EP0770264B1 - Systeme magnetique pour gyrotrons - Google Patents

Systeme magnetique pour gyrotrons Download PDF

Info

Publication number
EP0770264B1
EP0770264B1 EP95924292A EP95924292A EP0770264B1 EP 0770264 B1 EP0770264 B1 EP 0770264B1 EP 95924292 A EP95924292 A EP 95924292A EP 95924292 A EP95924292 A EP 95924292A EP 0770264 B1 EP0770264 B1 EP 0770264B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
gyrotrons
permanent magnet
steady
axial magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95924292A
Other languages
German (de)
English (en)
Other versions
EP0770264A1 (fr
Inventor
Arnold MÖBIUS
Julius Pretterebner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP0770264A1 publication Critical patent/EP0770264A1/fr
Application granted granted Critical
Publication of EP0770264B1 publication Critical patent/EP0770264B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/10Magnet systems for directing or deflecting the discharge along a desired path, e.g. a spiral path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2225/00Transit-time tubes, e.g. Klystrons, travelling-wave tubes, magnetrons
    • H01J2225/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J2225/025Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators with an electron stream following a helical path

Definitions

  • the invention relates to a magnet system for gyrotrons for production the axial magnetic direct field between the emitter and collector area.
  • the purpose of the invention is that the operation is complex powered gyrotron magnet system, be it conventional or superconducting electromagnets, thanks to a maintenance-free Permanent magnet system to replace without constructive Conversion measures on the gyrotron tube itself would be necessary.
  • Gyrotrons are sources for the generation of high microwave powers at high frequencies, such as those used to heat fusion plasmas are needed. Typical orders of magnitude are 1 MW output power and frequencies in the range of 100 GHz.
  • gyrotrons currently have an electrical one Efficiency of 50% reached (operation in the first Harmonics of the cyclotron frequency). Another increase it is not so urgent at least at the moment. Indeed are gyrotrons for industrial use such. B. Surface coatings and ceramic sintering interesting, see above that the question of higher efficiency and associated with it also the question of lower cooling capacity required and lower Material expenditure gets economic importance.
  • Parameters of such gyrotrons are relatively lower frequencies (e.g. 30 GHz) at low powers (e.g. 10 kW). Size Losses of efficiency arise in the one serving as an interaction space Gyrotron resonator, the largest cooling effort arises on Collector, the second largest cooling effort is created with normal conductive Magnet working gyrotrons in the magnet. The Losses in the magnet can be reduced by using permanent magnets decrease drastically.
  • the invention has for its object the previously used supra- or normal conducting magnets through permanent magnet arrangements to replace the - unlike previously designed Permanent magnet arrangements - neither additional scientific or require construction work in the gyrotron tube nor the use of constructive developments Previously available gyrotrons (such as equipment with prestressed Restrict collectors) or make them impossible. In addition are said to be electron beam reflections and electron beam instabilities be avoided in the gyrotron.
  • Subclaim 2 characterizes the simplest, namely symmetrical, but also a more material-intensive construction the permanent magnet system (7).
  • Claim 3 indicates a material-saving, asymmetrical Structure of the permanent system 7, with which one has a strong Magnetic field reversal generated outside the electron beam range, but which has no influence.
  • Figure 1 shows the basic structure of a gyrotron with the invention Device for generating the static magnetic field.
  • Figure 2 shows the basic desired dependence of the magnetic Leading field along the gyrotron axis.
  • Figure 3a and 3b and 4a and 4b the basic structure of the Device according to the invention for generating the static magnetic field and the field along the axis.
  • the electrons propagate as a hollow beam on helical tracks - guided by a static magnetic field - From the cathode 1 to the resonator (11) and leave it as a "used" beam to the collector (13), where the the resulting heat must be dissipated.
  • B * R 2nd const
  • ⁇ and ⁇ are predetermined speed ratios and magnetic field in the resonator 11 and a selectable (triode) or fixed (diode) compression ratio (ratio of the hollow beam radii)
  • m is the relativistic mass of the electrons with the elementary charge e
  • B is the magnetic flux density.
  • the required magnetic field in the first harmonic is approximately 1.1 T in the second harmonic approximately 0.55 T.
  • the field sought along the gyrotron axis (8) can be seen in FIG. 2.
  • Prestressed collectors are necessary to increase the efficiency.
  • the ratio of the energy taken from the electrons to the original energy is the electrical efficiency ⁇ ei .
  • the overall efficiency can now be increased by letting the beam strike a prestressed collector, whereby part of the energy of the beam used is recovered with the efficiency ⁇ c .
  • prestressed collectors is practically impossible or drastically complicated by a reversal of the sign of the axial magnetic guide field along the electron beam path.
  • Laminar cathodes should also be used on the cathode side to be able to and to keep adjustment problems low - in the area the cathode (1) the axial magnetic field locally constant be, see Figure 2.
  • Figure 1 shows the basic schematic structure of a gyrotron.
  • Figure 2 shows, as already mentioned, the course of the desired axial magnetic constant field in the gyrotron areas: Emitter (9), compression area (10), resonator (11), decompression area (12) and Collector (13).
  • the wavy course of the magnetic flux density is more or less provoked depending on the interpretation (see DE 42 36 149 A1), namely through the structure of the inner surface on the permanent magnets (15, 14, 15).
  • the field strength about 5 - 25% of the axial constant field is in the emitter region in the resonator area.
  • Figure 3a shows a symmetrical arrangement of the permanent magnet system 7. It is therefore only the right half as a computer printout shown, since it is the one relevant for the gyrotron Magnetic field line course shows.
  • the radially polarized middle one Magnet 14 better the drawn axial half is over Brackets, which are not shown, with the right, axially polarized magnet (15), over the common conical surfaces in touch.
  • the course of the constant field depending on the z-axis, 3b shows part of the gyrotron axis 8.
  • This The flux density curve is point symmetrical to the axis origin and there also has only one zero crossing (stagnation point) Field reversal.
  • the radially polarized ones shown in Fig. 3a are Permanent magnet half and the right of it subsequent axially polarized permanent magnet (15) basically suitable a magnetic DC field without zero crossing to generate in the gyrotron area. Only the weaker is missing DC field for the emitter area. The not hinted at The left half essentially serves to erupt the Prevent field.
  • the permanent magnet system (7) in Figure 4a meets the requirements of the constant field in the gyrotron, with it in particular Magnetic material saved. It consists of the central, radially polarized, ring-shaped permanent magnets (14). On the right (collector side) in the figure, the axially closes polarized, ring-shaped permanent magnet (15). Left closes the magnetic arrangement blocking the outbreak of the field on. This geometric shape of the enables the required field structure in the gyrotron area.
  • the low DC field in the emitter zone is due to the overlay of the small annular, axially polarized permanent magnet fully achieved with a rectangular longitudinal section.
  • the field is thus more complete through the borehole of the Magnet system forced.
  • a sign reversal of the axial Magnetic field is not found in the gyrotron area or only of minor importance Strength instead and only once.
  • the electron beam from the emitter (9) to the collector (13) be stably managed.
  • the field is thus more complete through the borehole of the Magnet system forced.
  • a sign reversal of the axial Magnetic field is not found in the gyrotron area or only of minor importance Strength instead and only once.
  • In order to the electron beam can be stable from the emitter to the collector be performed.

Landscapes

  • Microwave Tubes (AREA)

Claims (7)

  1. Système d'aimants pour des gyrotrons, se composant d'un système d'aimants permanents (7) pour générer un champ magnétique continu axial, qui conduit les électrons sortant de l'émetteur (9),
    caractérisé en ce que
    le système d'aimants permanents (7) se compose d'un aimant annulaire (14) central à polarisation radiale, d'un collecteur (13) appliqué contre les faces frontales, d'aimants annulaires (15) à polarisation axiale et d'un dispositif d'aimant annulaire appliqué contre l'autre face frontale, ce dernier étant un système partiel bloquant la rupture du champ magnétique,
    les aimants partiels du système d'aimants permanents (7) étant directement en contact par leur surface en regard, la géométrie des aimants annulaires (15, 14, 15) et leur contrainte mécanique réciproque au niveau du résonateur (11) générant un champ magnétique constant ou à ondulations prédéterminées, et arrivant jusque dans la plage de collecteur (13) ou d'émetteur, sans inversion de champ magnétique ou en tous les cas une inversion de champ magnétique, axial, facile à compenser,
    l'inversion de champ du champ continu magnétique axial se produisant dans le prolongement de la plage d'émetteur en dehors de la plage des trajectoires des électrons.
  2. Système magnétique pour générer un champ magnétique axial continu pour des gyrotrons, selon la revendication 1,
    caractérisé en ce que
    le système d'aimants permanents (7) est symétrique par rapport à un axe perpendiculaire à l'axe du système.
  3. Système d'aimants pour générer le champ continu axial magnétique pour des gyrotrons, selon la revendication 1,
    caractérisé en ce que
    le système d'aimants permanents (7) a une structure asymétrique et génère une forte inversion de champ magnétique dans la plage d'émetteur prolongée, en dehors de la formation des électrons.
  4. Système d'aimants pour générer le champ continu axial magnétique pour des gyrotrons, selon l'une quelconque des revendications 2 et 3,
    caractérisé en ce que
    l'aimant annulaire (15) à polarisation axiale, situé vers le collecteur (13), présente une surface d'enveloppe intérieure structurée qui donne au tracé de champ magnétique continu, dans la plage du résonateur, une structure fine prédéterminée.
  5. Système d'aimants pour générer le champ continu axial magnétique pour des gyrotrons, selon la revendication 4,
    caractérisé en ce qu'
    au niveau de l'émetteur (9), il y a un aimant permanent annulaire à polarisation axiale, qui, par superposition, génère dans la zone d'émetteur, un champ magnétique continu, plus faible, mais localement constant.
  6. Système d'aimants pour générer le champ continu axial magnétique pour des gyrotrons, selon la revendication 5,
    caractérisé en ce que
    pour corriger l'intensité du champ magnétique axial, au moins un solénoïde alimenté en courant est combiné au système d'aimants permanents (7).
  7. Système d'aimants pour générer le champ continu axial magnétique pour des gyrotrons, selon la revendication 5,
    caractérisé en ce que
    pour corriger le tracé axial de champ magnétique et pour conduire le flux dans la plage du gyrotron, des configurations à fer doux sont fixées sur le système d'aimants permanents (7).
EP95924292A 1994-07-09 1995-06-20 Systeme magnetique pour gyrotrons Expired - Lifetime EP0770264B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4424230A DE4424230C2 (de) 1994-07-09 1994-07-09 Magnetsystem für Gyrotrons
DE4424230 1994-07-09
PCT/EP1995/002381 WO1996002064A1 (fr) 1994-07-09 1995-06-20 Systeme magnetique pour gyrotrons

Publications (2)

Publication Number Publication Date
EP0770264A1 EP0770264A1 (fr) 1997-05-02
EP0770264B1 true EP0770264B1 (fr) 1998-06-10

Family

ID=6522737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95924292A Expired - Lifetime EP0770264B1 (fr) 1994-07-09 1995-06-20 Systeme magnetique pour gyrotrons

Country Status (4)

Country Link
US (1) US5828173A (fr)
EP (1) EP0770264B1 (fr)
DE (2) DE4424230C2 (fr)
WO (1) WO1996002064A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3275166B2 (ja) * 1997-02-28 2002-04-15 住友重機械工業株式会社 プラズマビームの偏り修正機構を備えた真空成膜装置
US6552490B1 (en) * 2000-05-18 2003-04-22 Communications And Power Industries Multiple stage depressed collector (MSDC) klystron based amplifier for ground based satellite and terrestrial communications
US7764020B2 (en) * 2006-07-20 2010-07-27 Barnett Larry R Electro-permanent magnet for power microwave tubes
RU206633U1 (ru) * 2020-01-28 2021-09-20 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина") Магнитная фокусирующая система

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL298777A (fr) * 1962-10-04 1900-01-01
US3450930A (en) * 1966-11-14 1969-06-17 Varian Associates Permanent magnet focused linear beam tube employing a compensating magnet structure between the main magnet and the beam collector
DE1959789C3 (de) * 1969-11-28 1978-11-23 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Dauermagnetsystem
US4395655A (en) * 1980-10-20 1983-07-26 The United States Of America As Represented By The Secretary Of The Army High power gyrotron (OSC) or gyrotron type amplifier using light weight focusing for millimeter wave tubes
US4395656A (en) * 1980-12-24 1983-07-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Gyrotron transmitting tube
US4605911A (en) * 1984-10-24 1986-08-12 The United States Of America As Represented By The Secretary Of The Air Force Magnetic bias and delay linearity in a magnetostatic wave delay line
DE4236149C2 (de) * 1992-10-27 1995-11-02 Karlsruhe Forschzent Gyrotron mit einer Einrichtung zur Erhöhung des Wirkungsgrads
US5576679A (en) * 1994-10-25 1996-11-19 Shin-Etsu Chemical Co., Ltd. Cylindrical permanent magnet unit suitable for gyrotron

Also Published As

Publication number Publication date
EP0770264A1 (fr) 1997-05-02
US5828173A (en) 1998-10-27
DE4424230A1 (de) 1996-01-18
DE4424230C2 (de) 1996-08-14
WO1996002064A1 (fr) 1996-01-25
DE59502526D1 (de) 1998-07-16

Similar Documents

Publication Publication Date Title
DE966270C (de) Elektronenentladungseinrichtung zur Erzeugung von ultrahochfrequenten Schwingungen
EP2540143B1 (fr) Accélérateur de particules chargées
DE2757079A1 (de) Linearbeschleuniger
EP0770264B1 (fr) Systeme magnetique pour gyrotrons
DE1123773B (de) Magnetisches Fokussierungssystem zur gebuendelten Fuehrung des Elektronenstrahls einer Laufzeitroehre
DE2914533C3 (de) Rückwärtswellen-Oszillatorröhre
DE2901554A1 (de) Permanentmagnetanordnung, damit aufgebauter offener permanentmagnetkreis und mit diesem ausgestattete kreuzfeld-wechselwirkungs-einrichtung
DE3050257C1 (de) Alternierendes periodisches magnetisches Fokussiersystem
DE3134582A1 (de) Querenergieausgleicher fuer gyrotrone
DE3603149A1 (de) Sekundaeremissions-kathode sowie mit einer solchen kathode ausgestattete roehre
DE3525275A1 (de) Mikrowellenroehre
DE3919210A1 (de) Hochfrequenzionenbeschleuniger mit variabler energie
DE102010008992A1 (de) Gleichspannungs-Hochspannungsquelle und Teilchenbeschleuniger
DE2513975A1 (de) Wechselstrom-energie-konverter
DE2427060B2 (de) Wechselstrom-energie-konverter
DE1297243B (de) Zyklotronwellen-Elektronenstrahlverstaerkerroehre
DE705879C (de) Elektrisches Entladungsgefaess zur Vielfachbeschleunigung von Ladungstraegern
DE666136C (de) Verfahren zum Betrieb einer Roehre mit Laufzeitschwingungen
DE3813460A1 (de) Elektronenstrahlwiggler mit kurzer periode
DE3644797C2 (fr)
DE761408C (de) Schaltungsanordnung zur Erzeugung ultrahochfrequenter elektromagnetischer Schwingungen mittels einer Magnetfeldroehre
DE102010008993A1 (de) Beschleuniger für geladene Teilchen
DE699676C (de) Frequenzvervielfachung mit Doppelsystem-Magnetronroehren
DE923685C (de) Magnetfeldroehre
DE1466153A1 (de) Elektronenhalbleiteranordnung fuer Mikrowellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971002

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59502526

Country of ref document: DE

Date of ref document: 19980716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980910

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000629

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010501

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010530

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL