EP0770264B1 - Systeme magnetique pour gyrotrons - Google Patents
Systeme magnetique pour gyrotrons Download PDFInfo
- Publication number
- EP0770264B1 EP0770264B1 EP95924292A EP95924292A EP0770264B1 EP 0770264 B1 EP0770264 B1 EP 0770264B1 EP 95924292 A EP95924292 A EP 95924292A EP 95924292 A EP95924292 A EP 95924292A EP 0770264 B1 EP0770264 B1 EP 0770264B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic field
- gyrotrons
- permanent magnet
- steady
- axial magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/02—Electrodes; Magnetic control means; Screens
- H01J23/10—Magnet systems for directing or deflecting the discharge along a desired path, e.g. a spiral path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2225/00—Transit-time tubes, e.g. Klystrons, travelling-wave tubes, magnetrons
- H01J2225/02—Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
- H01J2225/025—Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators with an electron stream following a helical path
Definitions
- the invention relates to a magnet system for gyrotrons for production the axial magnetic direct field between the emitter and collector area.
- the purpose of the invention is that the operation is complex powered gyrotron magnet system, be it conventional or superconducting electromagnets, thanks to a maintenance-free Permanent magnet system to replace without constructive Conversion measures on the gyrotron tube itself would be necessary.
- Gyrotrons are sources for the generation of high microwave powers at high frequencies, such as those used to heat fusion plasmas are needed. Typical orders of magnitude are 1 MW output power and frequencies in the range of 100 GHz.
- gyrotrons currently have an electrical one Efficiency of 50% reached (operation in the first Harmonics of the cyclotron frequency). Another increase it is not so urgent at least at the moment. Indeed are gyrotrons for industrial use such. B. Surface coatings and ceramic sintering interesting, see above that the question of higher efficiency and associated with it also the question of lower cooling capacity required and lower Material expenditure gets economic importance.
- Parameters of such gyrotrons are relatively lower frequencies (e.g. 30 GHz) at low powers (e.g. 10 kW). Size Losses of efficiency arise in the one serving as an interaction space Gyrotron resonator, the largest cooling effort arises on Collector, the second largest cooling effort is created with normal conductive Magnet working gyrotrons in the magnet. The Losses in the magnet can be reduced by using permanent magnets decrease drastically.
- the invention has for its object the previously used supra- or normal conducting magnets through permanent magnet arrangements to replace the - unlike previously designed Permanent magnet arrangements - neither additional scientific or require construction work in the gyrotron tube nor the use of constructive developments Previously available gyrotrons (such as equipment with prestressed Restrict collectors) or make them impossible. In addition are said to be electron beam reflections and electron beam instabilities be avoided in the gyrotron.
- Subclaim 2 characterizes the simplest, namely symmetrical, but also a more material-intensive construction the permanent magnet system (7).
- Claim 3 indicates a material-saving, asymmetrical Structure of the permanent system 7, with which one has a strong Magnetic field reversal generated outside the electron beam range, but which has no influence.
- Figure 1 shows the basic structure of a gyrotron with the invention Device for generating the static magnetic field.
- Figure 2 shows the basic desired dependence of the magnetic Leading field along the gyrotron axis.
- Figure 3a and 3b and 4a and 4b the basic structure of the Device according to the invention for generating the static magnetic field and the field along the axis.
- the electrons propagate as a hollow beam on helical tracks - guided by a static magnetic field - From the cathode 1 to the resonator (11) and leave it as a "used" beam to the collector (13), where the the resulting heat must be dissipated.
- B * R 2nd const
- ⁇ and ⁇ are predetermined speed ratios and magnetic field in the resonator 11 and a selectable (triode) or fixed (diode) compression ratio (ratio of the hollow beam radii)
- m is the relativistic mass of the electrons with the elementary charge e
- B is the magnetic flux density.
- the required magnetic field in the first harmonic is approximately 1.1 T in the second harmonic approximately 0.55 T.
- the field sought along the gyrotron axis (8) can be seen in FIG. 2.
- Prestressed collectors are necessary to increase the efficiency.
- the ratio of the energy taken from the electrons to the original energy is the electrical efficiency ⁇ ei .
