detail in the documents DE-A 42 03 510 and EP-A 531 820. Since the hydrophilically modified polyisocyanates (C) mentioned are generally used in aqueous media, the polyisocyanates must be sufficiently dispersible. Within the group of the hydrophilically modified polyisocyanates described, certain reaction products of di- or polyisocyanates and hydroxyl-terminated polyethers (polyether alcohols), such as the compounds VII, act as emulsifiers for this purpose.
  • the hydrophilically modified polyisocyanates (C) in aqueous media are all the more surprising since it was to be expected that isocyanates would decompose rapidly in an aqueous medium. Nevertheless, the polyisocyanates used according to the invention have a pot life of several hours in the aqueous liquor, i.e. the present polyisocyanate dispersions are stable within the usual processing time. A dispersion is said to be stable if its components remain dispersed within one another without separating into discrete layers.
  • pot life means the time during which the dispersions remain processable before they gel and set. Aqueous isocyanate dispersions gel and set because a reaction takes place between the water and the isocyanate, a polyurea being formed.
  • the mixtures of polyurethanes and isocyanates (D), like the compounds (C), are generally used in the process according to the invention in the form of aqueous dispersions which are essentially free of organic solvents and in most cases free of emulsifiers.
  • Polyurethanes are understood to be systems composed of polyisocyanates (hereinafter also referred to as monomers I) and compounds which are reactive towards polyisocyanates and have at least one hydroxyl group and, if appropriate, compounds having at least one primary or secondary amino group. As a rule, the polyurethanes no longer have any free isocyanate groups.
  • the polyisocyanates used to prepare the polyurethanes contained in the mixtures (D) are customary diisocyanates and / or customary higher-functionality polyisocyanates as described for the hydrophilically modified polyisocyanates (C).
  • aliphatic diisocyanates and aliphatic higher-functional polyisocyanates are preferred.
  • the other structural components of the polyurethane are initially polyols with a molecular weight of 400 to 6000 g / mol, preferably 600 to 4000 g / mol (monomers II).
  • Polyether polyols or polyester polyols are particularly suitable.
  • the polyester diols are in particular the known reaction products of dihydric alcohols with dihydric carboxylic acids.
  • the corresponding polycarboxylic anhydrides or corresponding polycarboxylic acid esters of lower alcohols or their mixtures can also be used to prepare the polyester polyols.
  • the polycarboxylic acids can be aliphatic, cycloaliphatic, aromatic or heterocyclic and optionally, e.g. by halogen atoms, substituted and / or unsaturated.
  • Examples include: succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, phthalic anhydride, tetrahydrophthalic anhydride, hexa-hydrophthalic anhydride, tetrachlorophthalic anhydride,
  • polyhydric alcohols are e.g. Ethylene glycol, propylene glycol (1,2) and - (1,3), butanediol- (1,4), - (1,3), butenediol- (1,4), butynediol- (1,4), Pentanediol- (1,5), hexanediol- (1,6), octanediol- (1,8), neopentylglycol, cyclohexanedimethanol (1,4-bis-hydroxymethylcyclohexane), 2-methyl-1,3-propanediol , Pentanediol- (1, 5), also diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol
  • Lactone-based polyester diols are also suitable, these being homopolymers or copolymers of lactones, preferably addition products of lactones or lactone mixtures having terminal hydroxyl groups, such as, for example, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ - Butyrolactone and / or methyl- ⁇ -caprolactone to suitable difunctional starter molecules, for example the low molecular weight, dihydric alcohols mentioned above as buildup components for the polyester polyols.
  • the corresponding polymers of ⁇ -caprolactone are particularly preferred.
  • Lower polyester diols or polyether diols can also be used as starters for the preparation of the lactone polymers.
  • polymers of lactones instead of the polymers of lactones, the corresponding, chemically equivalent polycondensates of the hydroxycarboxylic acids corresponding to the lactones can also be used.
  • the polyether diols which can optionally be used in a mixture with polyester diols are in particular by polymerization of ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin with themselves, for example in the presence of BF 3 or by addition of these compounds, if appropriate in a mixture or in succession available on starting components with reactive hydrogen atoms, such as alcohols or amines, for example water, ethylene glycol, propylene glycol (1,3) or - (1,2), 4,4'-dihydroxydiphenylpropane, aniline.
  • the proportion of the monomer II described above is generally 0.1 to 0.8 gram equivalent, preferably 0.2 to 0.7 gram equivalent of the hydroxyl group of the monomer II based on 1 gram equivalent of isocyanate of the polyisocyanate.
  • polyurethane Further structural components of the polyurethane are chain extenders or crosslinkers with at least two groups that are reactive toward isocyanate, selected from hydroxyl groups, primary or secondary amino groups.
  • Polyols in particular diols and triols, with a molecular weight below 400 g / mol to 62 g / mol (monomers III) may be mentioned.
  • diols and triols listed above which are suitable for the production of the polyester polyols and also higher than trifunctional alcohols such as pentaerythritol or sorbitol are suitable.
  • the proportion of the monomers III is generally 0 to 0.8, in particular 0 to 0.7 gram equivalent, based on 1 gram equivalent of isocyanate.
  • the optionally used monomers IV are at least difunctional amine chain extenders or crosslinkers in the molecular weight range from 32 to 500 g / mol, preferably from 60 to 300 g / mol, which have at least two primary, two secondary or one primary and contain a secondary amino group.
  • Examples include diamines such as diaminoethane, diaminopropane, diaminobutane, diaminohexane, piperazine, 2,5-dimethylpiperazine, amino-3-aminomethyl-3, 5, 5-trimethyl-cyclohexane (isophorondia in, IPDA), 4,4'-diaminodicyclohexylmethane , 1,4-diaminocyclohexane, aminoethylethanolamine, hydrazine, hydrazine hydrate or triamines such as diethylenetriamine or 1, 8-diamino-4-aminomethyloctane.
  • diamines such as diaminoethane, diaminopropane, diaminobutane, diaminohexane, piperazine, 2,5-dimethylpiperazine, amino-3-aminomethyl-3, 5, 5-trimethyl-cyclohexane (isophoron
  • the chain extenders containing amino groups can also be in blocked form, for example in the form of the corresponding ketimines (see, for example CA-1 129 128), ketazines (see, for example, US Pat. No. 4,269,748) or amine salts (see US Pat. No. 4,292,226).
  • Oxazolidines as used, for example, in US Pat. No. 4,192,937, also represent blocked polyamines which can be used for the production of the polyurethanes according to the invention for chain extension of the prepolymers. When such capped polyamines are used, they are generally mixed with the prepolymers in the absence of water and this mixture is then mixed with the dispersion water or part of the dispersion water, so that the corresponding polyamines are released as an intermediate hydrolysis.
  • Mixtures of di- and triamines are preferably used, particularly preferably mixtures of isophoronediamine and diethylenetriamine.
  • the monomers V which may also be used as chain extenders, are amino alcohols with a hydroxyl and a primary or secondary amino group, such as ethanolamine, isopropanolamine, methylethanolamine or aminoethoxyethanol.
  • the proportion of the monomers IV or V is in each case preferably 0 to 0.4, particularly preferably 0 to 0.2 gram equivalent, based on 1 gram equivalent of isocyanate of the polyisocyanate.
  • the cationic or anionic groups can be introduced by using (potential) cationic or (potential) anionic group-containing compounds with isocyanate-reactive hydrogen atoms.
  • These groups of compounds include, for example, polyethers having tertiary nitrogen atoms and preferably having two terminal hydroxyl groups, such as those obtained by alkoxylation of two amines having hydrogen atoms bonded to amine nitrogen, for example methylamine, aniline, or N, N'-dimethylhydrazine, are accessible in a conventional manner.
  • Such polyethers have generally a molecular weight between 500 and 6000 g / mol.
  • the ionic groups are preferably introduced by using comparatively low molecular weight compounds with (potential) ionic groups and groups which are reactive toward isocyanate groups. Examples of this are listed in US Pat. Nos. 3,479,310 and 4,056,564 and GB-1,455,554. Dihydroxyphosphonates, such as the sodium salt of the 2,3-dihydroxypropanephosphonic acid ethyl ester or the corresponding sodium salt of the non-esterified phosphonic acid, can also be used as an ionic structural component.
  • Preferred (potential) ionic monomers VI are N-alkyl dialkanolamines, e.g. N-methyldiethanolamine, N-ethyldiethanolamine, diaminosulfonates such as the Na salt of N- (2-aminoethyl) -2-aminoethanesulfonic acid, dihydroxysulfonates, dihydroxycarboxylic acids such as dimethylolpropionic acid, diaminocarboxylic acids or carboxylates such as lysine or the Na Salt of N- (2-aminoethyl) -2-aminoethane carboxylic acid and diamines with at least one additional tertiary amine nitrogen atom, for example N-methyl-bis (3-aminopropyl) amine.
  • N-alkyl dialkanolamines e.g. N-methyldiethanolamine, N-ethyldiethanolamine, diaminosulfonates such as the Na salt of
