EP0772458A1 - Verwendung von chelaten als röntgenkontrastmittel - Google Patents

Verwendung von chelaten als röntgenkontrastmittel

Info

Publication number
EP0772458A1
EP0772458A1 EP95927704A EP95927704A EP0772458A1 EP 0772458 A1 EP0772458 A1 EP 0772458A1 EP 95927704 A EP95927704 A EP 95927704A EP 95927704 A EP95927704 A EP 95927704A EP 0772458 A1 EP0772458 A1 EP 0772458A1
Authority
EP
European Patent Office
Prior art keywords
dtpa
use according
chelates
rays
diagnostics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95927704A
Other languages
English (en)
French (fr)
Inventor
Werner Krause
Ulrich Speck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Schering AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering AG filed Critical Schering AG
Publication of EP0772458A1 publication Critical patent/EP0772458A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations

Definitions

  • the invention relates to the use of water-soluble, metal-containing chelates.
  • the X-ray contrast media currently available for uro / angiography and computer tomography are compounds that are based exclusively on triiodoaromatics. Examples include amidotrizoate (ionic monomer), iohexol, iopamidol, iopromide, iopentol, ioversol (nonionic monomers), ioxaglate (ionic dimer), iotrolan and iodixanol (nonionic dimers).
  • iodine-containing contrast agents are known, but have not yet gained any practical importance, although the need for these compounds is very high.
  • a disadvantage of the iodine-containing contrast agents is that there are always free iodine ions in the formulation, which can lead to complications in the thyroid gland.
  • An overactive thyroid can lead to a hyperthyroid metabolic state if the iodide supply is greatly increased by the injection of a contrast medium containing iodine (iodide).
  • iodide contrast medium containing iodine
  • the dose In order to be able to use lanthanide-containing contrast media in X-ray diagnostics, the dose must be increased by a factor of 10 compared to the dose customary in MR diagnostics, which, however, has the disadvantageous consequence that such contrast media are no longer compatible with the patient.
  • gadolinium- or ytterbium-containing contrast agents can be used using synchrotron radiation, although no information is given about the chosen concentration.
  • the object of the invention is to find a replacement for iodine-containing contrast agents in X-ray diagnostics, these contrast agents also being said to be suitable for humans.
  • water-soluble, metal-containing chelates with the elements of atomic numbers 40-42, 50, 51, 56-78, 80, 82 and 83 which do not contain iodine can then be used as X-ray contrast agents if instead of those in the usual way X-ray equipment or CT equipment used x-ray radiation synchrotron radiation is used.
  • the contrast media are preferably used in the formulation and dosage customary for MR diagnostics.
  • monochromatic X-rays can also be used, almost monochromatic X-rays or X-rays above a defined energy range, ie above the K edge of the metal atom contained in the chelates, are used.
  • the advantages of the new method for synchrotron CT are that, firstly, lower-dose and better-tolerated MR contrast agents can be used instead of iodine-containing contrast agents, and secondly that there are no free iodine ions that can lead to thyroid complications.
  • Another advantage is that with higher-energy radiation, the OK edge of gadolinium (51 keV instead of 33 keV for iodine) can be used. Higher radiation energy means that the ionizing effect is significantly reduced, so that the patient's radiation exposure is less important.
  • the energy of the radiation can be adjusted so that it is closer to the K edge than when using the subtraction method in which recordings are made below and above the K edge of the respective contrast medium conventional X-rays is possible due to the wavelength distribution.
  • This allows a significant increase in contrast to be achieved.
  • This increase in contrast is surprisingly so great that even contrast media with a very high osmolality, relatively low solubility in water, or substances which develop such high viscosities in solution that they are only sufficiently thin in a highly diluted form, can be used.
  • novel contrast effects that were previously inaccessible in x-rays or at least not achievable with compatible doses are achieved.
  • the following substances are particularly suitable as metal-containing contrast agents:
  • Lanthanide complexes of the following chelating agents DTPA, DOTA, HP-D03A, EOB-DTPA, BOPTA and DTPA-polylysine and other high molecular complexing agents or macromolecules containing complexing agents see e.g. EP 0430863.
  • the molecular weight of the high molecular weight compounds is preferably> 10000 D.
  • modified complexes such as that Gd-EOB-DTPA are particularly well suited for liver imaging.
  • contrast media which have heavier elements, such as bismuth, lead or tantalum, also have advantages as X-ray contrast media.
  • contrast agents containing tantalum were discussed in DE-OS 28 31 524, but only for conventional polychromatic X-rays and mostly as water-insoluble tantalum powder. With such contrast media, too, it has been found that using synchrotron radiation offers great advantages with regard to the detection of special structures in the body and their diseases.
  • GD-DTPA is administered intravenously in the formulation of 0.5 mol / l, which is customary for MR diagnostics, and in the dosage of 0.1-0.3 mmol / kg of body weight, which is customary for MR diagnostics.
  • an electron storage ring e.g. DESY in Hamburg, 5.8 GeV storage ring at the University of Tskukuba in Ibaraki, Japan or other institutes
  • blood vessels, organs and tissues could be displayed in a much higher contrast according to their blood content, perfusion and the proportion of extracellular space than was previously possible.
  • the recording device consists of a 2.5 GeV storage ring (260 mA, 5T Wiggler) as a light source, a movable silicone plate as a monochromator, a Gd filter for the 2-energy display and an amplifier as a detector.
  • the images are recorded at intervals of 32 msec, once above the K edge of Gd (51 keV) and once below the K edge. After subtracting the two images, blood vessels are displayed.
  • Gd-DOTA is administered intravenously in the formulation of 0.5 mol / l, which is customary for MR diagnostics, and in the dosage of 0.1, 0.3 mmol / kg, which is customary for MR diagnostics.
  • the admission takes place according to the procedure described for Gd-DTPA.
  • Gd-HP-DO3A is administered intravenously in the formulation of 0.5 mol / l customary for MR diagnostics and in the dosage of 0.1 - 0.3 mmol / kg body weight customary for MR diagnostics.
  • the admission takes place according to the procedure described for Gd-DTPA.
  • up to 1 mmol / kg can also be administered. In this case, a particularly high detection sensitivity for tumors and infarcts is achieved.
  • Gd-EOB-DTPA is administered intravenously in the formulation of 1 mol / l customary for MR diagnostics and in the dosage customary for MR diagnostics of 0.01 to 0.3 mmol / kg body weight.
  • the liver can be visualized using synchrotron radiation, since Gd-EOB-DTPA is absorbed by the hepatocytes.
  • Gd-EOB-DTPA is absorbed by the hepatocytes.
  • the uptake takes place 10 minutes to 1 hour after administration in the procedure described for Gd-DTPA.
  • Er-EOB-DTPA is administered intravenously in the formulation customary for MR diagnostics and in the dosage customary for MR diagnostics of 0.01 to 0.3 mmol / kg body weight.
  • Dy-DTPA-polylysine is administered intravenously in the formulation and dose customary for Gd-DTPA in MR diagnostics (G. Schuhmann-Giampieri, H. Schmitt-Willich, T. Frenzel, WR Press, HJ Weinmann, Invest. Radiol. 26: 969-74, (1991)).
  • This substance can be used to display the intravascular space using synchrotron radiation, since the contrast medium is able to remain within the vascular system over a longer period of time. With rapid admission sequences, the tissue perfusion can also be recorded exactly. There is no example of this in the field of classic X-ray contrast media and using conventional X-rays.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Die Erfindung betrifft die Verwendung von wasserlöslichen, metallhaltigen Chelaten als Röntgenkontrastmittel unter Verwendung von Synchrotronstrahlung.

Description

Verwendung von Chelaten als Röntgenkontrastmittel
Beschreibung:
Die Erfindung betrifft die Verwendung von wasserlöslichen, metallhaltigen Chelaten.
Die zur Zeit verfügbaren Röntgenkontrastmittel für die Uro-/Angiographie und die Computertomographie sind Verbindungen, die ausschließlich auf der Basis von Trijodaromaten aufgebaut sind. Beispiele hierfür sind Amidotrizoat (ionisches Monomer), Iohexol, Iopamidol, Iopromid, Iopentol, Ioversol (nichtionische Monomere), Ioxaglat (ionisches Dimer), Iotrolan und Iodixanol (nichtionische Dimere).
Parenterale Röntgenkontrastmittel ohne Jod sind zwar bekannt, haben bisher aber keine praktische Bedeutung erlangt, obwohl das Bedürfnis nach diesen Verbindungen sehr hoch ist. Ein Nachteil der jodhaltigen Kontrastmittel liegt darin, daß in der Formulierung immer freie Jodionen vorkommen, die zu Komplikationen an der Schilddrüse führen können. Eine Überfunktion der Schilddrüse kann dann zu einer hyperthyreoten Stoffwechsellage führen, wenn das Jodidangebot durch die Injektion eines Jod-(Jodid)-haltigen Kontrastmittels stark erhöht wird. Als Folge kann eine thyreotoxische Krise entstehen, die beispielsweise in B. Glöbel, Kontrastmittel in der Praxis, Springer- Verlag, Seite 80 - 82 (1993) beschrieben wird.
Daneben werden allergieartige Nebenwirkungen häufig mit dem Jodgehalt der gebräuchlichen Röntgenkontrastmittel in Verbindung gebracht. Untersuchungen von C. Zwicker, M. Langer, V. Urich, R. Felix, "Kontrastgebung von Jod, Gadolinium und Ytterbium in CT; in-vitro- und tierexperimentelle Untersuchungen", RöFo 158, 256 - 259 (1993) mit lanthanidenhaltigen Substanzen wie Gd-DTPA haben gezeigt, daß mit diesen Verbindungen keine für die Röntgendiagnostik universell verwendbaren Lösungen herzustellen sind. Daran ist auch die Verwendung der beschriebenen Verbindungen gescheitert.
Um in der Röntgendiagnostik lanthanidenhaltige Kontrastmittel einsetzen zu können, muß die Dosis gegenüber der in der MR-Diagnostik üblichen Dosis um etwa den Faktor 10 angehoben werden, was allerdings die nachteilige Folge aufweist, daß derartige Kontrastmittel nicht mehr für den Patienten verträglich sind.
In H.D. Zeman, DP. Siddons Nucl. Instrum. Methods Physics, Res. Section A, 1990, A 291 (1 - 2), 67 - 73 wird erwähnt, daß gadolinium- oder ytterbiumhaltige Kontrastmittel unter Anwendung von Synchrotronstrahlung eingesetzt werden können, wobei allerdings keine Angaben über die gewählten Konzentration gemacht werden.
Aufgabe der Erfindung ist es, einen Ersatz für jodhaltige Kontrastmittel in der Röntgendiagnostik zu finden, wobei diese Kontrastmittel sich auch durch eine entsprechende Verträglichkeit beim Menschen auszeichnen sollen.
Es wurde gefunden, daß wasserlösliche, metallhaltige Chelate mit den Elementen der Ordnungszahlen 40-42, 50, 51, 56-78, 80, 82 und 83, die kein Jod enthalten, dann als Röntgenkontrastmittel verwendet werden können, wenn anstelle der in den üblichen Röntgengeräten oder CT-Apparaten verwendeten Röntgenstrahlung Synchrotronstrahlung eingesetzt wird. Vorzugsweise werden die Kontrastmittel in der für die MR-Diagnostik üblichen Formulierung und Dosierung eingesetzt. Anstelle von Synchrotronstrahlung kann auch monochromatische Röntgenstrahlung, nahezu monochromatische Röntgenstrahlung oder Röntgenstrahlung oberhalb eines definierten Energiebereichs, d.h. oberhalb der K-Kante des jeweils in den Chelaten enthaltenen Metallatoms eingesetzt werden.
Die Vorteile des neuen Verfahrens für die Synchrotron-CT liegen darin, daß erstens niedriger dosierte und besser verträgliche MR-Kontrastmittel anstelle jodhaltiger Kontrastmittel eingesetzt werden können und daß zweitens keine freien Jodionen vorhanden sind, die zu thyreotoxischen Komplikationen führen können.
Ein weiterer Vorteil besteht darin, daß bei höherenergetischer Strahlung OK- Kante von Gadolinium: 51 keV anstelle von 33 keV für Jod) gearbeitet werden kann. Höhere Strahlenenergie bedeutet, daß die ionisierende Wirkung deutlich herabgesetzt ist, so daß die Strahlenexposition des Patienten weniger ins Gewicht fallt.
Dadurch, daß die Synchrotronstrahlung monochromatisch ist, kann bei Anwendung der Subtraktionsmethode, bei der Aufnahmen unterhalb und oberhalb der K-Kante des jeweiligen Kontrastmittels durchgeführt werden, die Energie der Strahlung so eingestellt werden, daß sie dichter an der K-Kante liegt als dies mit herkömmlicher Röntgenstrahlung aufgrund der Wellenlängenverteilung möglich ist. Dadurch kann eine erhebliche Kontraststeigerung erzielt werden. Diese Kontraststeigerung ist überraschenderweise so groß, daß selbst Kontrastmittel mit sehr hoher Osmolalität, verhältnismäßig geringer Wasserlöslichkeit, oder Substanzen, die in Lösung so hohe Viskositäten entwickeln, daß sie nur in stark verdünnter Form hinreichend dünnflüssig sind, eingesetzt werden können. Darüberhinaus werden neuartige, bisher im Röntgen nicht zugängliche oder jedenfalls bei verträglichen Dosierungen nicht erzielbare Kontrasteffekte erreicht. Als metallhaltige Kontrastmittel kommen insbesondere folgende Substanzen infrage:
Lanthaniden-Komplexe der folgenden Chelatbildner DTPA, DOTA, HP- D03A, EOB-DTPA, BOPTA und DTPA-Polylysin und andere hochmolekulare Komplexbildner oder Komplexbildner enthaltende Makromoleküle (s z.B. EP 0430863).
Vorzugsweise beträgt das Molekulargewicht der hochmolekularen Verbindungen > 10000 D.
Hierbei hat sich herausgestellt, modifizierte Komplexe, wie z.B. daß Gd-EOB- DTPA insbesondere gut geeignet sind für die Darstellung der Leber.
Weiterhin hat sich gezeigt, daß Kontrastmittel, die schwerere Elemente, wie Wismut, Blei oder Tantal aufweisen, ebenfalls als Röntgenkontrastmittel Vorteile aufweisen. Zwar wurden in der Vergangenheit beispielsweise tantalhaltige Kontrastmittel in der DE-OS 28 31 524 diskutiert, allerdings nur für konventionelle polychromatische Röntgenstrahlung und meist als wasserunlösliches Tantalpulver. Auch bei derartigen Kontrastmitteln hat sich gezeigt, daß unter Anwendung der Synchrotronstrahlung große Vorteile im Hinblick auf den Nachweis spezieller Strukturen im Körper und deren Erkrankungen gefunden werden.
I. Darstellung des Extrazellulärraumes
1. GD-DTPA
GD-DTPA wird in der für die MR-Diagnostik übliche Formulierung von 0,5 mol/1 und in der für MR-Diagnostik übliche Dosierung von 0,1 - 0,3 mmol/kg Körpergewicht intravenös verabreicht. Mittels Synchrotronstrahlung eines Elektronenspeicherrings (z.B. DESY in Hamburg, 5,8 GeV-Speicherring an der Universität von Tskukuba in Ibaraki, Japan oder anderen Instituten) konnten Blutgefäße, Organe und Gewebe entsprechend ihrem Blutgehalt, der Perfusion und dem Anteil an Extrazellulärraum weitaus kontrastreicher dargestellt werden als dies bisher möglich war.
Das Aufnahmegerät besteht aus einem 2,5 GeV-Speicherring (260 mA, 5T Wiggler) als Lichtquelle, einer beweglichen Silikonplatte als Monochromator, einem Gd-Filter für die 2-Energie-Darstellung und einem Verstärker als Detektor. Die Bilder werden in Intervallen von 32 msec aufgenommen, einmal oberhalb der K-Kante von Gd (51 keV) und einmal unterhalb der K-Kante. Nach Subtraktion der beiden Bilder erhält man die Darstellung von Blutgefäßen.
2. Gd-DOTA
Gd-DOTA wird in der für MR-Diagnostik üblichen Formulierung von 0,5 mol/1 und in der für die MR-Diagnostik üblichen Dosierung von 0,1, - 0,3 mmol/kg intravenös verabreicht. Die Aufnahme erfolgt entsprechend der für Gd-DTPA beschriebenen Verfahrensweise.
3. Gd-HP-DO3A
Gd-HP-DO3A wird in der für die MR-Diagnostik üblichen Formulierung von 0,5 mol/l und in der für die MR-Diagnostik üblichen Dosierung von 0,1 - 0,3 mmol/kg Körpergewicht intravenös verabreicht. Die Aufnahme erfolgt entsprechend der für Gd-DTPA beschriebenen Verfahrensweise. Alternativ können auch bis 1 mmol/kg verabreicht werden. In diesem Falle wird eine besonders hohe Nachweisempfindlichkeit für Tumore und Infarkte erzielt. II. Darstellung der Leber
1. Gd-EOB-DTPA
Gd-EOB-DTPA wird in der für die MR-Diagnostik üblichen Formulierung von 1 mol/l und in der für die MR-Diagnostik üblichen Dosierung von 0,01 bis 0,3 mmol/kg Körpergewicht intravenös verabreicht.
Mit dieser Substanz ist unter Verwendung von Synchrotronstrahlung die Darstellung der Leber möglich, da Gd-EOB-DTPA von den Hepatozyten aufgenommen wird. Hierfür gibt es im Bereich der klassischen wasserlöslichen Röntgenkontrastmittel und unter Verwendung von konventioneller Röntgenstrahlung kein Beispiel, bei dem ausreichende Kontrastmittelkonzentrationen in der Leber erreicht werden.
Die Aufnahme erfolgt 10 min bis 1 h nach Verabreichung in der für Gd-DTPA beschriebenen Verfahrensweise. Anstelle der Zwei- Wellenlängenaufnahmen kann hier auch bei nur einer Energie (>52 keV) gearbeitet werden.
2. Er-EOB-DTPA
Er-EOB-DTPA wird in der für die MR-Diagnostik üblichen Formulierung und in der für die MR-Diagnostik üblichen Dosierung von 0,01 bis 0,3 mmol/kg Körpergewicht intravenös verabreicht.
Die Aufnahme erfolgt 30 min bis 1 h nach Verabreichung in der für Gd-DTPA beschriebenen Verfahrensweise. Anstelle der Zwei- Wellenlängenaufnahme kann hier auch bei nur einer Energie (> 52 keV) gearbeitet werden. III. Darstellung des Intravasalraumes
1. Dy-DTPA-Polylysin
Dy-DTPA-Polylysin wird in der für Gd-DTPA in der MR-Diagnostik üblichen Formulierung und Dosis intravenös verabreicht (G. Schuhmann-Giampieri, H. Schmitt-Willich, T. Frenzel, W.R. Press, H.J. Weinmann, Invest. Radiol. 26: 969-74, (1991)).
Mit dieser Substanz ist unter Verwendung von Synchrotronstrahlung die Darstellung des Intravasalraumes möglich, da das Kontrastmittel in der Lage ist, über einen längeren Zeitraum innerhalb des Gefaßsystems zu verweilen. Mit schnellen Aufnahmefolgen kann darüberhinaus die Gewebedurchblutung exakt erfaßt werden. Hierfür gibt es im Bereich der klassischen Röntgenkontrastmittel und unter Verwendung von konventioneller Röntgenstrahlung kein Beispiel.
Die Aufnahme erfolgt in der für Gd-DTPA beschriebenen Verfahrensweise.

Claims

Patentansprüche:
1. Verwendung von wasserlöslichen, metallhaltigen Chelaten mit den
Elementen der Ordnungszahlen 40-42, 50, 51, 56-78, 80, 82 und 83 als Röntgenkontrastmittel bei Anwendung von Synchrotronstrahlung.
2. Verwendung nach Anspruch 1 in der für die MR-Diagnostik üblichen Formulierung und Dosierung.
3. Verwendung nach einem der Anspsüche 1 oder 2, wobei anstelle der Synchrotronstrahlung monochromatische Röntgenstrahlung, nahezu monochromatische Röntgenstrahlung oder Röntgenstrahlung oberhalb eines definierten Energiebereiches angewendet wird.
4. Verwendung nach einem der Ansprüche 1 bis 3, wobei die metallhaltigen Kontrastmittel Gd-DTPA, Gd-DOTA, Gd-HP-DO3A, Gd-EOB-DTPA, Gd-BOPTA, Gd-DTPA-BMA, Dy-DTPA-BMA, Gd- DTPA-Polylysin, Gd-DTPA-Kaskadenpolymere enthalten.
5. Verwendung von Chelaten nach einem der Ansprüche 1 bis 4, wobei das Molekulargewicht der hochmolekularen Verbindungen
> 10000 D beträgt.
6. Verwendung nach einem der Ansprüche 1 bis 5 zur Darstellung des Extrazellulärraumes.
7. Verwendung nach einem der Ansprüche 1 bis 5 zur Darstellung der Leber.
8. Verwendung nach einem der Ansprüche 1 bis 5 zur Darstellung des Intravasalraumes.
9. Verwendung nach einem der Ansprüche 1 bis 5 zur Darstellung von gesundem und pathologisch verändertem Gewebe.
EP95927704A 1994-07-26 1995-07-21 Verwendung von chelaten als röntgenkontrastmittel Withdrawn EP0772458A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4426438 1994-07-26
DE4426438A DE4426438A1 (de) 1994-07-26 1994-07-26 Verwendung von Chelaten als Röntgenkontrastmittel
PCT/EP1995/002901 WO1996003154A1 (de) 1994-07-26 1995-07-21 Verwendung von chelaten als röntgenkontrastmittel

Publications (1)

Publication Number Publication Date
EP0772458A1 true EP0772458A1 (de) 1997-05-14

Family

ID=6524171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95927704A Withdrawn EP0772458A1 (de) 1994-07-26 1995-07-21 Verwendung von chelaten als röntgenkontrastmittel

Country Status (7)

Country Link
EP (1) EP0772458A1 (de)
JP (1) JPH10502935A (de)
AU (1) AU3164395A (de)
DE (1) DE4426438A1 (de)
IL (1) IL114710A0 (de)
WO (1) WO1996003154A1 (de)
ZA (1) ZA956227B (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19606326A1 (de) * 1995-02-09 1996-08-22 Schering Ag Kontrastmittelhaltige Liposomenformulierung sowie deren Verwendung für die In-vivo-Diagnostik, insbesondere für die Darstellung des Intravasalraumes
EP1136082A1 (de) * 2000-03-24 2001-09-26 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Lokalen Arzneistoffabgabe
DE10118792B4 (de) * 2001-04-05 2005-12-22 Schering Ag Anordnung zur Aufnahme von Projektionsmammogrammen und Verwendung der Anordnung für die Projektionsmammographie
CN100456950C (zh) * 2003-06-20 2009-02-04 希尔氏宠物营养品公司 碘在制备用于预防猫的甲状腺机能亢进的饮食中的用途
US8501223B2 (en) 2003-06-20 2013-08-06 Hill's Pet Nutrition, Inc. Methods for dietary management of cats to avoid hyperthyroidism
US9132207B2 (en) 2009-10-27 2015-09-15 Spine Wave, Inc. Radiopaque injectable nucleus hydrogel compositions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432370A (en) * 1981-10-14 1984-02-21 The Board Of Trustees Of The Leland Stanford Junior University Method and means for minimally invasive angiography using mono-chromatized synchrotron radiation
US4478816A (en) * 1982-06-07 1984-10-23 Georgetown University Rare earth/chelating agent complex for digital fluoroscopy
DE3938992A1 (de) * 1989-11-21 1991-05-23 Schering Ag Kaskadenpolymer-gebundene komplexbildner, deren komplexe und konjugate, verfahren zu ihrer herstellung und diese enthaltende pharmazeutische mittel
US5324503A (en) * 1992-02-06 1994-06-28 Mallinckrodt Medical, Inc. Iodo-phenylated chelates for x-ray contrast

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9603154A1 *

Also Published As

Publication number Publication date
WO1996003154A1 (de) 1996-02-08
AU3164395A (en) 1996-02-22
DE4426438A1 (de) 1996-02-01
ZA956227B (en) 1996-03-14
JPH10502935A (ja) 1998-03-17
IL114710A0 (en) 1995-11-27

Similar Documents

Publication Publication Date Title
DE69313148T2 (de) Röntgenologischer Bilddarstellungsapparat
DE102005052368B4 (de) Röntgensystem zur Erstellung diagnostischer Röntgendarstellungen unter Applikation von Kontrastmitteln
DE69121562T3 (de) Kontrastmittel enthaltend einen nicht-ionischen kontrast Wirkstoff und Sodium und Kalzium Sälze
DE2717819A1 (de) Kontrastmedium fuer roentgenlicht
DE102005026940A1 (de) Röntgenanordnung zur Bilddarstellung eines Untersuchungsobjektes und Verwendung der Röntgenanordnung
DE69033953T2 (de) Kolloidale radiomarkierte zusammensetzungen, deren anwendung und verfahren zu deren herstellung
DE69020208T2 (de) Kontrastmittel.
EP0772458A1 (de) Verwendung von chelaten als röntgenkontrastmittel
EP0994729B1 (de) Verwendung von intravenösen kontrastmitteln für die projektionsmammographie
DE2708324A1 (de) Radioaktiv markiertes scanningmittel
Schmitz et al. Evaluation of gadobutrol in a rabbit model as a new lanthanide contrast agent for computed tomography
WO1997005904A2 (de) Verwendung von metall-clustern als kontrastmittel oder strahlentherapeutikum
DE4426439C1 (de) Kontrastmittel zur Darstellung der Leber
WO2005034755A1 (de) Röntgenanordnung und röntgenkontrastverfahren zur bildgebung an einem mindestens ein röntgenkontrastgebendes element enthaltenden untersuchungsobjekt sowie verwendung der röntgenanordnung
DE1932231A1 (de) Diagnostisches und therapeutisches Praeparat auf der Basis eines chelatgebundenen Radio-Nuclids
DE69428554T2 (de) Mittel zum Vermeiden des Verklebens von Thallium 201 zu einer Container
DE19606326A1 (de) Kontrastmittelhaltige Liposomenformulierung sowie deren Verwendung für die In-vivo-Diagnostik, insbesondere für die Darstellung des Intravasalraumes
DE10118792B4 (de) Anordnung zur Aufnahme von Projektionsmammogrammen und Verwendung der Anordnung für die Projektionsmammographie
DE102022205295B4 (de) Verfahren zur Mehrenergie-Röntgenbildgebung, Röntgeneinrichtung, Behandlungssystem, Computerprogramm und elektronisch lesbarer Datenträger
DE19627309C2 (de) Wäßrige injizierbare Formulierungen verwendbar als Kontrastmittel
DE2124751A1 (de) Verfahren zur Herstellung eines diagnostischen Präparats auf Basis eines mit 99mTc markierten Eisenkomplexes
Wilcox et al. Effect of intravenous contrast material on the integrity of the blood-brain barrier: experimental study.
Rösler et al. Das Hirnszintigramm als Notfalluntersuchung?
DE3524004A1 (de) Generator fuer kurzlebige radionuclide
Schumann Time and dose dependence of DNA damage induced by internal irradiation with various radionuclides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19980522