- the overall efficiency can now be increased by letting the beam strike a prestressed collector, whereby part of the energy of the beam used is recovered with the efficiency ⁇ c .
- prestressed collectors is practically impossible or drastically complicated by a reversal of the sign of the axial magnetic guide field along the electron beam path.
- Laminar cathodes should also be used on the cathode side to be able to and to keep adjustment problems low - in the area the cathode (1) the axial magnetic field locally constant be, see Figure 2.
- Figure 1 shows the basic schematic structure of a gyrotron.
- Figure 2 shows, as already mentioned, the course of the desired axial magnetic constant field in the gyrotron areas: Emitter (9), compression area (10), resonator (11), decompression area (12) and Collector (13).
- the wavy course of the magnetic flux density is more or less provoked depending on the interpretation (see DE 42 36 149 A1), namely through the structure of the inner surface on the permanent magnets (15, 14, 15).
- the field strength about 5 - 25% of the axial constant field is in the emitter region in the resonator area.
- Figure 3a shows a symmetrical arrangement of the permanent magnet system 7. It is therefore only the right half as a computer printout shown, since it is the one relevant for the gyrotron Magnetic field line course shows.
- the radially polarized middle one Magnet 14 better the drawn axial half is over Brackets, which are not shown, with the right, axially polarized magnet (15), over the common conical surfaces in touch.
- the course of the constant field depending on the z-axis, 3b shows part of the gyrotron axis 8.
- This The flux density curve is point symmetrical to the axis origin and there also has only one zero crossing (stagnation point) Field reversal.
- the radially polarized ones shown in Fig. 3a are Permanent magnet half and the right of it subsequent axially polarized permanent magnet (15) basically suitable a magnetic DC field without zero crossing to generate in the gyrotron area. Only the weaker is missing DC field for the emitter area. The not hinted at The left half essentially serves to erupt the Prevent field.
- the permanent magnet system (7) in Figure 4a meets the requirements of the constant field in the gyrotron, with it in particular Magnetic material saved. It consists of the central, radially polarized, ring-shaped permanent magnets (14). On the right (collector side) in the figure, the axially closes polarized, ring-shaped permanent magnet (15). Left closes the magnetic arrangement blocking the outbreak of the field on. This geometric shape of the enables the required field structure in the gyrotron area.
- the low DC field in the emitter zone is due to the overlay of the small annular, axially polarized permanent magnet fully achieved with a rectangular longitudinal section.
- the field is thus more complete through the borehole of the Magnet system forced.
- a sign reversal of the axial Magnetic field is not found in the gyrotron area or only of minor importance Strength instead and only once.
- the electron beam from the emitter (9) to the collector (13) be stably managed.
- the field is thus more complete through the borehole of the Magnet system forced.
- a sign reversal of the axial Magnetic field is not found in the gyrotron area or only of minor importance Strength instead and only once.
- In order to the electron beam can be stable from the emitter to the collector be performed.
Landscapes
- Microwave Tubes (AREA)
Claims (7)
- Système d'aimants pour des gyrotrons, se composant d'un système d'aimants permanents (7) pour générer un champ magnétique continu axial, qui conduit les électrons sortant de l'émetteur (9),
caractérisé en ce que
le système d'aimants permanents (7) se compose d'un aimant annulaire (14) central à polarisation radiale, d'un collecteur (13) appliqué contre les faces frontales, d'aimants annulaires (15) à polarisation axiale et d'un dispositif d'aimant annulaire appliqué contre l'autre face frontale, ce dernier étant un système partiel bloquant la rupture du champ magnétique,