  • Diamino- and dihydroxycarboxylic acids are particularly preferred, in particular the adduct of ethylenediamine with sodium acrylate or dimethylolpropionic acid.
  • the conversion of the potential ionic groups, which may have been initially incorporated into the polyaddition product, at least partially into ionic groups, takes place in a conventional manner by neutralization of the potential anionic or cationic groups or by quaternization of tertiary amine nitrogen atoms.
  • inorganic and / or organic bases such as alkali metal hydroxides, carbonates or hydrogen carbonates, ammonia or primary, secondary and particularly preferably tertiary amines such as triethylamine or dimethylaminopropanol.
  • quaternizing agents for example methyl chloride, methyl bromide, methyl iodide, dimethyl sulfate, benzyl chloride, chloroacetic acid ester or bromine suitable for acetamide.
  • neutralizing or quaternizing agents are described, for example, in US Pat. No. 3,479,310, column 6.
  • This neutralization or quaternization of the potential ion groups can take place before, during, but preferably after the isocanate polyaddition reaction.
  • the amounts of the monomers VI in the case of potential components containing ion groups, taking into account the degree of neutralization or quaternization, should suitably be chosen so that the polyurethanes have a content of 0.05 to 2 meq / g polyurethane, preferably 0.07 to 1, 0 and particularly preferably from 0.1 to 0.7 meq / g of polyurethane on ionic groups.
  • monofunctional amine or hydroxyl compounds are also used as structural components (monomers VII). They are preferably monohydric polyether alcohols with a molecular weight in the range from 500 to 10,000 g / mol, preferably from 800 to 5,000 g / mol. Monohydric polyether alcohols are e.g. by alkoxylation of monovalent starter molecules, e.g. Methanol, ethanol or n-butanol are available, ethylene oxide or mixtures of ethylene oxide with other alkylene oxides, especially propylene oxide, being used as alkoxylating agents. If alkylene oxide mixtures are used, however, they preferably contain at least 40, particularly preferably at least 65 mol% of ethylene oxide.
  • Monomers VII can thus, if appropriate, incorporate polyethylene oxide segments present in the terminally arranged polyether chains, which, in addition to the ionic groups, influence the hydrophilic character in the polyurethane and ensure or improve dispersibility in water.
  • the compounds of the type mentioned are preferred, if use is made of them, in such amounts that from 0 to 10, preferably from 0 to 5,% by weight of polyethylene oxide units are introduced into the polyurethane.
  • Suitable monomers VIII which, in contrast to the above monomers, contain ethylenically unsaturated groups, are, for example, esters of acrylic or methacrylic acid with polyols, with at least one OH group of the polyol remaining unesterified.
  • Hydroxyalkyl (meth) acrylates of the formula HO (CH 2 ) m OOC (R 12 ) C CH 2 (m - 2 to 8; R 12 - H, CH 3 ) and their positional isomers, mono (meth) are particularly suitable acrylic acid esters of polyether diols, such as those listed for the monomers II, trimethylolpropane mono- and di (meth) acrylate, pentaerythritol di- and tri (meth) acrylate or reaction products of epoxy compounds with (meth) acrylic acid, as described, for example, in US Pat. No. 357 221 are mentioned.
  • the adducts of (meth) acrylic acid with bisglycidyl ether of diols such as, for example, bisphenol A or butanediol are particularly suitable.
  • Adducts of (meth) acrylic acid with epoxidized diolefins such as e.g. 3, -Epoxycyclohexylmethyl-3 ',. '-epoxycyclohexane carboxylate.
  • the polyurethane can, if desired, be cured subsequently thermally or photochemically, if appropriate in the presence of an initiator.
  • the proportion of ethylenically unsaturated groups is less than 0.2 mol per 100 g of polyurethane.
  • the proportion of the structural components is preferably chosen such that the sum of the hydroxyl groups reactive toward isocyanate and primary or secondary amino groups is 0.9 to 1.2, particularly preferably 0.95 to 1.1, based on 1 isocyanate group.
  • polyurethanes described, in particular as dispersions can be prepared by the customary methods, such as are described in the above-mentioned documents.
  • the reaction temperature is generally between 20 and 160 ° C, preferably between 50 and 100 ° C.
  • the customary catalysts such as dibutyltin dilaurate, stannous octoate or diazabicyclo (2,2,2) octane, can also be used.
  • the polyurethane prepolymer obtained can, if appropriate after (further) dilution with solvents of the type mentioned above, preferably with solvents having a boiling point below 100 ° C., at a temperature between 20 and 80 ° C. be reacted further with amino-functional compounds of the monomers VI and optionally IV become.
  • the organic solvent if its boiling point is below that of the water, can be distilled off. Any solvents with a higher boiling point that are used can remain in the dispersion.
  • the content of the polyurethane in the dispersions can in particular be between 5 and 70 percent by weight, preferably between 20 and 50 percent by weight, based on the dispersions.
  • Customary auxiliaries e.g. Thickeners, thixotropic agents, oxidation and UV stabilizers or release agents can be added.
  • Hydrophobic auxiliaries which can be difficult to distribute homogeneously in the finished dispersion, can also be added to the polyurethane or the prepolymer before the dispersion by the method described in US Pat. No. 4,306,998.
  • all compounds having at least one free isocyanate group are suitable as isocyanates, the second component in the mixtures (D).
  • the customary diisocyanates the customary higher-functionality polyisocyanates, as described for the hydrophilically modified polyisocyanates (C), and the hydrophilically modified polyisocyanates themselves described under (C), but also monoisocyanates such as phenyl isocyanate or tolyl isocyanates are suitable.
  • the polyurethanes and isocyanates mentioned are generally present as mixtures in a weight ratio of 10:90 to 90:10, in particular 25:75 to 75:25, especially 40:60 to 60:40.
  • the compounds (A) to (D) can generally be used in an aqueous system, preferably in aqueous solution or emulsion, the aqueous system generally based on the Weight of the aqueous system, 0.1 to 20% by weight, preferably 0.5 to 10% by weight, of the compounds (A) to (D).
  • the manufacturing processes for cellulose fibers spun from solvents generally run in four stages.
  • Step 1 Dissolve the cellulose in a water-miscible solvent
  • Step 2 Extrude the solution through a die to form the fiber precursor
  • Stage 3 treatment of the fiber precursor with water in order to remove solvents and to form the cellulose fiber
  • N-methylmorpholine-N-oxide is preferably used as the solvent in stage 1.
  • the moist fiber which is obtained in stage 3 is referred to as undried fiber and generally has, based on the dry weight of the fiber, from 120 to 150% by weight of water.
  • the water content of the dried fiber is generally 60 to 80% by weight, based on the dry weight of the fiber.
  • the treatment according to the invention with the compounds (A) to (D) can be carried out either on the moist fiber (during or after stage 3) or on the dried fiber (after stage 4). It is but treatment at the stage of fiber production (stage 2), for example in a precipitation bath, is also possible.
  • the treatment is carried out on the moist fiber, this can be done, for example, by adding the aqueous system of the compounds (A) to (D) to a circulating bath which contains the fiber precursor.
  • the fiber precursor can e.g. are present as a staple fiber.
  • the treatment is carried out on the dried fiber, this can e.g. as staple fiber, fleece, yarn, knitwear or fabric.
  • the treatment of the fibers in this case can e.g. done in aqueous liquor.
  • the treatment is usually carried out at a temperature of 20 to 20 200 ° C, preferably 40 to 180 ° C.
  • a chemical reaction of the compounds (A) to (D) takes place with the hydroxyl groups of the cellulose, it also being possible to chemically link the hydroxyl groups of different cellulose fibrils. This increases the stability of the fiber. 25
  • the duration of the treatment is usually 1 second to 20 minutes, preferably 5 to 60 seconds and in particular 5 to 30 seconds.
  • the treatment can take place both at room temperature (20 ° C.) with subsequent drying to 100 ° C. and also when condensation is carried out at temperatures up to 200 ° C., in particular at 150 to 180 ° C.
  • the treatment of the moist or dried fiber can be 0.1 to 10% by weight, preferably 0.2 to 5% by weight, in particular 0.2 to 2% by weight, in each case based on the dry weight of the fiber, of compounds (A) to (D). In some cases, however, it may also be advantageous to increase the quantities mentioned.
  • the reactivity of these agents can be increased by adding catalytic amounts of Lewis acids such as MgCl, ZnCl 2 , A1C1 3 , BF 3 or systems such as MgCl 2 / NaBF 4 or MgS0 / NaBF 4 / LiCl or of inorganic or organic acids or corresponding acidic salts, for example HC1, H 2 S0, H 3 PO. ⁇ , P-toluenesulfonic acid, methanesulfonic acid, NaHS0 4 , NaH 2 P0, (NH) 4 HS0 or trialkylamine hydrochloride, or of other crosslinking inorganic salts, for example nitrates or teraalkylammonium salt
  • the compounds (A) to (D) can be fixed purely thermally (without alkali) compared with the compounds described in EP-A-538 977, as a result of which they can be optimally integrated into the fiber production process.
  • the fibers treated in this way can be dyed with all customary cellulose fiber dyes, including reactive dyes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Description

Verfahren zur Herstellung von Cellulosefasern
Beschreibung
Die vorliegende Erfindung betrifft ein neues Verfahren zur Her¬ stellung von aus Lösungsmitteln gesponnenen Cellulosefasern mit verringerter Neigung zum Fibrillieren durch Behandlung der Fasern mit bestimmten reaktiven Verbindungen.
Aus der GB-A-2 043 525 ist die Herstellung von Cellulosefasern durch Spinnen einer Celluloselösung in einem geeigneten Lösungs¬ mittel, z.B. einem N-Oxid eines tertiären Amins, wie N-Methyl- morpholin-N-oxid, bekannt. In einem solchen Spinnprozeß wird die Celluloselösung durch eine geeignete Düse extrudiert und die resultierende Faservorstufe in Wasser gewaschen und danach ge¬ trocknet . Solche Fasern werden als "aus Lösungsmittel gesponnene Fasern" bezeichnet.
Solche aus Lösungsmitteln gesponnenen Cellulosefasern bieten viele anwendungstechnische Vorteile, neigen aber zum Fibrillie¬ ren. Darunter versteht man das Abspleißen feinster Faserfibril- len, die bei der Verarbeitung der Cellulosefasern in der Textil- herstellung zu Problemen führen können.
Die WO-A-92/07124 empfiehlt zur Lösung dieses Problems die Behandlung der Cellulosef sern mit einer wäßrigen Lösung oder Dispersion eines Polymers, das über eine Vielzahl kationisch io¬ nisierbarer Gruppen verfügt, z.B. ein Polyvinylimidazolin.
Weiterhin lehrt die EP-A-538 977 die Verwendung von Verbindungen, die 2 bis 6 funktioneile Gruppen aufweisen, die mit Cellulose reagieren können, z.B. Produkte auf Basis von Dichlortriazin, für diesen Zweck.
Aufgabe der vorliegenden Erfindung war es, ein neues Verfahren zur Herstellung von aus Lösungsmitteln gesponnenen Cellulose¬ fasern mit verringerter Neigung zum Fibrillieren bereitzustellen, das von anderen chemischen Defibrillierungsreagenzien ausgeht.
Es wurde nun gefunden, daß die Herstellung von aus Lösungsmitteln gesponnenen Cellulosefasern mit verringerter Neigung zum Fibril¬ lieren vorteilhaft gelingt, wenn man die Fasern mit einer oder mehreren Verbindungen aus der Gruppe der (A) N-Methylolether von Carbonsäureamiden, Urethanen, Harnstoffen und Aminotriazinen,
(B) durch eine oder mehrere Alkylgruppen N-substituierten cyclischen Hydroxy- oder Alkoxyethylenharnstoffe,
(C) hydrophil modifizierten Polyisocyanate und
(D) Mischungen von Polyurethanen mit Isocyanaten
behandelt.
In einer bevorzugten Ausführungsform setzt man als Verbindungen (A) N-Methylolether der allgemeinen Formel I
in der
R1 für eine gegebenenfalls durch nicht benachbarte Sauerstoff¬ atome unterbrochene Cι-Cιo-Alkylgruppe steht,
R2 Wasserstoff, die Gruppe CH--OR1 oder einen Ci-Cβ-Alkylrest be¬ zeichnet, der noch zusätzlich Hydroxylgruppen und/oder Cι-C4-Alkoxygruppen als Substituenten tragen und durch nicht benachbarte Sauerstoffatome und/oder Cχ-C -Alkylgruppen tra¬ gende Stickstoffatome unterbrochen sein kann, und
R3 Wasserstoff, einen Cι-Cιo-Alkylrest, einen Cχ-Cιo-Alkoxyrest, der durch nicht benachbarte Sauerstoffatome unterbrochen sein kann, oder die Gruppe (-NR2-CH2OR1) bedeutet,
wobei die Reste R2 und R3 zu einem fünf- oder sechsgliedrigen Ring verbunden und im Falle von R3 - (-NR2-CH2OR1) außerdem zwei sol¬ cher Ringe über die zu den Amidstickstoffen α-ständigen C-Atome der Reste R2 zu einem bicyclischen System kondensiert sein können, ein.
Die N-Methylolether I sind durch übliche Umsetzung, meist in wäßriger Lösung, der entsprechenden N-Methylolverbindungen der allgemeinen Formel II R2 0
H 0 CH2 N— C R3 ( I I ) mit Alkoholen der allgemeinen Formel III
R1—OH (III)
leicht erhältlich.
Der Rest R1 steht für eine gegebenenfalls durch nicht benachbarte Sauerstoffatome unterbrochene Cχ-Cιo-Alkylgruppe wie -CH2CH2OCH3, -CH2CH2OCH2CH3 oder -CH2CH2OCH2CH2OCH3. Als weitere Beispiel für R1 sind zu nennen: n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n- Pentyl, n-Hexyl, 2-Ethylhexyl und 2-Methoxyethyl; von besonderem Interesse sind die Cι~C3-Alkylgruppen Ethyl, n-Propyl, iso-Propyl und insbesondere Methyl.
Der Rest R2 bezeichnet Wasserstoff, die Gruppe CH2OR1 und ins¬ besondere einen Ci-Cβ-Alkylrest, der noch zusätzliche Hydroxyl¬ gruppen und/oder Cι-C4-Alkoxygruppen als Substituenten tragen und durch nicht benachbarte Sauerstoffatome und/oder durch Cι~C4-Alkylgruppen tragende Stickstoffatome unterbrochen sein kann.
Der Rest R3 bedeutet Wasserstoff, einen Cι-Cιo-Alkylrest, einen Cι-Cιo-Alkoxyrest, der durch nicht benachbarte Sauerstoffatome unterbrochen sein kann, und insbesondere die Gruppe (-NR2-CH2OR1) .
Für das erfindungsgemäße Verfahren sind insbesondere diejenigen N-Methylolether I geeignet, bei denen die Reste R2 und R3 zu einem fünf- oder sechsgliedrigen Ring verbunden sind. Im Falle von R3 = (-NR2-CH2OR1) können außerdem zwei solcher Ringe über die zu den Amidstickstoffen α-ständigen C-Atome der Reste R2 zu einem bicyclischen System kondensiert sein.
Als Beispiele für N-Methylolether I, die beim erfindungsgemäßen Verfahren eingesetzt werden können, sind zu nennen:
Amide von Ci-Cn-Carbonsäuren, beispielsweise Ameisensäure, Essigsäure, Propionsäure, Buttersäure oder Valeriansäure, welche am Stickstoff ein oder zwei CH-^OR1-Gruppen tragen,
- Carbamate mit Cι-Cιo*-Alkylgruppen im Esterrest, die durch nicht benachbarte Sauerstoffatome unterbrochen sein können, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, 2-Meth- oxyethyl oder n-Butyl, welche am Stickstoff zwei CH2OR1-Gruppen tragen,
Harnstoff mit 1 bis 4 CH2-0R1-Gruppen an den Stickstoffatomen,
cyclische Ethylenharnstoffe der allgemeinen Formel Ia
0 R1—0 CH2— N-C--N CH2—0 R1 (Ia)
in der die Reste X verschieden oder vorzugsweise gleich sind und für Wasserstoff, Hydroxylgruppen oder Cι~C4-Alkoxygruppen, beispielsweise Methoxy oder Ethoxy, stehen,
cyclische Propylenharnstoffe der allgemeinen Formel Ib
Ri- *CH2- N-'C'-N CH2—0 R1 (Ib)
in der Y für CH2, CHOH, C(CH3)2, ein 0-Atom oder ein eine Cι-C -Alkylgruppe tragendes N-Atom steht und Z Wasserstoff oder eine Cι~C -Alkoxygruppe, beispielsweise Methoxy oder Ethoxy, bezeichnet,
bicyclische Glyoxaldiharnstoffe der allgemeinen Formel Ic
0
II
R1—0 CH2—N-**C**- CH2—0 R1 de)
Rl—0 CH2—N^C^N CH2—0 R1
II
0
bicyclische Malondialdehyddiharnstoffe der allgemeinen Formel Id
In einer weiteren bevorzugten Ausführungsform setzt man als Verbindungen (A) Melaminderivate der allgemeinen Formel IV
in der die Reste A gleich oder verschieden sind und für Wasser- Stoff oder die Gruppe CH2OR1 stehen, wobei mindestens einer der Reste A die Bedeutung CH OR1 haben muß und R1 die oben genannte Bedeutung hat, ein.
Die Melaminderivate IV sind durch übliche Umsetzung, meist in wäßriger Lösung, der entsprechenden N-Methylolmelamine der allge¬ meinen Formel V
in der die zu A analogen Reste B Wasserstoff oder die Gruppe CH2OH bezeichnen, mit Alkoholen der allgemeinen Formel III leicht er¬ hältlich.
Als Beispiele für Melaminderivate IV, die beim erfindungsgemäßen Verfahren eingesetzt werden können, sind Methoxymethylmelamin, Bis(methoxymethyl)melamin, Tris(methoxymethyl)melamin, Tetra- kis (methoxymethyl)melamin, Pentakis(methoxymethyl)melamin und Hexakis(methoxymethyl)melamin sowie die analogen Ethoxymethyl- und Isopropyloxymethyl-Verbindungen zu nennen. Die Verbindungen (A) sind auf dem Textilgebiet als Vernetzer bei der formaldehydarmen Ausrüstung (Hochveredlung) von cellulose- haltigen textilen Materialien bekannt.
In einer weiteren bevorzugten Ausführungsform setzt man als
Verbindungen (B) cyclische Hydroxy- oder Alkoxyethylenharnstoffe der allgemeinen Formel VI
R -'C^ 5 (VI)
R 0 y- OR6
in der R4 und R5 Wasserstoff oder Cχ-C3-Alkyl mit der Maßgabe be¬ deuten, daß mindestens einer der Reste R4 und R5 eine Cι~C3-Alkyl- gruppe ist, und R6 und R7 für Wasserstoff oder Cι-C4-Alkyl stehen, ein.
Die Verbindungen (B) sind auf dem Textilgebiet als Vernetzer bei der formaldehydfreien Ausrüstung (Hochveredlung) von cellulose- haltigen textilen Materialien bekannt.
Die hydrophil modifizierten Polyisocyanate (C) werden in der Re¬ gel in Form von wäßrigen Dispersionen, welche im wesentlichen frei von organischen Lösungsmitteln und weiteren Emulgatoren sind, beim erfindungsgemäßen Verfahren eingesetzt.
Als Basis für die erfindungsgemäß verwendeten hydrophil modifi¬ zierten Polyisocyanate dienen übliche Diisocyanate und/oder übliche höher funktioneile Polyisocyanate mit einer mittleren NCO-Funktionalität von 2,0 bis 4,5. Diese Komponenten können alleine oder im Gemisch vorliegen.
Beispiele für übliche Diisocyanate sind aliphatische Diisocyanate wie Tetramethylendiisocyanat, Hexamethylendiisocyanat (1,6-Diiso- cyanatohexan) , Octamethylendiisocyanat, Decamethylendiisocyanat, Dodecamethylendiisocyanat, Tetradecamethylendiisocyanat, Tri- methylhexandiisocyanat oder Tetramethylhexandiisocyanat, cyclo- aliphatische Diisocyanate wie 1,4-, 1,3- oder 1, 2-Diisocyanato- cyclohexan, 4, 4'-Di(isocyanatocyclohexyl)methan, 1-Isocyanato- 3,3, 5-trimethyl-5- (isocyanatomethyl)cyclohexan (Isophorondiiso- cyanat) oder 2,4- oder 2,6-Diisocyanato-l-methylcyclohexan sowie aromatische Diisocyanate wie 2,4- oder 2 , 6-Toluylendiisocyanat, Tetramethylxylylendiisocyanat, p-Xylylendiisocyanat, 2,4'- oder 4, 4'-Diisocyanatodiphenylmethan, 1,3- oder 1,4-Phenylendiiso- cyanat, l-Chlor-2, 4-phenylendiisocyanat, 1, 5-Naphthylendiiso- cyanat, Diphenylen-4, 4'-diisocyanat, 4, 4'-Diisocyanato-3, 3'-di- methyldiphenyl, 3-Methyldiphenylmethan-4, 4'-diisocyanat oder Diphenylether-4, 4' -diisocyanat. Es können auch Gemische der genannten Diisocyanate vorliegen. Bevorzugt werden hiervon ali- phatische Diisocyanate, insbesondere Hexamethylendiisocyanat und Isophorondiisocyanat.
Als übliche höher funktionelle Polyisocyanate eignen sich bei- spielsweise Triisocyanate wie 2, 4, 6-Triisocyanatotoluol oder 2, 4, 4' -Triisocyanatodiphenylether oder die Gemische aus Di-, Tri- und höheren Polyisocyanaten, die durch Phosgenierung von entsprechenden Anilin/Formaldehyd-Kondensaten erhalten werden und Methylenbrücken aufweisende Polyphenylpolyisocyanate darstellen.
Von besonderem Interesse sind übliche aliphatische höher funk¬ tionelle Polyisocyanate der folgenden Gruppen:
(a) Isocyanuratgruppen aufweisende Polyisocyanate von aliphati- sehen und/oder cycloaliphatischen Diisocyanaten. Besonders bevorzugt sind hierbei die entsprechenden Isocyanato-Isocya- nurate auf Basis von Hexamethylendiisocyanat und Isophorondi¬ isocyanat. Bei den vorliegenden Isocyanuraten handelt es sich insbesondere um einfache Tris-isocyanatoalkyl- bzw. Triiso- cyanatocycloalkyl-Isocyanurate, welche cyclische Trimere der Diisocyanate darstellen, oder um Gemische mit ihren höheren, mehr als einen Isocyanuratring aufweisenden Homologen. Die Isocyanato-Isocyanurate haben im allgemeinen einen NCO-Gehalt von 10 bis 30 Gew.-%, insbesondere 15 bis 25 Gew.-%, und eine mittlere NCO-Funktionalität von 2,6 bis 4,5.
(b) Uretdiondiisocyanate mit aliphatisch und/oder cycloali- phatisch gebundenen Isocyanatgruppen, vorzugsweise von Hexa¬ methylendiisocyanat oder Isophorondiisocyanat abgeleitet. Bei Uretdiondiisocyanaten handelt es sich um cyclische Dimersierungsprodukte von Diisocyanaten.
(c) Biuretgruppen aufweisende Polyisocyanate mit aliphatisch gebundenen Isocyanatgruppen, insbesondere Tris (6-isocyanato- hexyl)biuret oder dessen Gemische mit seinen höheren Homo¬ logen. Diese Biuretgruppen aufweisenden Polyisocyanate haben im allgemeinen einen NCO-Gehalt von 18 bis 25 Gew.-% und eine mittlere NCO-Funktionalität von 3 bis 4,5.
(d) Urethan- und/oder Allophanatgruppen aufweisende Polyiso¬ cyanate mit aliphatisch oder cycloaliphatisch gebundenen Isocyanatgruppen, wie sie beispielsweise durch Umsetzung von überschüssigen Mengen an Hexamethylendiisocyanat oder an Isophorondiisocyanat mit einfachen mehrwertigen Alkoholen wie Trimethylolpropan, Glycerin, 1,2-Dihydroxypropan oder deren Gemischen erhalten werden können. Diese Urethan- und/oder Allophanatgruppen aufweisenden Polyisocyanate haben im all¬ gemeinen einen NCO-Gehalt von 12 bis 20 Gew.-% und eine mittlere NCO-Funktionalität von 2,5 bis 3.
(e) Oxadiazintriongruppen enthaltende Polyisocyanate, vorzugs- weise von Hexamethylendiisocyanat oder Isophorondiisocyanat abgeleitet. Solche Oxadiazintriongruppen enthaltenden Poly¬ isocyanate sind aus Diisocyanat und Kohlendioxid herstellbar.
(f) Uretonimin-modifizierte Polyisocyanate.
Für die erfindungsgemäße Verwendung werden aliphatische Diiso¬ cyanate und aliphatische höher funktionelle Polyisocyanate beson¬ ders bevorzugt.
Die beschriebenen Diisocyanate und/oder höher funktionalisierten Polyisocyanate werden zur Überführung in nicht-ionisch hydrophil modifizierte Polyisocyanate, die für die erfindungsgemäße Verwen¬ dung besonders bevorzugt werden, mit NCO-reaktiven Verbindungen umgesetzt, die hydrophil machende Strukturelemente mit nicht- ionischen Gruppen oder mit polaren Gruppen, die nicht in Ionen¬ gruppen übergeführt werden können, enthalten. Dabei liegt das Diisocyanat bzw. Polyisocyanat im stöchiometrischen Überschuß vor, damit das resultierende hydrophil modifizierte Polyisocyanat noch freie NCO-Gruppen aufweist.
Als solche NCO-reaktive Verbindungen mit hydrophil machenden Strukturelementen kommen vor allem hydroxylgruppenterminierte Polyether der allgemeinen Formel VII
R8-E-(D0)n-H (VII)
in der
R8 für Ci- bis C2o-Alkyl, insbesondere Ci- bis C4-Alkyl, oder C2- bis C2o-Alkenyl, Cyclopentyl, Cyclohexyl, Glycidyl, Oxethyl, Phenyl, Tolyl, Benzyl, Furfuryl oder Tetrahydrofurfuryl steht.
Schwefel oder insbesondere Sauerstoff bezeichnet, D Propylen oder vor allem Ethylen bedeutet, wobei auch ins¬ besondere blockweise gemischt ethoxylierte und propoxylierte Verbindungen auftreten können, und
n für eine Zahl von 5 bis 120, insbesondere 10 bis 25 steht,
in Betracht.
Der Einsatz von nicht-ionisch hydrophil modifizierten Polyiso- cyanaten, welche die Polyether VII eingebaut enthalten, stellt daher auch eine bevorzugte Ausführungsform dar.
Hierbei handelt es sich besonders bevorzugt um auf C-_- bis C -Alkanol gestartete Ethylenoxid- oder Propylenoxid-Polyether mit mittleren Molekulargewichten von 250 bis 7000, insbesondere 450 bis 1500.
Man kann aus den beschriebenen Diisocyanaten und/oder höher funk- tionalisierte Polyisocyanaten auch zuerst durch Umsetzung mit einem Unterschuß an hydroxylgruppenterminierten Polyestern, an anderen hydroxylgruppenterminierten Polyethern oder an Polyolen, z.B. Ethylenglykol, Trimethylolpropan oder Butandiol, Präpolymere erzeugen und diese Präpolymere dann anschließend oder auch gleichzeitig mit den Polyethern VII im Unterschuß zu den hydro- phil modifizierten Polyisocyanaten mit freien NCO-Gruppen umset¬ zen.
Es ist auch möglich, nicht-ionisch hydrophil modifizierte Poly¬ isocyanate aus Diisocyanat bzw. Polyisocyanat und Polyalkylen- glykolen der Formel HO—(DO)n—H, in der D und n die oben genannten Bedeutungen haben, herzustellen. Dabei reagieren beide endständi¬ gen OH-Gruppen des Polyalkylenglykols mit Isocyanat ab.
Die aufgezählten Arten nicht-ionisch hydrophil modifizierter Polyisocyanate sind in den Schriften DE-A 24 47 135,
DE-A 26 10 552, DE-A 29 08 844, EP-A 0 13 112, EP-A 019 844, DE-A 40 36 927, DE-A 41 36 618, EP-B 206 059, EP-A 464 781 und EP-A 516 361 näher beschrieben.
Die beschriebenen Diisocyanate und/oder höher funktionalisierten Polyisocyanate werden zur Überführung in anionisch hydrophil modifizierte Polyisocyanate mit NCO-reaktiven Verbindungen umge¬ setzt, die hydrophil machende anionische Gruppen, insbesondere Säuregruppen wie Carboxylgruppen, Sulfonsäuregruppen oder Phosphonsäuregruppen, enthalten. Dabei liegt das Diisocyanat bzw. Polyisocyanat im stöchiometrischen Überschuß vor, damit das resultierende hydrophil modifizierte Polyisocyanat noch freie NCO-Gruppen aufweist .
Als solche NCO-reaktiven Verbindungen mit anionischen Gruppen kommen vor allem Hydroxycarbonsäuren wie 2-Hydroxyessigsäure, 3-Hydroxypropionsäure, 4-Hydroxybuttersäure oder Hydroxylpivalin- säure sowie 2,2-Bis- und 2,2,2-Tris (hydroxymethyl)alkansäuren, z.B. 2,2-Bis (hydroxymethyl)essigsaure, 2,2-Bis (hydroxy¬ methyl)propionsäure, 2,2-Bis (hydroxymethyl)buttersäure oder 2, 2, 2-Tris (hydroxymethyl)essigsaure, in Betracht. Die Carboxyl- gruppen können teilweise oder vollständig durch eine Base neutralisiert sein, um in einer wasserlöslichen oder wasser- dispergierbaren Form vorzuliegen. Als Base tritt hierbei vorzugs¬ weise ein tertiäres Amin auf, welches bekanntermaßen gegenüber Isocyanat inert ist.
Die beschriebenen Diisocyanate und/oder höher funktionalisierten Polyisocyanate können auch mit einer Mischung aus nicht-ionisch hydrophil modifizierenden und anionisch hydrophobil modifizieren- den Verbindungen, welche nacheinander oder gleichzeitig zugegeben werden, umgesetzt werden, beispielsweise mit einem Unterschuß aus den Polyethern VII und den beschriebenen Hydroxycarbonsäuren.
Die aufgezählten Arten anionisch hydrophil modifizierter Polyiso- cyanate sind in den Schriften DE-A 40 01 783, DE-A 41 13 160 und DE-A 41 42 275 näher beschrieben.
Die beschriebenen Diisocyanate und/oder höher funktionalisierten Polyisocyanate werden zur Überführung in kationisch hydrophil modifizierte Polyisocyanate mit NCO-reaktiven Verbindungen umge¬ setzt, die chemisch eingebaute alkylierbare oder protonierbare Funktionen unter Ausbildung eines kationischen Zentrums ent¬ halten. Insbesondere sind solche Funktionen tertiäre Stickstoff¬ atome, welche bekanntermaßen gegenüber Isocyanat inert sind und sich leicht quaternieren oder protonieren lassen. Bei der Um¬ setzung von Diisocyanat bzw. Polyisocyanat mit diesen NCO-reak¬ tiven Verbindungen liegen erstere im Überschuß vor, damit das resultierende hydrophil modifizierte Polyisocyanat noch freie NCO-Gruppen aufweist.
Als derartige NCO-reaktive Verbindungen mit tertiären Stickstoff- atomen kommen vorzugsweise A inoalkohole der allgemeinen Formel VIII RQ
^ N-RU-OH (VI I I )
R10^
in der
R9 und R10lineares oder verzweigtes C-.- bis C2o-Alkyl, insbesondere Ci- bis Cs-Alkyl, bedeuten oder zusammen mit dem N-Atom einen fünf- oder sechsgliedrigen Ring bilden, der noch ein O-Atom oder ein tertiäres N-Atom enthalten kann, insbesondere einen Piperidin-, Morpholin-, Piperazin-, Pyrrolidin-, Oxazolin- oder Dihydrooxazin-Ring, wobei die Reste R2 und R3 noch zusätzlich Hydroxylgruppen, insbesondere jeweils eine Hydroxylgruppe, tragen können, und
R11 eine C2- bis Cio-Alkylengruppe, insbesondere eine C2- bis Cδ-Alkylengruppe, die linear oder verzweigt sein kann, bezeichnet,
in Betracht.
Als Aminoalkohole VIII eignen sich vor allem N-Methyldiethanola- min, N-Methyldi (iso)propanolamin, N-Butyldiethanolamin, N-Butyldi(iso)propanolamin, N-Stearyldiethanolamin, N-Stearyldi(iso)propanolamin, N,N-Dimethylethanolamin, N,N-Dimethyl (iso)propanolamin, N,N-Diethylethanolamin, N,N-Diethyl(iso)propanolamin, N,N-Dibutylethanolamin, N,N-Dibutyl(iso)propanolamin, Triethanolamin, Tri(iso)propanol- amin, N- (2-Hydroxyethyl)morpholin, N-(2-Hydroxypropyl)morpholin, N- (2-Hydroxyethyl)piperidin, N- (2-Hydroxypropyl)piperidin, N-Methyl-N'-(2-hydroxyethyl)piperazin, N-Methyl-N'-(2-hydroxy- propyl)piperazin, N-Methyl-N' -(4-hydroxybutyl)piperazin, 2-Hydroxyethyl-oxazolin, 2-Hydroxypropyl-oxazolin, 3-Hydroxy- propyl-oxazolin, 2-Hydroxyethyl-dihydrooxazin, 2-Hydroxypropyl- dihydrooxazin oder 3-Hydroxypropyl-dihydrooxazin.
Weiterhin kommen als derartige NCO-reaktive Verbindungen mit tertiären Stickstoffatomen vorzugsweise Diamine der allgemeinen Formel IXa oder IXb
RQ R9\
N-Rll_NH2 dχa) N-RÜ-NH-R12 (IXb) RIO-^' »lO--^ in der R9 bis R11 die oben genannten Bedeutungen haben und R12 C\- bis Cs-Alkyl bezeichnet oder mit R9 einen fünf- oder sechs¬ gliedrigen Ring, insbesondere einen Piperazin-Ring, bildet, in Betracht .
Als Diamine IXa eigenen sich vor allem N,N-Dimethyl-ethylen- diamin, N,N-Diethyl-ethylendiamin, N,N-Dimethyl-1, 3-diamino- 2, 2-dimethylpropan, N,N-Diethyl-1,3-propylendiamin, N- (3-Amino- propyl)morpholin, N- (2-Aminopropyl)morpholin, N-(3-Amino- propyl)piperidin, N- (2-Aminopropyl)piperidin, 4-Amino-l- (N,N- diethylamino)pentan, 2-Amino-l- (N,N-dimethylamino)propan, 2-Amino-l- (N,N-diethylamino)propan oder 2-Amino-l- (N,N-diethyl- amino) -2-methylpropan.
Als Diamine IXb eignen sich vor allem N,N,N'-Trimethyl-ethylen- diamin, N,N,N'-Triethyl-ethylendiamin, N-Methylpiperazin oder N- Ethylpiperazin.
Weiterhin können als NCO-reaktive Verbindungen auch Poly- ether(poly)ole mit eingebauten tertiären Stickstoffatomen, die durch Propoxylierung und/oder Ethoxylierung von Aminstickstoff aufweisenden Startermolekülen herstellbar sind, eingesetzt werden. Derartige Polyether (poly)ole sind beispielsweise die Propoxylierungs- und Ethoxylierungsprodukte von Ammoniak, Ethanolamin, Diethanolamin, Ethylendiamin oder N-Methylanilin.
Andere verwendbare NCO-reaktive Verbindungen sind tertiäre Stick¬ stoffatome aufweisende Polyester- und Polyamidharze, tertiäre Stickstoffatome aufweisende urethangruppenhaltige Polyole sowie tertiäre Stickstoffatome aufweisende Polyhydroxypolyacrylate.
Die beschriebenen Diisocyanate und/oder höher funktionalisierten Polyisocyanate können auch mit einer Mischung aus nicht-ionisch hydrophil modifizierenden und kationisch hydrophil modifizieren- den Verbindungen, welche nacheinander oder gleichzeitig zugegeben werden, umgesetzt werden, beispielsweise mit einem Unterschuß aus den Polyethern VII und den Aminoalkoholen VIII oder den Di¬ aminen IXa bzw.- IXb. Auch Mischungen aus nicht-ionisch hydrophil modifizierenden und anionisch hydrophil modifizierenden Verbindungen sind möglich.
Die aufgezählten Arten kationisch hydrophil modifizierter Poly¬ isocyanate sind in den Schriften DE-A 42 03 510 und EP-A 531 820 näher beschrieben. Da die genannten hydrophil modifizierten Polyisocyanate (C) in der Regel in wäßrigen Medien eingesetzt werden, ist für eine aus¬ reichende Dispergierbarkeit der Polyisocyanate zu sorgen. Vor¬ zugsweise wirken innerhalb der Gruppe der beschriebenen hydrophil modifizierten Polyisocyanaten bestimmte Umsetzungsprodukte aus Di- bzw. Polyisocyanaten und hydroxylgruppenterminierten Poly¬ ethern (Polyetheralkoholen) wie den Verbindungen VII als Emulga- toren für diesen Zweck.
Die erzielten guten Ergebnisse mit den hydrophil modifizierten Polyisocyanaten (C) in wäßrigen Medien sind um so überraschender, da zu erwarten war, daß Isocyanate sich in wäßrigem Milieu rasch zersetzen. Trotzdem weisen die erfindungsgemäß eingesetzten Poly¬ isocyanate in der wäßrigen Flotte eine Topfzeit von mehreren Stunden auf, d.h. die vorliegenden Polyisocyanat-Dispersionen sind im Rahmen der üblichen Verarbeitungsdauer stabil. Von einer Dispersion wird gesagt, daß sie stabil ist, wenn ihre Komponenten ineinander dispergiert bleiben, ohne daß sie sich in diskrete Schichten trennen. Mit dem Ausdruck "Topfzeit" ist die Zeit ge- meint, während der die Dispersionen verarbeitbar bleiben, bevor sie gelieren und abbinden. Wäßrige Isocyanat-Dispersionen gelie¬ ren und binden ab, weil eine Reaktion zwischen dem Wasser und dem Isocyanat stattfindet, wobei ein Polyharnstoff entsteht.
Die Mischungen aus Polyurethanen und Isocyanaten (D) werden wie die Verbindungen (C) in der Regel in Form von wäßrigen Dispersionen, welche im wesentlichen frei von organischen Lö¬ sungsmitteln und in den meisten Fällen frei von Emulgatoren sind, beim erfindungsgemäßen Verfahren eingesetzt.
Unter Polyurethanen sind aus Polyisocyanaten (im weiteren auch Monomere I genannt) und gegenüber Polyisocyanaten reaktiven Verbindungen mit mindestens einer Hydroxylgruppe und gegebenen¬ falls Verbindungen mit mindestens einer primären oder sekundären Aminogruppe aufgebaute Systeme zu verstehen. Die Polyurethane weisen in aller Regel keine freien Isocyanatgruppen mehr auf.
Als Polyisocyanate zur Herstellung der in den Mischungen (D) enthaltenen Polyurethane dienen übliche Diisocyanate und/oder übliche höher funktionelle Polyisocyanate wie sie bei den hydro¬ phil modifizierten Polyisocyanaten (C) beschrieben sind. Auch hier werden aliphatische Diisocyanate und aliphatische höher funktionelle Polyisocyanate bevorzugt. Bei den weiteren Aufbaukomponenten des Polyurethans handelt es sich zunächst um Polyole mit einem Molekulargewicht von 400 bis 6000 g/mol, vorzugsweise 600 bis 4000 g/mol (Monomere II) .
In Betracht kommen insbesondere Polyetherpolyole oder Polyester¬ polyole.
Bei den Polyesterdiolen handelt es sich insbesondere um die an sich bekannten Umsetzungsprodukte von zweiwertigen Alkoholen mit zweiwertigen Carbonsäuren. Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder ent¬ sprechende Polycarbonsäureester von niederen Alkoholen oder deren Gemische zur Herstellung der Polyesterpolyole verwendet werden. Die Polycarbonsäuren können aliphatisch, cycloaliphatisch, aroma- tisch oder heterocyclisch sein und gegebenenfalls, z.B. durch Halogenatome, substituiert und/oder ungesättigt sein. Als Bei¬ spiele hierfür seien genannt: Bernsteinsäure, Adipinsäure, Kork¬ säure, Azelainsäure, Sebacinsäure, Phthalsäure, Isophthalsäure, Phthalsäureanhydrid, Tetrahydrophthalsäureanhydrid, Hexa- hydrophthalsäureanhydrid, Tetrachlorphthalsäureanhydrid,
Endomethylentetrahydrophthalsäureanhydrid, Glutarsäureanhydrid, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, dimere Fettsäuren. Als mehrwertige Alkohole kommen z.B. Ethylenglykol, Propylengly- kol-(l,2) und -(1,3), Butandiol-(1,4) , -(1,3), Butendiol-(1, 4) , Butindiol- (1,4) , Pentandiol-(1,5) , Hexandiol- (1,6) , Octan- diol-(l,8), Neopentylglykol, Cyclohexandimethanol (1,4-Bis-hydro- xymethylcyclohexan) , 2-Methyl-l,3-propandiol, Pentandiol-(1, 5) , ferner Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Po- lyethylenglykol, Dipropylenglykol, Polypropylenglykol, Dibutylen- glykol und Polybutylenglykole in Frage.
Geeignet sind auch Polyesterdiole auf Lacton-Basis, wobei es sich um Homo- oder Mischpolymerisate von Lactonen, bevorzugt um end¬ ständige Hydroxylgruppen aufweisende Anlagerungsprodukte von Lac- tonen bzw. Lactongemischen, wie z.B. ε -Caprolacton, ß-Propiolac- ton, υ-Butyrolacton und/oder Methyl- ε -caprolacton an geeignete difunktionelle Startermoleküle, z.B. die vorstehend als Aufbau¬ komponente für die Polyesterpolyole genannten niedermolekularen, zweiwertigen Alkohole handelt. Die entsprechenden Polymerisate des ε -Caprolactons sind besonders bevorzugt. Auch niedere Poly¬ esterdiole oder Polyetherdiole können als Starter zur Herstellung der Lacton-Polymerisate eingesetzt sein. Anstelle der Polymerisa¬ te von Lactonen können auch die entsprechenden, chemisch äquiva¬ lenten Polykondensate der den Lactonen entsprechenden Hydroxycar- bonsäuren eingesetzt werden. Die - gegebenenfalls auch im Gemisch mit Polyesterdiolen - einsetzbaren Polyetherdiole, sind insbesondere durch Polymerisa¬ tion von Ethylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid oder Epichlorhydrin mit sich selbst, z.B. in Gegenwart von BF3 oder durch Anlagerung dieser Verbindungen gegebenenfalls im Gemisch oder nacheinander, an Startkomponenten mit reaktions¬ fähigen Wasserstoffatomen, wie Alkohole oder Amine, z.B. Wasser, Ethylenglykol, Propylenglykol-(1,3) oder -(1,2), 4,4'-Dihydroxy- diphenylpropan, Anilin erhältlich.
Der Anteil des vorstehend beschriebenen Monomeren II beträgt im allgemeinen 0,1 bis 0,8 Grammäquivalent, vorzugsweise 0,2 bis 0,7 Grammäquivalent der Hydroxylgruppe des Monomeren II bezogen auf 1 Grammäquivalent Isocyanat des Polyisocyanats.
Bei weiteren Aufbaukomponenten des Polyurethans handelt es sich um Kettenverlängerer oder Vernetzer mit mindestens zwei gegenüber Isocyanat reaktiven Gruppen, ausgewählt aus Hydroxylgruppen, primären oder sekundären Aminogruppen.
Genannt seien Polyole, insbesondere Diole und Triole, mit einem Molekulargewicht unter 400 g/mol bis 62 g/mol (Monomere III) .
Insbesondere kommen die oben aufgeführten zur Herstellung der Polyesterpolyole geeigneten Diole und Triole, sowie höher als trifunktionelle Alkohole wie Pentaerythrit oder Sorbit in Betracht.
Der Anteil der Monomeren III beträgt im allgemeinen 0 bis 0,8, insbesondere 0 bis 0,7 Grammäquivalent, bezogen auf 1 Grammäqui¬ valent Isocyanat.
Bei den gegebenenfalls einzusetzenden Monomeren IV handelt es sich um mindestens difunktionelle Amin-Kettenverlängerer bzw. -vernetzer des Molgewichtsbereiches von 32 bis 500 g/mol, vor¬ zugsweise von 60 bis 300 g/mol, welche mindestens zwei primäre, zwei sekundäre oder eine primäre und eine sekundäre Aminogruppe enthalten.
Beispiel hierfür sind Diamine, wie Diaminoethan, Diaminopropane, Diaminobutane, Diaminohexane, Piperazin, 2,5-Dimethylpiperazin, Amino-3-aminomethyl-3, 5, 5-trimethyl-cyclohexan (Isophorondia in, IPDA) , 4,4'-Diaminodicyclohexylmethan, 1,4-Diaminocyclohexan, Aminoethylethanolamin, Hydrazin, Hydrazinhydrat oder Triamine wie Diethylentriamin oder 1, 8-Diamino-4-aminomethyloctan. Die amino- gruppenhaltigen Kettenverlängerer können auch in blockierter Form, z.B. in Form der entsprechenden Ketimine (siehe z.B. CA-1 129 128), Ketazine (vgl. z.B. die US-A-4 269 748) oder Amin- salze (s. US-A-4 292 226) eingesetzt sein. Auch Oxazolidine, wie sie beispielsweise in der US-A-4 192 937 verwendet werden, stel¬ len verkappte Polyamine dar, die für die Herstellung der erfin- dungsgemäßen Polyurethane zur Kettenverlängerung der Prepolymeren eingesetzt werden können. Bei der Verwendung derartiger verkapp¬ ter Polyamine werden diese im allgemeinen mit den Prepolymeren in Abwesenheit von Wasser vermischt und diese Mischung anschließend mit dem Dispersionswasser oder einem Teil des Dispersionswassers vermischt, so daß intermediär hydrolytisch die entsprechenden Polyamine freigesetzt werden.
Bevorzugt werden Gemische von Di- und Triaminen verwendet, beson¬ ders bevorzugt Gemische von Isophorondiamin und Diethylentriamin.
Bei den gegebenenfalls ebenfalls als Kettenverlängerer einzu¬ setzenden Monomeren V handelt es sich um Aminoalkohole mit einer Hydroxyl- und einer primären oder sekundären Aminogruppe wie Ethanolamin, Isopropanolamin, Methylethanolamin oder Amino- ethoxyethanol.
Der Anteil der Monomeren IV oder V beträgt jeweils vorzugsweise 0 bis 0,4, besonders bevorzugt 0 bis 0,2 Grammäquivalent, bezogen auf 1 Grammäquivalent Isocyanat des Polyisocyanats.
Als weitere Aufbaukomponente können Verbindungen eingesetzt werden, die mindestens eine, vorzugsweise zwei gegenüber Iso¬ cyanatgruppen reaktionsfähige Gruppen, also Hydroxyl-, primäre oder sekundäre Aminogruppen, und außerdem im Gegensatz zu den voranstehend beschriebenen Monomeren ionische Gruppen oder durch eine einfache Neutralisations- oder Quaternisierungsreaktion in ionische Gruppen überführbare, potentiell ionische Gruppen auf¬ weisen. (Monomere VI) . Durch Einführung der Monomeren VI werden die Polyurethane selbst dispergierbar, d.h. beim Dispergieren in Wasser werden in diesem Fall keine Dispergierhilfsmittel wie Schutzkolloide oder Emulgatoren benötigt.
Die Einführung der kationischen oder anionischen Gruppen kann durch Mitverwendung von (potentielle) kationische oder (poten- tielle) anionische Gruppen aufweisende Verbindungen mit gegenüber Isocyanat reaktionsfähigen Wasserstoffatomen erfolgen. Zu diesen Gruppen von Verbindungen gehören z.B. tertiäre Stickstoffatome aufweisende Polyether mit vorzugsweise zwei endständigen Hydro¬ xylgruppen, wie sie z.B. durch Alkoxylierung von zwei an Amin- Stickstoff gebundene Wasserstoff tome aufweisenden A inen, z.B. Methylamin, Anilin, oder N,N'-Dimethylhydrazin, in an sich üblicher Weise zugänglich sind. Derartige Polyether weisen im allgemeinen ein zwischen 500 und 6000 g/mol liegendes Molgewicht auf.
Vorzugsweise werden jedoch die ionischen Gruppen durch Mitver- wendung von vergleichsweise niedermolekularen Verbindungen mit (potentiellen) ionischen Gruppen und gegenüber Isocyanatgruppen reaktionsfähigen Gruppen eingeführt. Beispiele hierfür sind in der US-A 3 479 310 und 4 056 564 sowie der GB-1 455 554 auf¬ geführt. Auch Dihydroxyphosphonate, wie das Natriumsalz des 2, 3-Dihydroxypropan-phosphonsäure-ethylesters oder das ent¬ sprechende Natriumsalz der nichtveresterten Phosphonsäure, können als ionische Aufbaukomponente mitverwendet werden.
Bevorzugte (potentielle) ionische Monomere VI sind N-Akyldi- alkanolamine, wie z.B. N-Methyldiethanolamin, N- Ethyldiethanol- amin, Diaminosulfonate, wie das Na-Salz der N-(2-Amino- ethyl) -2-aminoethansulfonsäure, Dihydroxysulfonate, Dihydroxycar- bonsäuren wie Dimethylolpropionsäure, Diaminocarbonsäuren bzw.- carboxylate wie Lysin oder das Na-Salz der N-(2-Amino- ethyl)-2-aminoethancarbonsäure und Diamine mit mindestens einem zusätzlichen tertiären Aminstickstoffatom, z.B. N-Methyl- bis- (3-aminopropyl)-amin.
Besonders bevorzugt werden Diamino- und Dihydroxycarbonsäuren, insbesondere das Addukt von Ethylendiamin an Natriumacrylat oder Dimethylolpropionsäure.
Die Überführung der gegebenenfalls zunächst in das Polyadditions- produkt eingebauten potentiellen ionischen Gruppen zumindest teilweise in ionische Gruppen geschieht in an sich üblicher Weise durch Neutralisation der potentiellen anionischen oder kat¬ ionischen Gruppen oder durch Quaternierung von tertiären Amin- Stickstoffatomen.
Zur Neutralisation von potentiellen anionischen Gruppen, z.B. Carboxylgruppen, werden anorganische und/oder organische Basen eingesetzt wie Alkalihydroxide, -carbonate oder -hydrogen- carbonate, Ammoniak oder primäre, sekundäre und besonders bevor¬ zugt tertiäre Amine wie Triethylamin oder Dimethylaminopropanol.
Zur Überführung der potentiellen kationischen Gruppen, z.B. der tertiären Amingruppen in die entsprechenden Kationen, z.B. Ammoniumgruppen, sind als Neutralisationsmittel anorganische oder organische Säuren, z.B. Salz-, Phosphor-, Ameisen-, Essig-, Fumar-, Malein-, Milch-, Wein- oder Oxalsäure oder als Quater- nierungsmittel, z.B. Methylchlorid, Methylbromid, Methyljodid, Dimethylsulfat, Benzylchlorid, Chloressigsäureester oder Brom- acetamid geeignet. Weitere Neutralisations- oder Quaternierungs- mittel sind z.B. in der US-A 3 479 310, Spalte 6, beschrieben.
Diese Neutralisation oder Quaternierung der potentiellen Ionen- gruppen kann vor, während, jedoch vorzugsweise nach der Isocanat- Polyadditionsreaktion erfolgen.
Die Mengen der Monomeren VI, bei potentiellen ionengruppen- haltigen Komponenten unter Berücksichtigung des Neutralisations- oder Quaternierungsgrades, ist geeigneterweise so zu wählen, daß die Polyurethane einen Gehalt von 0,05 bis 2 mÄqu/g Polyurethan, vorzugsweise von 0,07 bis 1,0 und besonders bevorzugt von 0,1 bis 0,7 mÄqu/g Polyurethan an ionischen Gruppen aufweisen.
Gegebenenfalls werden auch monofunktionelle Amin- oder Hydroxyl- verbindungen als Aufbaukomponenten mitverwendet (Monomere VII) . Es handelt sich bevorzugt um einwertige Polyetheralkohole des Molgewichtsbereiches 500 bis 10 000 g/mol, vorzugsweise von 800 bis 5 000 g/mol. Einwertige Polyetheralkohole sind z.B. durch Alkoxylierung von einwertigen Startermolekülen,wie z.B. Methanol, Ethanol oder n-Butanol erhältlich, wobei als Alkoxylierungsmittel Ethylenoxid oder Gemische von Ethylenoxid mit anderen Alkylenoxi- den, besonders Propylenoxid, eingesetzt werden. Im Falle der Ver¬ wendung von Alkylenoxidgemischen enthalten diese jedoch vorzugs- weise mindestens 40, besonders bevorzugt mindestens 65 mol-% Ethylenoxid.
Durch die Monomeren VII können in den Polyurethanen somit gege¬ benenfalls in endständig angeordneten Polyetherketten vorliegende Polyethylenoxidsegmente eingebaut sein, die im Polyurethan neben den ionischen Gruppen den hydrophilen Charakter beeinflussen und eine Dispergierbarkeit in Wasser gewährleisten oder verbessern.
Die Verbindungen der genannten Art werden bevorzugt, so man von ihnen Gebrauch macht, in solchen Mengen eingesetzt, daß von ihnen von 0 bis 10, vorzugsweise von 0 bis 5 Gew.-% Polyethylenoxidein- heiten in das Polyurethan eingebracht werden.
Weitere Beispiele von bei der Herstellung der beschriebenen Poly- urethane als Monomere I bis VII einsetzbaren Verbindungen sind z.B. in High Polymers, Vol. XVI, "Polyurethanes, Chemistry and Technology", von Saunders-Frisch, Interscience Publishers, New York, London, Band I, 1962, Seiten 32 bis 42 und Seiten 44 bis 54 und Band II, Seiten 5 bis 6 und 198 bis 199, beschrieben. Als Monomere VIII, welche im Gegensatz zu den voranstehenden Monomeren ethylenisch ungesättigte Gruppen enthalten, kommen z.B. Ester von Acryl- oder Methacrylsäure mit Polyolen, wobei minde¬ stens eine OH-Gruppe des Polyols unverestert bleibt, in Betracht. Besonders geeignet sind Hydroxyalkyl(meth)acrylate der Formel HO(CH2)mO0C(R12)C=CH2 (m - 2 bis 8; R12 - H, CH3) und ihre Stel¬ lungsisomeren, Mono(meth)acrylsäureester von Polyetherdiolen, wie z.B. bei den Monomeren II aufgeführt, Trimethylolpropanmono- und di (meth)acrylat, Pentaerythritdi- und -tri(meth)acrylat oder Reaktionsprodukte von Epoxidverbindungen mit (Meth)acrylsäure, wie sie z.B. in der US-A-357 221 genannt sind. Besonders geeignet sind die Addukte von (Meth)acrylsäure an Bisglycidylether von Diolen wie z.B. Bisphenol A oder Butandiol.
Verwendbar sind auch Addukte von (Meth) acrylsäure an epoxidierte Diolefine wie z.B. 3, -Epoxycyclohexylmethyl-3' , . '-epoxycyclo- hexancarboxylat.
Durch Einbau der Monomeren VIII kann, falls gewünscht, das Poly- urethan thermisch oder photochemisch, gegebenenfalls in Gegenwart eines Initiators, nachträglich gehärtet werden.
Im allgemeinen liegt der Anteil der ethylenisch ungesättigten Gruppen unter 0,2 mol pro 100 g Polyurethan.
Insgesamt wird der Anteil der Aufbaukomponenten vorzugsweise so gewählt, daß die Summe der gegenüber Isocyanat reaktiven Hydro¬ xylgruppen und primären oder sekundären Aminogruppen 0,9 bis 1,2, besonders bevorzugt 0,95 bis 1,1, bezogen auf 1 Isocyanatgruppe, beträgt.
Die Herstellung der beschriebenen Polyurethane, insbesondere als Dispersionen, kann nach den üblichen Methoden, wie sie z.B. in den oben angeführten Schriften beschrieben sind, erfolgen.
Bevorzugt wird in einem inerten, mit Wasser mischbaren Lösungs¬ mittel, wie Aceton, Tetrahydrofuran, Methylethylketon oder N-Methylpyrrolidon aus den Monomeren I und II und gegebenenfalls III, V, VI, VII und VIII, falls VI keine Aminogruppen enthält, das Polyurethan oder, falls eine weitere Umsetzung mit amino- funktionellen Monomeren IV oder VI beabsichtigt ist, ein Poly- urethanprepolymer mit noch endständigen Isocyanatgruppen her¬ gestellt.
Die Reaktionstemperatur liegt im allgemeinen zwischen 20 und 160°C, vorzugsweise zwischen 50 und 100°C. Zur Beschleunigung der Reaktion der Diisocyanate können die üblichen Katalysatoren, wie Dibutylzinndilaurat, Zinn-II-octoat oder Diazabicyclo-(2,2,2)-octan, mitverwendet sein.
Das erhaltene Polyurethanprepolymer kann, gegebenenfalls nach (weiterer) Verdünnung mit Lösungsmitteln der oben genannten Art, bevorzugt mit Lösungsmitteln mit Siedepunkten unter 100°C, bei einer Temperatur zwischen 20 und 80°C mit aminofunktionellen Verbindungen der Monomeren VI und gegebenenfalls IV weiter umge- setzt werden.
Die Überführung potentieller Salzgruppen, z.B. Carboxylgruppen, oder tertiärer Aminogruppen, welche über die Monomeren VI in das Polyurethan eingeführt wurden, in die entsprechenden Ionen erfolgt durch Neutralisation mit Basen oder Säuren oder durch Quaternisierung der tertiären Aminogruppen vor oder während dem Dispergieren des Polyurethans in Wasser.
Nach der Dispergierung kann das organische Lösungsmittel, falls sein Siedepunkt unterhalb dem des Wasser liegt, abdestilliert werden. Gegebenenfalls mitverwendete Lösungsmittel mit einem höheren Siedepunkt können in der Dispersion verbleiben.
Der Gehalt des Polyurethans in den Dispersionen kann insbesondere zwischen 5 und 70 Gewichtsprozent, bevorzugt zwischen 20 bis 50 Gew.-%, bezogen auf die Dispersionen, liegen.
Den Dispersionen können übliche Hilfsmittel, z.B. Verdicker, Thixotropiermittel, Oxidations- und UV- Stabilisatoren oder Trennmittel, zugesetzt werden.
Hydrophobe Hilfsmittel, die unter Umständen nur schwierig homogen in der fertigen Dispersion zu verteilen sind, können auch nach der in US-A 4 306 998 beschriebenen Methode dem Polyurethan oder dem Prepolymer bereits vor der Dispergierung zugesetzt werden.
Als Isocyanate, der zweiten Komponente in den Mischungen (D) , eignen sich im Prinzip alle Verbindungen mit mindestens einer freien Isocyanatgruppe. Besondere Bedeutung haben hier die übli- chen Diisocyanate, die üblichen höher funktioneilen Polyiso¬ cyanate, wie sie bei den hydrophil modifizierten Polyiso¬ cyanaten (C) beschrieben sind, sowie die unter (C) beschriebenen hydrophil mofifizierten Polyisocyanate selbst. Aber auch Monoiso- cyanate wie Phenylisocyanat oder Tolylisocyanate sind geeignet. Die genannten Polyurethane und die genannten Isocyanate liegen in der Regel als Mischungen im Gew.-Verhältnis von 10:90 bis 90:10, insbesondere 25:75 bis 75:25, vor allem 40:60 bis 60:40, vor.
In einer bevorzugten Ausführungsform setzt man als
Verbindungen (D) Mischungen aus Polyesterurethanen und aliphati- schen Diisocyanaten, aliphatischen höher funktioneilen Polyiso¬ cyanaten oder hydrophil modifizierten Polyisocyanaten im Gew.- Verhältnis von 10:90 bis 90:10 ein.
Die Verbindungen (A) bis (D) können beim erfindungsgemäßen Ver¬ fahren zur Herstellung von Cellulosefasern generell in einem wä߬ rigen System, vorzugsweise in wäßriger Lösung oder Emulsion, zur Anwendung gelangen, wobei das wäßrige System im allgemeinen, be- zogen auf das Gewicht des wäßrigen Systems, 0,1 bis 20 Gew.-%, vorzugsweise 0,5 bis 10 Gew.-%, der Verbindungen (A) bis (D) auf¬ weist.
Die Herstellverfahren für aus Lösungsmittel gesponnene Cellulose- fasern laufen in der Regel in 4 Stufen ab.
Stufe 1: Lösen der Cellulose in einem mit Wasser mischbaren Lösungsmittel
Stufe 2: Extrudieren der Lösung durch eine Düse unter Bildung der Faservorstufe
Stufe 3: Behandlung der Faservorstufe mit Wasser um Lösungs¬ mittel zu entfernen und die Cellulosefaser auszubil- den
Stufe 4: Trocknung der Faser
Als Lösungsmittel in Stufe 1 wird vorzugsweise N-Methylmorpholin- N-oxid verwendet.
Die feuchte Faser, die in Stufe 3 erhalten wird, wird als nicht- getrocknete Faser bezeichnet und weist in der Regel, bezogen auf das Trockengewicht der Faser, 120 bis 150 Gew.-% Wasser auf.
Der Wassergehalt der getrockneten Faser beträgt im allgemeinen, bezogen auf das Trockengewicht der Faser, 60 bis 80 Gew.-%.
Die erfindungsgemäße Behandlung mit den Verbindungen (A) bis (D) kann entweder an der feuchten Faser (während oder nach Stufe 3) oder an der getrockneten Faser (nach Stufe 4) erfolgen. Es ist aber auch eine Behandlung im Stadium der Faserherstellung (Stufe 2), z.B. in einem Fällbad, möglich.
Wenn die Behandlung an der feuchten Faser erfolgt, so kann dies 5 beispielsweise durch Zugabe des wäßrigen Systems der Verbindungen (A) bis (D) zu einem zirkulierenden Bad geschehen, das die Faser¬ vorstufe enthält. Die Faservorstufe kann dabei z.B. als Stapel¬ faser vorliegen.
10 Wenn die Behandlung an der getrockneten Faser erfolgt, so kann diese z.B. als Stapelfaser, Vlies, Garn, Maschenware oder Gewebe vorliegen. Die Behandlung der Fasern in diesem Fall kann z.B. in wäßriger Flotte erfolgen.
15 Im Gegensatz zu der in der EP-A-538 977 beschriebenen Methode kann im erfindungsgemäßen Verfahren auf die Anwesenheit von Alkali verzichtet werden.
Die Behandlung wird in der Regel bei einer Temperatur von 20 bis 20 200°C, vorzugsweise 40 bis 180°C, vorgenommen. Dabei erfolgt eine chemische Reaktion der Verbindungen (A) bis (D) mit den Hydroxy- gruppen der Cellulose, wobei auch eine chemische Verknüpfung zwi¬ schen Hydroxygruppen verschiedener Cellulose-Fibrillen möglich ist. Dadurch wird die Stabilität der Faser erhöht. 25
Die Zeitdauer der Behandlung beträgt üblicherweise 1 Sekunde bis 20 Minuten, vorzugsweise 5 bis 60 Sekunden und insbesondere 5 bis 30 Sekunden.
30 Beim Imprägnierverfahren kann die Behandlung sowohl bei Raumtem¬ peratur (20°C) mit anschließender Trocknung bis 100°C als auch bei Durchführung von Kondensationen bei Temperaturen bis zu 200°C, insbesondere bei 150 bis 180°C, erfolgen.
35 Die Behandlung der feuchten oder getrockneten Faser kann mit 0,1 bis 10 Gew.-%, vorzugsweise 0,2 bis 5 Gew.-%, insbesondere 0,2 bis 2 Gew.-%, jeweils bezogen auf das Trockengewicht der Faser, der Verbindungen (A) bis (D) erfolgen. In manchen Fällen kann es jedoch auch vorteilhaft sein, die genannten Mengen noch zu erhö-
40 hen, z.B. bis auf ca. 20 Gew.-%.
Bei der Behandlung können weitere hierbei übliche Hilfsmittel in den hierfür üblichen Mengen mitverwendet werden. Insbesondere sind hier Antimigrationsmittel, beispielsweise auf Basis von Ox- 45 ethylierungsprodukten, zu erwähnen. Bei der erfindungsgemäßen Verwendung der Verbindungen (A) und/ oder (B) kann die Reaktivität dieser Mittel durch Zusatz kataly- tischer Mengen von Lewis-Säuren wie MgCl , ZnCl2, A1C13, BF3 oder Systemen wie MgCl2/NaBF4 oder MgS0 /NaBF4/LiCl oder von anorgani- sehen oder organischen Säuren oder entsprechenden sauren Salzen, z.B. HC1, H2S0 , H3PO.}, p-Toluolsulfonsäure, Methansulfonsäure, NaHS04, NaH2P0 , (NH)4HS0 oder Trialkylamin-Hydrochlorid, oder von anderen vernetzend wirkenden anorganischen Salzen, z.B. Ni¬ traten oder Teraalkylammoniumsalzen, den Prozeßerfordernissen an- gepaßt, d.h. in der Regel erhöht werden.
Wie bereits ausgeführt, können die Verbindungen (A) bis (D) ge¬ genüber den in der EP-A-538 977 beschriebenen Verbindungen rein thermisch (ohne Alkali) fixiert werden, wodurch sie sich optimal in den Faserherstellungsprozeß integrieren lassen. Die Anfärbbar- keit der so behandelten Fasern mit allen üblichen Cellulosefaser- farbstoffen, auch Reaktivfarbstoffen, ist in der Regel möglich.
Unter Anwendung der in der EP-A-538 977 beschriebenen Testmetho- den, auf die hier ausdrücklich Bezug genommen wird, können vor¬ teilhafte Ergebnisse erzielt werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung von aus Lösungsmitteln gesponnenen Cellulosefasern mit verringerter Neigung zum Fibrillieren, dadurch gekennzeichnet, daß man die Fasern mit einer oder mehreren Verbindungen aus der Gruppe der
(A) N-Methylolether von Carbonsäureamiden, Urethanen, Harn- Stoffen und Aminotriazinen,
(B) durch eine oder mehrere Alkylgruppen N-substituierten cyclischen Hydroxy- oder Alkoxyethylenharnstoffe,
(C) hydrophil modifizierten Polyisocyanate und
(D) Mischungen von Polyurethanen mit Isocyanaten
behandelt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Verbindungen (A) N-Methylolether der allgemeinen Formel I
R2 O
I II
Rl 0 CH2 N—C R3 (I) in der
R1 für eine gegebenenfalls durch nicht benachbarte Sauer¬ stoffatome unterbrochene Cι-Cιo-Alkylgruppe steht,
R2 Wasserstoff, die Gruppe CH--0R1 oder einen Ci-Cβ-Alkylrest bezeichnet, der noch zusätzlich Hydroxylgruppen und/oder Cχ-C4-Alkoxygruppen als Substituenten tragen und durch nicht benachbarte Sauerstoffatome und/oder C-.-C4-Alkyl- gruppen tragende Stickstoffatome unterbrochen sein kann, und
R3 Wasserstoff, einen Cι-Cιo-Alkylrest, einen Cχ-Cιo-Alkoxy- rest, der durch nicht benachbarte Sauerstoffatome unter¬ brochen sein kann, oder die Gruppe (-NR2-CH2OR1) bedeu¬ tet,
wobei die Reste R2 und R3 zu einem fünf- oder sechsgliedrigen Ring verbunden und im Falle von R3 - (-NR2-CH20R1) außerdem zwei solcher Ringe über die zu den Amidstickstoffen α-ständi- gen C-Atome der Reste R2 zu einem bicyclischen System konden¬ siert sein können, einsetzt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Verbindungen (A) Melaminderivat der allgemeinen Formel IV
in der die Reste A gleich oder verschieden sind und für Was¬ serstoff oder die Gruppe CH2OR1 stehen, wobei mindestens einer der Reste A die Bedeutung CH--0R1 haben muß und R1 die oben ge¬ nannte Bedeutung hat, einsetzt.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Verbindungen (B) cyclische Hydroxy- oder Alkoxyethylen- harnstoffe der allgemeinen Formel VI
R4 N-C--N R5 (VI)
R70 - OR6
in der R4 und R5 Wasserstoff oder Cι-C3-Alkyl mit der Maßgabe bedeuten, daß mindestens einer der Reste R4 und R5 eine Cι-C3-Alkylgruppe ist, und R6 und R7 für Wasserstoff oder Cι-C -Alkyl stehen, einsetzt.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Verbindungen (C) nicht-ionisch hydrophil modifizierte
Polyisocyanate, welche hydroxylgruppenterminierte Polyether der allgemeinen Formel VII
R8_E_(D0)n-H (VII)
in der
R8 für Ci- bis C2o-Alkyl oder C2- bis C2o-Alkenyl, Cyclo- pentyl, Cyclohexyl, Glycidyl, Oxethyl , Phenyl, Tolyl, Benzyl, Furfuryl oder Tetrahydrofurfuryl steht, E Schwefel oder Sauerstoff bezeichnet,
D Propylen oder Ethylen bedeutet und
n für eine Zahl von 5 bis 120 steht,
eingebaut enthalten, einsetzt.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Verbindungen (D) Mischungen aus Polyesterurethanen und aliphatischen Diisocyanaten, aliphatischen höher funktionei¬ len Polyisocyanaten oder hydrophil modifizierten Polyiso¬ cyanaten im Gew.-Verhältnis von 10:90 bis 90:10 einsetzt.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeich¬ net, daß man die Fasern mit 0,1 bis 10 Gew.-%, bezogen auf das Trockengewicht der Fasern, der Verbindungen (A) bis (D) behandelt.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeich¬ net, daß man die Behandlung bei einer Temperatur von 20 bis 200°C vornimmt.
EP95931179A 1994-09-06 1995-08-22 Verfahren zur herstellung von cellulosefasern Expired - Lifetime EP0779942B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99123391A EP0985747B1 (de) 1994-09-06 1995-08-22 Verfahren zur Herstellung von Cellulosefasern
EP99123392A EP0984084B1 (de) 1994-09-06 1995-08-22 Verfahren zur Herstellung von Cellulosefasern

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4431635A DE4431635A1 (de) 1994-09-06 1994-09-06 Verfahren zur Herstellung von Cellulosefasern
DE4431635 1994-09-06
PCT/EP1995/003327 WO1996007780A1 (de) 1994-09-06 1995-08-22 Verfahren zur herstellung von cellulosefasern

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP99123391A Division EP0985747B1 (de) 1994-09-06 1995-08-22 Verfahren zur Herstellung von Cellulosefasern
EP99123392A Division EP0984084B1 (de) 1994-09-06 1995-08-22 Verfahren zur Herstellung von Cellulosefasern

Publications (2)

Publication Number Publication Date
EP0779942A1 true EP0779942A1 (de) 1997-06-25
EP0779942B1 EP0779942B1 (de) 2000-06-21

Family

ID=6527487

Family Applications (3)

Application Number Title Priority Date Filing Date
EP95931179A Expired - Lifetime EP0779942B1 (de) 1994-09-06 1995-08-22 Verfahren zur herstellung von cellulosefasern
EP99123392A Expired - Lifetime EP0984084B1 (de) 1994-09-06 1995-08-22 Verfahren zur Herstellung von Cellulosefasern
EP99123391A Expired - Lifetime EP0985747B1 (de) 1994-09-06 1995-08-22 Verfahren zur Herstellung von Cellulosefasern

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP99123392A Expired - Lifetime EP0984084B1 (de) 1994-09-06 1995-08-22 Verfahren zur Herstellung von Cellulosefasern
EP99123391A Expired - Lifetime EP0985747B1 (de) 1994-09-06 1995-08-22 Verfahren zur Herstellung von Cellulosefasern

Country Status (8)

Country Link
US (1) US5776394A (de)
EP (3) EP0779942B1 (de)
JP (1) JPH10505389A (de)
AT (3) ATE194018T1 (de)
DE (4) DE4431635A1 (de)
DK (1) DK0779942T3 (de)
ES (2) ES2148552T3 (de)
WO (1) WO1996007780A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0415764A (pt) 2003-11-28 2006-12-26 Eastman Chem Co interpolìmero, produto de reação, métodos para converter uma hidroxila, para preparar uma forma estável de um interpolìmero, para converter um álcool primário, e para tratar um mamìfero necessitado do mesmo, composições para revestimento e farmacêutica oral, dispersão de pigmento, e, artigo
US8980054B2 (en) * 2012-12-26 2015-03-17 Kimberly-Clark Worldwide, Inc. Soft tissue having reduced hydrogen bonding
US9416494B2 (en) 2012-12-26 2016-08-16 Kimberly-Clark Worldwide, Inc. Modified cellulosic fibers having reduced hydrogen bonding
US9410292B2 (en) 2012-12-26 2016-08-09 Kimberly-Clark Worldwide, Inc. Multilayered tissue having reduced hydrogen bonding
KR102440861B1 (ko) * 2020-05-26 2022-09-05 오영세 라이오셀 섬유의 제조방법 및 이로부터 제조된 라이오셀 섬유
CN116926971B (zh) * 2023-06-30 2024-07-12 广东德美精细化工集团股份有限公司 一种抗原纤化组合物及在莱赛尔织物上的应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246221A (en) * 1979-03-02 1981-01-20 Akzona Incorporated Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent
DE3831093A1 (de) * 1988-09-13 1990-03-15 Basf Ag Verfahren zur pflegeleichtausruestung von textilen materialien
DE3912084A1 (de) * 1989-04-13 1990-10-25 Basf Ag Verfahren zur herstellung waessriger loesungen von n-methylolethern
GB9022175D0 (en) * 1990-10-12 1990-11-28 Courtaulds Plc Treatment of fibres
GB9111559D0 (en) * 1991-05-29 1991-07-17 Ici Plc Polyisocyanate composition
DE4129953A1 (de) * 1991-09-10 1993-03-11 Bayer Ag Polyisocyanatgemische, ein verfahren zu ihrer herstellung und ihre verwendung
GB9122318D0 (en) * 1991-10-21 1991-12-04 Courtaulds Plc Treatment of elongate members
DE4142275A1 (de) * 1991-12-20 1993-06-24 Bayer Ag Isocyanatocarbonsaeuren, ein verfahren zu ihrer herstellung und ihrer verwendung
JP3130148B2 (ja) * 1992-10-30 2001-01-31 日清紡績株式会社 溶剤紡糸されたセルロース系繊維のフイブリル化防止加工方法
GB9304887D0 (en) * 1993-03-10 1993-04-28 Courtaulds Plc Fibre treatment
DE4313262A1 (de) * 1993-04-23 1994-10-27 Pfersee Chem Fab Verfahren zur Pflegeleichtausrüstung von Cellulose enthaltenden Fasermaterialien
GB9313128D0 (en) * 1993-06-24 1993-08-11 Courtaulds Fibres Ltd Fabric treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9607780A1 *

Also Published As

Publication number Publication date
DE59510523D1 (de) 2003-02-06
EP0984084A2 (de) 2000-03-08
EP0985747B1 (de) 2002-10-30
WO1996007780A1 (de) 1996-03-14
ATE226985T1 (de) 2002-11-15
DE4431635A1 (de) 1996-03-07
JPH10505389A (ja) 1998-05-26
DE59508498D1 (de) 2000-07-27
EP0779942B1 (de) 2000-06-21
EP0985747A2 (de) 2000-03-15
ES2148552T3 (es) 2000-10-16
DE59510440D1 (de) 2002-12-05
ATE194018T1 (de) 2000-07-15
EP0984084B1 (de) 2003-01-02
DK0779942T3 (da) 2000-08-28
EP0984084A3 (de) 2000-04-19
ATE230447T1 (de) 2003-01-15
ES2190169T3 (es) 2003-07-16
EP0985747A3 (de) 2000-04-19
US5776394A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
EP1379724B1 (de) Verwendung von hydrophil modifizierten polyisocyanaten und polyurethanen als antiknitteradditiv für den heimbereich
EP0198343B1 (de) Carbodiimidgruppen enthaltende Isocyanat-Derivate, ein Verfahren zu Ihrer Herstellung und ihre Verwendung als Zusatzmittel für wässrige Lösungen oder Dispersionen von Kunststoffen
DE2535376A1 (de) Gegen verfaerbung stabilisiertes polyurethan
EP0571867A1 (de) Vernetzer für Textildruck-Bindemittel
EP1571254A2 (de) Verfahren zur Herstellung eines lichtechten Syntheseleders und danach hergestellte Produkte
EP0490150B1 (de) In Wasser dispergierbare, elektrolytstabile Polyetherester-modifizierte Polyurethanionomere
DE2536678A1 (de) Verfahren zur herstellung von amphoteren, waessrigen harzemulsionen
DE4012630A1 (de) Perfluoralkylgruppen enthaltende pfropfcopolymerisate
EP0985747B1 (de) Verfahren zur Herstellung von Cellulosefasern
EP0758417B1 (de) Verwendung von hydrophil modifizierten polyisocyanaten im textilbereich
EP0538649B1 (de) Modifizierte Polyharnstoffe
EP1211346B1 (de) Filzfrei ausgerüstete Wolle und Verfahren zur Filzfreiausrüstung
DE19858736A1 (de) Filzfrei ausgerüstete Wolle und Verfahren zur Filzfreiausrüstung
EP0726352B1 (de) Verfahren zur Herstellung von gemusterten Textilien
DE19736542A1 (de) Filzfrei ausgerüstete Wolle und selbstdispergierende Isocyanate hierfür
DE1494610A1 (de) Verfahren zur Herstellung gummielastischer Faeden und Fasern mit verbesserter Anfaerbbarkeit
DE19537240A1 (de) Verfahren zur Stabilisierung von gefärbtem Textilgut gegen Vergilbung
DE1494613C3 (de) Verfahren zur Herstellung vernetzter gummielastischer Fäden und Fasern
DE4430165A1 (de) Verwendung von hydrophil modifizierten Polyisocyanaten zur Herstellung von Textilmaterialien mit waschpermanentem Glanz
DE4415451A1 (de) Verwendung von hydrophil modifizierten Polyisocyanaten zur Veredlung von Textilmaterialien
EP1437437A2 (de) Verfahren zur Filzfreiausrüstung von Keratinfasern
DE2542500A1 (de) Segmentierte, selbstvernetzbare polyurethanelastomere
DE19533218A1 (de) Verwendung von hydrophil modifizierten Polyisocyanaten in Schlichtemitteln und beim Färben mit Indigo
DE19953969A1 (de) Filzfrei ausgerüstete Wolle und Verfahren zur Filzfreiausrüstung
DE4415449A1 (de) Verwendung von hydrophil modifizierten Polyisocyanaten als Vernetzer beim Pigmentfärben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19970729

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 194018

Country of ref document: AT

Date of ref document: 20000715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000703

REF Corresponds to:

Ref document number: 59508498

Country of ref document: DE

Date of ref document: 20000727

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2148552

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030829

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040806

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040810

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20040813

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040825

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20041021

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050803

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050811

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050817

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050818

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050823

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060822

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060822

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060822

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20050831