les aimants partiels du système d'aimants permanents (7) étant directement en contact par leur surface en regard, la géométrie des aimants annulaires (15, 14, 15) et leur contrainte mécanique réciproque au niveau du résonateur (11) générant un champ magnétique constant ou à ondulations prédéterminées, et arrivant jusque dans la plage de collecteur (13) ou d'émetteur, sans inversion de champ magnétique ou en tous les cas une inversion de champ magnétique, axial, facile à compenser,
l'inversion de champ du champ continu magnétique axial se produisant dans le prolongement de la plage d'émetteur en dehors de la plage des trajectoires des électrons. - Système magnétique pour générer un champ magnétique axial continu pour des gyrotrons, selon la revendication 1,
caractérisé en ce que
le système d'aimants permanents (7) est symétrique par rapport à un axe perpendiculaire à l'axe du système. - Système d'aimants pour générer le champ continu axial magnétique pour des gyrotrons, selon la revendication 1,
caractérisé en ce que
le système d'aimants permanents (7) a une structure asymétrique et génère une forte inversion de champ magnétique dans la plage d'émetteur prolongée, en dehors de la formation des électrons. - Système d'aimants pour générer le champ continu axial magnétique pour des gyrotrons, selon l'une quelconque des revendications 2 et 3,
caractérisé en ce que
l'aimant annulaire (15) à polarisation axiale, situé vers le collecteur (13), présente une surface d'enveloppe intérieure structurée qui donne au tracé de champ magnétique continu, dans la plage du résonateur, une structure fine prédéterminée. - Système d'aimants pour générer le champ continu axial magnétique pour des gyrotrons, selon la revendication 4,
caractérisé en ce qu'
au niveau de l'émetteur (9), il y a un aimant permanent annulaire à polarisation axiale, qui, par superposition, génère dans la zone d'émetteur, un champ magnétique continu, plus faible, mais localement constant. - Système d'aimants pour générer le champ continu axial magnétique pour des gyrotrons, selon la revendication 5,
caractérisé en ce que
pour corriger l'intensité du champ magnétique axial, au moins un solénoïde alimenté en courant est combiné au système d'aimants permanents (7). - Système d'aimants pour générer le champ continu axial magnétique pour des gyrotrons, selon la revendication 5,
caractérisé en ce que
pour corriger le tracé axial de champ magnétique et pour conduire le flux dans la plage du gyrotron, des configurations à fer doux sont fixées sur le système d'aimants permanents (7).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4424230 | 1994-07-09 | ||
DE4424230A DE4424230C2 (de) | 1994-07-09 | 1994-07-09 | Magnetsystem für Gyrotrons |
PCT/EP1995/002381 WO1996002064A1 (fr) | 1994-07-09 | 1995-06-20 | Systeme magnetique pour gyrotrons |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0770264A1 EP0770264A1 (fr) | 1997-05-02 |
EP0770264B1 true EP0770264B1 (fr) | 1998-06-10 |
Family
ID=6522737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95924292A Expired - Lifetime EP0770264B1 (fr) | 1994-07-09 | 1995-06-20 | Systeme magnetique pour gyrotrons |
Country Status (4)
Country | Link |
---|---|
US (1) | US5828173A (fr) |
EP (1) | EP0770264B1 (fr) |
DE (2) | DE4424230C2 (fr) |
WO (1) | WO1996002064A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3275166B2 (ja) * | 1997-02-28 | 2002-04-15 | 住友重機械工業株式会社 | プラズマビームの偏り修正機構を備えた真空成膜装置 |
US6552490B1 (en) * | 2000-05-18 | 2003-04-22 | Communications And Power Industries | Multiple stage depressed collector (MSDC) klystron based amplifier for ground based satellite and terrestrial communications |
US7764020B2 (en) * | 2006-07-20 | 2010-07-27 | Barnett Larry R | Electro-permanent magnet for power microwave tubes |
RU206633U1 (ru) * | 2020-01-28 | 2021-09-20 | Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина") | Магнитная фокусирующая система |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL133615C (fr) * | 1962-10-04 | |||
US3450930A (en) * | 1966-11-14 | 1969-06-17 | Varian Associates | Permanent magnet focused linear beam tube employing a compensating magnet structure between the main magnet and the beam collector |
DE1959789C3 (de) * | 1969-11-28 | 1978-11-23 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Dauermagnetsystem |
US4395655A (en) * | 1980-10-20 | 1983-07-26 | The United States Of America As Represented By The Secretary Of The Army | High power gyrotron (OSC) or gyrotron type amplifier using light weight focusing for millimeter wave tubes |
US4395656A (en) * | 1980-12-24 | 1983-07-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Gyrotron transmitting tube |
US4605911A (en) * | 1984-10-24 | 1986-08-12 | The United States Of America As Represented By The Secretary Of The Air Force | Magnetic bias and delay linearity in a magnetostatic wave delay line |
DE4236149C2 (de) * | 1992-10-27 | 1995-11-02 | Karlsruhe Forschzent | Gyrotron mit einer Einrichtung zur Erhöhung des Wirkungsgrads |
US5576679A (en) * | 1994-10-25 | 1996-11-19 | Shin-Etsu Chemical Co., Ltd. | Cylindrical permanent magnet unit suitable for gyrotron |
-
1994
- 1994-07-09 DE DE4424230A patent/DE4424230C2/de not_active Expired - Fee Related
-
1995
- 1995-06-20 EP EP95924292A patent/EP0770264B1/fr not_active Expired - Lifetime
- 1995-06-20 DE DE59502526T patent/DE59502526D1/de not_active Expired - Fee Related
- 1995-06-20 WO PCT/EP1995/002381 patent/WO1996002064A1/fr active IP Right Grant
-
1996
- 1996-12-04 US US08/760,066 patent/US5828173A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE4424230C2 (de) | 1996-08-14 |
DE4424230A1 (de) | 1996-01-18 |
DE59502526D1 (de) | 1998-07-16 |
WO1996002064A1 (fr) | 1996-01-25 |
US5828173A (en) | 1998-10-27 |
EP0770264A1 (fr) | 1997-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE916328C (de) | Wanderfeldroehre | |
DE966270C (de) | Elektronenentladungseinrichtung zur Erzeugung von ultrahochfrequenten Schwingungen | |
EP2540143B1 (fr) | Accélérateur de particules chargées | |
DE2757079A1 (de) | Linearbeschleuniger | |
DE68918295T4 (de) | Elektronenkollektor für eine Elektronenröhre. | |
EP0770264B1 (fr) | Systeme magnetique pour gyrotrons | |
DE1123773B (de) | Magnetisches Fokussierungssystem zur gebuendelten Fuehrung des Elektronenstrahls einer Laufzeitroehre | |
DE2914533C3 (de) | Rückwärtswellen-Oszillatorröhre | |
DE2901554A1 (de) | Permanentmagnetanordnung, damit aufgebauter offener permanentmagnetkreis und mit diesem ausgestattete kreuzfeld-wechselwirkungs-einrichtung | |
DE3050257C1 (de) | Alternierendes periodisches magnetisches Fokussiersystem | |
DE3134582A1 (de) | Querenergieausgleicher fuer gyrotrone | |
DE3525275A1 (de) | Mikrowellenroehre | |
DE69204866T2 (de) | Modenwandler und Leistungsteiler-Einrichtung für eine Mikrowellenröhre, und Mikrowellenröhre mit einer solchen Einrichtung. | |
DE69111647T2 (de) | Lasersystem mit mehreren radialen Entladungskanälen. | |
DE69326110T2 (de) | Klystron mit hohlraumresonatorendstufe, die in tmoix-betriebsart (x 0) arbeitet | |
DE69021290T2 (de) | Mikrowellen-verstärker oder oszillator-anordnung. | |
DE69016712T2 (de) | Mikrowellengenerator mit einer virtuellen kathode. | |
DE3919210A1 (de) | Hochfrequenzionenbeschleuniger mit variabler energie | |
DE2513975A1 (de) | Wechselstrom-energie-konverter | |
DE2427060B2 (de) | Wechselstrom-energie-konverter | |
DE705879C (de) | Elektrisches Entladungsgefaess zur Vielfachbeschleunigung von Ladungstraegern | |
DE666136C (de) | Verfahren zum Betrieb einer Roehre mit Laufzeitschwingungen | |
DE3813460A1 (de) | Elektronenstrahlwiggler mit kurzer periode | |
DE761408C (de) | Schaltungsanordnung zur Erzeugung ultrahochfrequenter elektromagnetischer Schwingungen mittels einer Magnetfeldroehre | |
DE3689201T2 (de) | Laser-Vorrichtung und Verfahren. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19961016 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19971002 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG Ref country code: CH Ref legal event code: EP |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59502526 Country of ref document: DE Date of ref document: 19980716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980910 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980907 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000629 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20001020 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010501 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20010530 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020630 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020620 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |