EP0770264B1 - Magnetic system for gyrotrons - Google Patents

Magnetic system for gyrotrons Download PDF

Info

Publication number
EP0770264B1
EP0770264B1 EP95924292A EP95924292A EP0770264B1 EP 0770264 B1 EP0770264 B1 EP 0770264B1 EP 95924292 A EP95924292 A EP 95924292A EP 95924292 A EP95924292 A EP 95924292A EP 0770264 B1 EP0770264 B1 EP 0770264B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
gyrotrons
permanent magnet
steady
axial magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95924292A
Other languages
German (de)
French (fr)
Other versions
EP0770264A1 (en
Inventor
Arnold MÖBIUS
Julius Pretterebner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP0770264A1 publication Critical patent/EP0770264A1/en
Application granted granted Critical
Publication of EP0770264B1 publication Critical patent/EP0770264B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/10Magnet systems for directing or deflecting the discharge along a desired path, e.g. a spiral path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2225/00Transit-time tubes, e.g. Klystrons, travelling-wave tubes, magnetrons
    • H01J2225/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J2225/025Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators with an electron stream following a helical path

Definitions

  • the invention relates to a magnet system for gyrotrons for production the axial magnetic direct field between the emitter and collector area.
  • the purpose of the invention is that the operation is complex powered gyrotron magnet system, be it conventional or superconducting electromagnets, thanks to a maintenance-free Permanent magnet system to replace without constructive Conversion measures on the gyrotron tube itself would be necessary.
  • Gyrotrons are sources for the generation of high microwave powers at high frequencies, such as those used to heat fusion plasmas are needed. Typical orders of magnitude are 1 MW output power and frequencies in the range of 100 GHz.
  • gyrotrons currently have an electrical one Efficiency of 50% reached (operation in the first Harmonics of the cyclotron frequency). Another increase it is not so urgent at least at the moment. Indeed are gyrotrons for industrial use such. B. Surface coatings and ceramic sintering interesting, see above that the question of higher efficiency and associated with it also the question of lower cooling capacity required and lower Material expenditure gets economic importance.
  • Parameters of such gyrotrons are relatively lower frequencies (e.g. 30 GHz) at low powers (e.g. 10 kW). Size Losses of efficiency arise in the one serving as an interaction space Gyrotron resonator, the largest cooling effort arises on Collector, the second largest cooling effort is created with normal conductive Magnet working gyrotrons in the magnet. The Losses in the magnet can be reduced by using permanent magnets decrease drastically.
  • the invention has for its object the previously used supra- or normal conducting magnets through permanent magnet arrangements to replace the - unlike previously designed Permanent magnet arrangements - neither additional scientific or require construction work in the gyrotron tube nor the use of constructive developments Previously available gyrotrons (such as equipment with prestressed Restrict collectors) or make them impossible. In addition are said to be electron beam reflections and electron beam instabilities be avoided in the gyrotron.
  • Subclaim 2 characterizes the simplest, namely symmetrical, but also a more material-intensive construction the permanent magnet system (7).
  • Claim 3 indicates a material-saving, asymmetrical Structure of the permanent system 7, with which one has a strong Magnetic field reversal generated outside the electron beam range, but which has no influence.
  • Figure 1 shows the basic structure of a gyrotron with the invention Device for generating the static magnetic field.
  • Figure 2 shows the basic desired dependence of the magnetic Leading field along the gyrotron axis.
  • Figure 3a and 3b and 4a and 4b the basic structure of the Device according to the invention for generating the static magnetic field and the field along the axis.
  • the electrons propagate as a hollow beam on helical tracks - guided by a static magnetic field - From the cathode 1 to the resonator (11) and leave it as a "used" beam to the collector (13), where the the resulting heat must be dissipated.
  • B * R 2nd const
  • ⁇ and ⁇ are predetermined speed ratios and magnetic field in the resonator 11 and a selectable (triode) or fixed (diode) compression ratio (ratio of the hollow beam radii)
  • m is the relativistic mass of the electrons with the elementary charge e
  • B is the magnetic flux density.
  • the required magnetic field in the first harmonic is approximately 1.1 T in the second harmonic approximately 0.55 T.
  • the field sought along the gyrotron axis (8) can be seen in FIG. 2.
  • Prestressed collectors are necessary to increase the efficiency.
  • the ratio of the energy taken from the electrons to the original energy is the electrical efficiency ⁇ ei .
  • the overall efficiency can now be increased by letting the beam strike a prestressed collector, whereby part of the energy of the beam used is recovered with the efficiency ⁇ c .
  • prestressed collectors is practically impossible or drastically complicated by a reversal of the sign of the axial magnetic guide field along the electron beam path.
  • Laminar cathodes should also be used on the cathode side to be able to and to keep adjustment problems low - in the area the cathode (1) the axial magnetic field locally constant be, see Figure 2.
  • Figure 1 shows the basic schematic structure of a gyrotron.
  • Figure 2 shows, as already mentioned, the course of the desired axial magnetic constant field in the gyrotron areas: Emitter (9), compression area (10), resonator (11), decompression area (12) and Collector (13).
  • the wavy course of the magnetic flux density is more or less provoked depending on the interpretation (see DE 42 36 149 A1), namely through the structure of the inner surface on the permanent magnets (15, 14, 15).
  • the field strength about 5 - 25% of the axial constant field is in the emitter region in the resonator area.
  • Figure 3a shows a symmetrical arrangement of the permanent magnet system 7. It is therefore only the right half as a computer printout shown, since it is the one relevant for the gyrotron Magnetic field line course shows.
  • the radially polarized middle one Magnet 14 better the drawn axial half is over Brackets, which are not shown, with the right, axially polarized magnet (15), over the common conical surfaces in touch.
  • the course of the constant field depending on the z-axis, 3b shows part of the gyrotron axis 8.
  • This The flux density curve is point symmetrical to the axis origin and there also has only one zero crossing (stagnation point) Field reversal.
  • the radially polarized ones shown in Fig. 3a are Permanent magnet half and the right of it subsequent axially polarized permanent magnet (15) basically suitable a magnetic DC field without zero crossing to generate in the gyrotron area. Only the weaker is missing DC field for the emitter area. The not hinted at The left half essentially serves to erupt the Prevent field.
  • the permanent magnet system (7) in Figure 4a meets the requirements of the constant field in the gyrotron, with it in particular Magnetic material saved. It consists of the central, radially polarized, ring-shaped permanent magnets (14). On the right (collector side) in the figure, the axially closes polarized, ring-shaped permanent magnet (15). Left closes the magnetic arrangement blocking the outbreak of the field on. This geometric shape of the enables the required field structure in the gyrotron area.
  • the low DC field in the emitter zone is due to the overlay of the small annular, axially polarized permanent magnet fully achieved with a rectangular longitudinal section.
  • the field is thus more complete through the borehole of the Magnet system forced.
  • a sign reversal of the axial Magnetic field is not found in the gyrotron area or only of minor importance Strength instead and only once.
  • the electron beam from the emitter (9) to the collector (13) be stably managed.
  • the field is thus more complete through the borehole of the Magnet system forced.
  • a sign reversal of the axial Magnetic field is not found in the gyrotron area or only of minor importance Strength instead and only once.
  • In order to the electron beam can be stable from the emitter to the collector be performed.

Description

Die Erfindung betrifft ein Magnetsystem für Gyrotrons zur Erzeugung des axialen magnetischen Gleichfeldes zwischen Emitter- und Kollektorbereich.The invention relates to a magnet system for gyrotrons for production the axial magnetic direct field between the emitter and collector area.

Zweck der Erfindung ist es, das vom Betrieb her aufwendige strombetriebene Gyrotron-Magnetsystem, seien es konventionelle oder supraleitende Elektromagnete, durch ein wartungsfreies Permanentmagnetsystem zu ersetzen, ohne daß konstruktive Umbaumaßnahmen am Gyrotronrohr selbst notwendig wären.The purpose of the invention is that the operation is complex powered gyrotron magnet system, be it conventional or superconducting electromagnets, thanks to a maintenance-free Permanent magnet system to replace without constructive Conversion measures on the gyrotron tube itself would be necessary.

Gyrotrons sind Quellen zur Erzeugung von hohen Mikrowellenleistungen bei hohen Frequenzen, wie sie zur Heizung von Fusionsplasmen benötigt werden. Typische Größenordnungen liegen bei 1 MW Ausgangsleistung und Frequenzen im Bereich von 100 GHz.Gyrotrons are sources for the generation of high microwave powers at high frequencies, such as those used to heat fusion plasmas are needed. Typical orders of magnitude are 1 MW output power and frequencies in the range of 100 GHz.

Den grundsätzlichen Aufbau und die Beschreibung eines Gyrotrons zeigt Meinke-Gundlach in "Taschenbuch der Hochfrequenztechnik" (Springer Verlag Berlin Heidelberg New York Tokyo 1986) auf den Seiten M82 - M85. Gyrotron Oscillators lassen sich ohne besondern Aufwand in das Vakuumrohr und das das Führungsfeld erzeugende Magnetsystem zerlegen. Insbesondere Hochleistungsgyrotrons sind als Zusatzheizung für Fusionsplasmen vorgesehen (siehe Seiten S17 und S18).The basic structure and description of a gyrotron shows Meinke-Gundlach in "Taschenbuch der Hochfrequenztechnik" (Springer Verlag Berlin Heidelberg New York Tokyo 1986) on pages M82 - M85. Leave Gyrotron Oscillators yourself in the vacuum tube and the guide field without any special effort Disassemble the generating magnet system. Especially High-performance gyrotrons are used as additional heating for fusion plasmas provided (see pages S17 and S18).

Bisher gibt es lediglich theoretische Arbeiten zur Beherrschung von Elektronenstrahlinstabilitäten bei Gyrotrons. In Int. Journ. of Infrared and Millimeter Waves, Vol. 14, No. 4, 1993 ist ein Aufsatz von A. N. Kuftin et al. unter dem Titel: "Theory of Helical Electron Beams in Gyrotrons" veröffentlicht. Permanentmagnetsysteme zur Führung helikaler Elektronenstrahlen werden betrachtet. Das Permanentmagnetsystem besteht aus einem zentralen, axial polarisierten Permanentmagnet und an dessen beiden Stirnflächen ansetzende, gegensinnig radial polarisierte Permanentmagnete (Fig. 10 darin). Bei diesem System findet im Elektronenstrahlbereich des Gyrotrons eine starke magnetische Feldumkehr des Axialfeldes und ein starker Anstieg des Feldes an der Berandung statt.So far there are only theoretical works on mastery of electron beam instabilities in gyrotrons. In Int. Journ. of Infrared and Millimeter Waves, Vol. 14, No. 4, 1993 is an article by A. N. Kuftin et al. under the title: "Theory of Helical Electron Beams in Gyrotrons" published. Permanent magnet systems for guiding helical electron beams are considered. The permanent magnet system exists from a central, axially polarized permanent magnet and at its two end faces, in opposite directions, radially polarized permanent magnets (Fig. 10 therein). With this System finds one in the electron beam area of the gyrotron strong magnetic field reversal of the axial field and a sharp increase of the field on the edge instead of.

Sollen alle Elektronen gleiche Startbedingungen haben, erlaubt der starke Anstieg des Feldes im Bereich des Emitters darüber hinaus nur den Einsatz effektiv schmaler Emitterringe. Emitterring und Magnetfeld müssen exakt justiert werden.All electrons should have the same starting conditions, allowed the sharp rise in the field in the area of the emitter above furthermore only the use of effectively narrow emitter rings. Emitter ring and magnetic field must be adjusted exactly.

Die Feldumkehr am Kollektor zieht Beschränkungen bei der Auslegung des Kollektors insbesondere bei vorgespannten Kollektoren nach sich.The field reversal at the collector places restrictions on the design of the collector, especially in the case of preloaded collectors after itself.

Technisch betrachtet haben Gyrotrons derzeit einen elektrischen Wirkungsgrad von 50 % erreicht (Betrieb in der ersten Harmonischen der Zyklotronfrequenz). Eine weitere Erhöhung desselben ist zumindest derzeit nicht so drängend. Allerdings werden Gyrotrons für den industriellen Einsatz, wie z. B. Oberflächenbeschichtungen und Keramiksinterung interessant, so daß die Frage des höheren Wirkungsgrades und damit verbunden auch die Frage niedriger erforderlicher Kühleistung sowie geringerer Materialaufwand wirtschaftliche Bedeutung bekommt.Technically speaking, gyrotrons currently have an electrical one Efficiency of 50% reached (operation in the first Harmonics of the cyclotron frequency). Another increase it is not so urgent at least at the moment. Indeed are gyrotrons for industrial use such. B. Surface coatings and ceramic sintering interesting, see above that the question of higher efficiency and associated with it also the question of lower cooling capacity required and lower Material expenditure gets economic importance.

Parameter solcher Gyrotrons sind relativ niedrigere Frequenzen (z. B. 30 GHz) bei niedrigen Leistungen (z. B. 10 kW). Große Wirkungsgradeinbußen entstehen im als Wechselwirkungsraum dienenden Gyrotronresonator, der größte Kühlaufwand entsteht am Kollektor, der zweitgrößte Kühlaufwand entsteht bei mit normalleitenden Magneten arbeitenden Gyrotrons im Magneten. Die Verluste im Magneten lassen sich durch den Einsatz von Permanentmagneten drastisch verringern.Parameters of such gyrotrons are relatively lower frequencies (e.g. 30 GHz) at low powers (e.g. 10 kW). Size Losses of efficiency arise in the one serving as an interaction space Gyrotron resonator, the largest cooling effort arises on Collector, the second largest cooling effort is created with normal conductive Magnet working gyrotrons in the magnet. The Losses in the magnet can be reduced by using permanent magnets decrease drastically.

Der Erfindung liegt die Aufgabe zugrunde, die bisher verwendeten supra- oder normalleitenden Magnete durch Permanentmagnetanordnungen zu ersetzen, die - anders als bei bisher ausgelegten Permanentmagnetanordnungen - weder zusätzliche wissenschaftliche oder konstruktive Arbeiten im Gyrotronrohr erfordern noch die Verwendung konstruktiver Weiterentwicklungen bisher erhältlicher Gyrotrons (wie z. B. Ausrüstung mit vorgespannten Kollektoren) einschränken oder unmöglich machen. Zusätzlich sollen Elektronenstrahlreflexionen und Elektronenstrahlinstabilitäten im Gyrotron vermieden werden.The invention has for its object the previously used supra- or normal conducting magnets through permanent magnet arrangements to replace the - unlike previously designed Permanent magnet arrangements - neither additional scientific or require construction work in the gyrotron tube nor the use of constructive developments Previously available gyrotrons (such as equipment with prestressed Restrict collectors) or make them impossible. In addition are said to be electron beam reflections and electron beam instabilities be avoided in the gyrotron.

Die Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelost. Ein zentraler, radial polarisierter, ein zum Kollektorbereich (13) hinangebrachter, axial polarisierter Ringmagnet (15) und eine an der entgegengesetzten Stirnfläche des zentralen Ringmagneten (14) ansetzende, den Ausbruch des Feldes blockierende Ringmagnetanordnung (15) erzeugen den im Elektronenstrahlbereich erwünschten Magnetfeldverlauf grundsätzlich. Aufgrund des geforderten Feldverlaufs (Anspruch 4 z. B.) wird die Geometrie der Permanentmagnete(14, 15) mit Rechnerhilfe festgelegt. Eine starke, aber so nur bedeutungslose Feldumkehr findet nur noch außerhalb des Elektronenstrahlbereichs in Verlängerung des Emitters (9) statt. Eine bei dem Stand der Technik von Magnetsystemen zweite Umkehr des Magnetfeldes wird vermieden oder in seiner Amplitude bedeutungslos. Die mechanische Verspannung des Magnetsystems ist eine technisch bekannte Lösung.The object is achieved by the characterizing Features of claim 1 solved. A central, radial polarized, one brought to the collector area (13), axially polarized ring magnet (15) and one on the opposite End face of the central ring magnet (14) ring magnet arrangement blocking the outbreak of the field (15) generate the desired magnetic field profile in the electron beam area basically. Due to the required field course (Claim 4, for example), the geometry of the permanent magnets (14, 15) determined with computer help. A strong one, however so only meaningless field reversal only takes place outside of Electron beam area in extension of the emitter (9) instead. A second reversal in the prior art of magnet systems of the magnetic field is avoided or in its amplitude meaningless. The mechanical tension of the magnet system is a technically known solution.

Der Unteranspruch 2 kennzeichnet den einfachsten, nämlich symmetrischen, allerdings auch einen materialintensiveren Aufbau des Permanentmagnetsystems (7).Subclaim 2 characterizes the simplest, namely symmetrical, but also a more material-intensive construction the permanent magnet system (7).

Anspruch 3 kennzeichnet eine materialsparende, assymmetrische Struktur des Permanentsystems 7, mit der man eine starke Magnetfeldumkehr außerhalb des Elektronenstrahlbereichs erzeugt, die aber keinen Einfluß hat.Claim 3 indicates a material-saving, asymmetrical Structure of the permanent system 7, with which one has a strong Magnetic field reversal generated outside the electron beam range, but which has no influence.

Mit einem einfachen, axial polarisierten Permanentmagnet im Emitterbereich läßt sich das axiale Emittergleichfeld, das erheblich schwächer als das axiale Resonatorgleichfeld ist, einstellen (Anspruch 5).With a simple, axially polarized permanent magnet in the Emitter area can be the axial emitter constant field, which is considerable is weaker than the axial resonator constant field (Claim 5).

Zur Feldkorrektur und Flußkonzentration finden strombetriebene Solenoide und Weicheisenbaugruppen noch Einsatz (Anspruch 6 und 7). Weitere bekannte Korrekturmöglichkeiten am axialen Gleichmagnetfelds können mit verschiebbaren Solenoiden erreicht werden.For field correction and flux concentration, there are power operated Solenoids and soft iron assemblies still in use (claims 6 and 7). Other known correction options on the axial DC magnetic fields can be achieved with sliding solenoids will.

Im folgenden soll die Vorrichtung erläutert und nähers begründet werden. Hierzu sind in der Zeichnung sechs Figuren aufgenommen werden.In the following the device is to be explained and explained in more detail will. For this purpose, six figures are included in the drawing will.

Es zeigen:Show it:

Figur 1 den grundsätzlichen Aufbau eines Gyrotrons mit der erfindungsgemäßen Einrichtung zur Erzeugung des statischen Magnetfeldes.Figure 1 shows the basic structure of a gyrotron with the invention Device for generating the static magnetic field.

Figur 2 die grundsätzliche angestrebte Abhängigkeit des magnetischen Führungsfeldes längs der Gyrotronachse.Figure 2 shows the basic desired dependence of the magnetic Leading field along the gyrotron axis.

Figur 3a und 3b sowie 4a und 4b den grundsätzlichen Aufbau der erfindungsgemäßen Einrichtung zur Erzeugung des statischen Magnetfeldes und das Feld längs der Achse.Figure 3a and 3b and 4a and 4b the basic structure of the Device according to the invention for generating the static magnetic field and the field along the axis.

Im Gyrotron, Fig. 1 propagieren die Elektronen als Hohlstrahl auf helixförmigen Bahnen - von einem statischen Magnetfeld geführt - von der Kathode 1 zum Resonator (11) und verlassen ihn als "verbrauchten" Strahl zum Kollektor (13), wo die entstehende Wärme abgeführt werden muß.In the gyrotron, Fig. 1, the electrons propagate as a hollow beam on helical tracks - guided by a static magnetic field - From the cathode 1 to the resonator (11) and leave it as a "used" beam to the collector (13), where the the resulting heat must be dissipated.

Der Radius des Elektronenhohlstrahls R wird vom magnetischen Führungsfeld B durch die Beziehung B*R2 = const festgelegt (siehe hierzu und im folgenden Gyrotron Oscillators, Their Principles and Practice, edited by C.J. Edgcombe, Taylor & Francis, 1993; insbesondere Chapter 5 von B. Piosczyk). Bei vorgegebenen Geschwindigkeitsverhältnis α und Magnetfeld im Resonator 11 und einem wählbaren (Triode) oder festgelegten (Diode) Kompressionsverhältnis (Verhältnis der Hohlstrahlradien) liegt auch das axiale Magnetfeld am Emitter 9 fest. Bei auf helixförmigen Bahnen propagierenden Elektronen wird das Verhältnis von transversaler zu axialer Geschwindigkeitskomponente α = v /v durch die Gleichung v 2/B = const festgelegt. Erreicht die transversale Geschwindigkeit die Gesamtgeschwindigkeit, so wird der Elektronenstrahl reflektiert (magnetischer Spiegel).The radius of the hollow electron beam R is determined by the magnetic guide field B through the relationship B * R 2nd = const (see Gyrotron Oscillators, Their Principles and Practice, edited by CJ Edgcombe, Taylor & Francis, 1993; especially Chapter 5 by B. Piosczyk). With a predetermined speed ratio α and magnetic field in the resonator 11 and a selectable (triode) or fixed (diode) compression ratio (ratio of the hollow beam radii), the axial magnetic field at the emitter 9 is also fixed. In the case of electrons propagating on helical orbits, the ratio of the transverse to the axial velocity component becomes α = v / v through the equation v 2nd / B = const fixed. If the transverse speed reaches the total speed, the electron beam is reflected (magnetic mirror).

Das statische Magnetfeld dient nicht nur zur Führung des Elektronenstrahls, sondern legt gemäß der Gleichung ωc = e*B/m die Zyklotronfrequenz der Elektronen im Resonator 11 fest. m ist die relativistische Masse der Elektronen mit der Elementarladung e, B ist die magnetische Flußdichte. Die vom Gyrotron erzeugte Frequenz ω liegt bei ω = n*ωc n ist ganzzahling und wird als Ordnung der Zyklotronharmonischen bezeichnet. Bei Gyrotrons, die Mikrowellenleistung bei 30 GHz erzeugen, beträgt das erforderliche Magnetfeld in der ersten Harmonischen etwa 1,1 T in der zweiten Harmonischen etwa 0,55 T. Das längs Gyrotronachse (8) angestrebte Feld ist in Fig. 2 zu sehen.The static magnetic field not only serves to guide the electron beam, but also places according to the equation ω c = e * B / m the cyclotron frequency of the electrons in the resonator 11 fixed. m is the relativistic mass of the electrons with the elementary charge e, B is the magnetic flux density. The frequency ω generated by the gyrotron is included ω = n * ω c n is an integer and is called the order of the cyclotron harmonic. In the case of gyrotrons which generate microwave power at 30 GHz, the required magnetic field in the first harmonic is approximately 1.1 T in the second harmonic approximately 0.55 T. The field sought along the gyrotron axis (8) can be seen in FIG. 2.

Eine Erzeugung des Magnetfeldes mit Supraleitern erfordert einen hohen apparativen Aufwand und im Betrieb einen ständigen Helium oder Stickstoffbedarf. Eine Erzeugung des Magnetfeldes mit normalleitenden Magneten erfordert hohe Anschluß- und Kühlleistungen. Der Energieverbrauch der Magnete ist gegenüber der erzeugten Leistung nicht zu vernachlässigen.Generation of the magnetic field with superconductors is required a high expenditure on equipment and a constant operation Helium or nitrogen requirement. Generation of the magnetic field with normal conducting magnets requires high connection and Cooling capacity. The energy consumption of the magnets is opposite not to neglect the generated power.

Eine Erzeugung des Magnetfeldes mit Permanentmagneten brachte bei den bisher untersuchten Anordnungen grundsätzliche Probleme mit sich. Diese Anordnungen bestehen im Prinzip aus einem mittleren, axial polarisierten und zwei radial polarisierten Magneten (siehe Fig. 10 aus Kuftin, Int. J. of Infrared and Millimeter Waves). Die Nachteile solcher Systeme sind Nulldurchgänge auf der Achse und ungenutzte Felder (schlechter Wirkungsgrad), sowie steile Abfälle an den Rändern. Die steilen Abfälle an den Rändern haben für die Emitterseite den Nachteil, daß die Justage Gyrotron - Magnet kritisch und die effektive Emitterbreite eingeschränkt wird. Der Nulldurchgang hat zur Folge, daß bei zunehmend negativen Magnetfeld längs der Achse der Elektronenstrahl reflektiert werden kann (magnetischer Spiegel). Die Auslegung des Kollektors wird dadurch erschwert. Der Einsatz vorgespannter Kollektoren zur Energierückgewinnung wird praktisch unmöglich.A generation of the magnetic field with permanent magnets brought fundamental problems with the arrangements examined so far with yourself. In principle, these arrangements consist of one middle, axially polarized and two radially polarized Magnets (see Fig. 10 from Kuftin, Int. J. of Infrared and Millimeter waves). The disadvantages of such systems are zero crossings on the axis and unused fields (worse Efficiency), as well as steep waste at the edges. The steep Waste on the edges have the disadvantage for the emitter side that the adjustment gyrotron magnet is critical and the effective one Emitter width is restricted. The zero crossing has to Consequence that with an increasingly negative magnetic field along the axis the electron beam can be reflected (magnetic Mirror). This makes the design of the collector more difficult. The use of prestressed collectors for energy recovery becomes practically impossible.

Zur Steigerung des Wirkungsgrades sind jedoch vorgespannte Kollektoren notwendig. Das Verhältnis der den Elektronen abgenommenen Energie zur ursprünglichen Energie ist der elektrische Wirkungsgrad ηei. Der Gesamtwirkungsgrad läßt sich nun dadurch steigern, daß man den Strahl auf einem vorgespannnten Kollektor auftreffen läßt, wodurch ein Teil der Energie des verbrauchten Strahls mit dem Wirkungsgrad ηc zurückgewonnen wird. Der Gesamtwirkungsgrad eines Gyrotrons mit vorgespanntem Kollektor ist: η = ηel/[1 - ηc (1 - ηel)] Der Einsatz vorgespannter Kollektoren wird durch eine Vorzeichenumkehr des axialen magnetischen Führungsfeldes längs des Elektronenstrahlweges praktisch unmöglich oder drastisch erschwert.Prestressed collectors are necessary to increase the efficiency. The ratio of the energy taken from the electrons to the original energy is the electrical efficiency η ei . The overall efficiency can now be increased by letting the beam strike a prestressed collector, whereby part of the energy of the beam used is recovered with the efficiency η c . The overall efficiency of a gyrotron with a biased collector is: η = η el / [1 - η c (1 - η el )] The use of prestressed collectors is practically impossible or drastically complicated by a reversal of the sign of the axial magnetic guide field along the electron beam path.

An der Kathodenseite soll - um auch laminare Kathoden verwenden zu können und Justageprobleme gering zu halten - im Bereich der Kathode (1) das axiale Magnetfeldes örtlich konstant sein, siehe Figur 2.Laminar cathodes should also be used on the cathode side to be able to and to keep adjustment problems low - in the area the cathode (1) the axial magnetic field locally constant be, see Figure 2.

Figur 1 zeigt den prinzipiellen schematischen Aufbau eines Gyrotrons. In Kürze läßt sich das Wesentliche über das Gyrotron im Meinke Gundlach, "Taschenbuch der HF-Technik, M 82 ff., nachlesen.Figure 1 shows the basic schematic structure of a gyrotron. In a nutshell, the essentials about the gyrotron in Meinke Gundlach, "Taschenbuch der HF-Technik, M 82 ff., read up.

Figur 2 zeigt, wie schon erwähnt, den Verlauf des gewünschten, axialen magnetischen Gleichfelds in den Gyrotronbereichen: Emitter (9), Kompressionsbereich (10), Resonator (11), Dekompressionsbereich (12) und Kollektor (13). Der wellige Verlauf der magnetischen Flußdichte ist je nach Auslegung mehr oder weniger provoziert (siehe DE 42 36 149 A1), und zwar durch die Struktur der inneren Mantelfläche an den Permanentmagneten (15, 14, 15). Die Feldstärke in Emittergebiet ist etwa 5 - 25 % des axialen Gleichfeldes im Resonatorbereich.Figure 2 shows, as already mentioned, the course of the desired axial magnetic constant field in the gyrotron areas: Emitter (9), compression area (10), resonator (11), decompression area (12) and Collector (13). The wavy course of the magnetic flux density is more or less provoked depending on the interpretation (see DE 42 36 149 A1), namely through the structure of the inner surface on the permanent magnets (15, 14, 15). The field strength about 5 - 25% of the axial constant field is in the emitter region in the resonator area.

Figur 3a zeigt eine symmetrische Anordnung des Permanentmagnetsystems 7. Es ist daher nur die rechte Hälfte als Rechnerausdruck dargestellt, da sie ja den für das Gyrotron relevante Magnetfeldlinienverlauf zeigt. Der radial polarisierte mittlere Magnet 14, besser die gezeichnete axiale Hälfte ist über Halterungen, die nicht eingezeichnet sind, mit dem rechten, axial polarisierten Magnet (15), über die gemeinsame Konusflächen in Berührung. In Gyrotronbereich findet kein oder nur ein leicht kompensierbarer Nulldurchgang der Feldlinien statt. Der gesamte Fluß verläuft rotationssymmetrisch zur z-Achse.Figure 3a shows a symmetrical arrangement of the permanent magnet system 7. It is therefore only the right half as a computer printout shown, since it is the one relevant for the gyrotron Magnetic field line course shows. The radially polarized middle one Magnet 14, better the drawn axial half is over Brackets, which are not shown, with the right, axially polarized magnet (15), over the common conical surfaces in touch. There is none or only one in the gyrotron area easily compensable zero crossing of the field lines instead. Of the entire river runs rotationally symmetrical to the z-axis.

Den Verlauf des Gleichfeldes in Abhängigkeit von der z-Achse, also teilweise der Gyrotronachse 8, zeigt Fig. 3b. Dieser Flußdichteverlauf ist punktsymmetrisch zum Achsursprung und hat auch dort nur einen Nulldurchgang (Staupunkt), also Feldumkehr. Somit sind die in Fig. 3a gezeichnete radial polarisierte Permanentmagnethälfte und der sich rechts davon anschließende axial polarisierte Permanentmagnet (15) grundsätzlich geeignet ein magnetisches Gleichfeld ohne Nulldurchgang im Gyrotronbereich zu erzeugen. Es fehlt nur noch das schwächere Gleichfeld für den Emitterbereich. Die nicht angedeutet linke Hälfte dient im wesentlichen dazu, den Ausbruch des Feldes zu verhindern.The course of the constant field depending on the z-axis, 3b shows part of the gyrotron axis 8. This The flux density curve is point symmetrical to the axis origin and there also has only one zero crossing (stagnation point) Field reversal. Thus, the radially polarized ones shown in Fig. 3a are Permanent magnet half and the right of it subsequent axially polarized permanent magnet (15) basically suitable a magnetic DC field without zero crossing to generate in the gyrotron area. Only the weaker is missing DC field for the emitter area. The not hinted at The left half essentially serves to erupt the Prevent field.

Das Permanentmagnetsystem (7) in Figur 4a kommt den Forderungen des Gleichfeldverlaufs im Gyrotron näher, mit ihm wird insbesondere Magnetmaterial eingespart. Es besteht aus dem zentralen, radial polarisierten, ringförmigen Permanentmagneten (14). Rechts (kollektorseitig) in der Figur schließt sich der axial polarisierte, ringförmige Permanentmagnet (15) an. Links schließt sich die den Ausbruch des Feldes blockierende Magnetanordnung an. Diese geometrische Gestalt der ermöglicht die geforderte Feldstruktur im Gyrotronbereich. Das niedrige Gleichfeld in der Emitterzone wird durch die Überlagerung des kleinen ringfömrigen, axial polarisierten Permanentmagneten mit rechteckigem Längsschnitt vollends erreicht.The permanent magnet system (7) in Figure 4a meets the requirements of the constant field in the gyrotron, with it in particular Magnetic material saved. It consists of the central, radially polarized, ring-shaped permanent magnets (14). On the right (collector side) in the figure, the axially closes polarized, ring-shaped permanent magnet (15). Left closes the magnetic arrangement blocking the outbreak of the field on. This geometric shape of the enables the required field structure in the gyrotron area. The low DC field in the emitter zone is due to the overlay of the small annular, axially polarized permanent magnet fully achieved with a rectangular longitudinal section.

Den Verlauf nach Stärke und Vorzeichen, abhängig vom Ort, zeigt Figur 4b. Weit hinter den Emitter 9, also links, gibt es die starke, konzentrierte, unvermeidliche Feldumkehr. Die Gyrotronbereiche Emitter (9), Kompressionsbereich (10), Resonator (11), Dekompressionsbereich (12) und Kollektor (13) sind angedeutet. Jetzt besteht das magnetische Gleichfeld im Emitterbereich, das hohe Gleichfeld im Resonator (11) und das auf nahezu Null zurückgehende Gleichfeld im Kollektorgebiet (13).The course according to strength and sign, depending on the location, shows Figure 4b. There is far behind the emitter 9, on the left the strong, concentrated, inevitable field reversal. The gyrotron areas Emitter (9), compression area (10), resonator (11), decompression area (12) and collector (13) are indicated. Now exists the constant magnetic field in the emitter area, the high one DC field in the resonator (11) and that going back to almost zero DC field in the collector area (13).

Das Feld wird also vollständiger durch das Bohrloch des Magnetsystems gezwungen. Eine Vorzeichenumkehr des axialen Magnetfeldes findet im Gyrotronbereich nicht oder nur von unbedeutender Stärke statt und darüber hinaus nur einmal. Damit kann der Elektronenstrahl vom Emitter (9) bis zum Kollektor (13) stabil geführt werden.The field is thus more complete through the borehole of the Magnet system forced. A sign reversal of the axial Magnetic field is not found in the gyrotron area or only of minor importance Strength instead and only once. In order to can the electron beam from the emitter (9) to the collector (13) be stably managed.

Das Feld wird also vollständiger durch das Bohrloch des Magnetsystems gezwungen. Eine Vorzeichenumkehr des axialen Magnetfeldes findet im Gyrotronbereich nicht oder nur von unbedeutender Stärke statt und darüber hinaus nur einmal. Damit kann der Elektronenstrahl vom Emitter bis zum Kollektor stabil geführt werden.The field is thus more complete through the borehole of the Magnet system forced. A sign reversal of the axial Magnetic field is not found in the gyrotron area or only of minor importance Strength instead and only once. In order to the electron beam can be stable from the emitter to the collector be performed.

Durch Feinstrukturierung an der inneren Mantelfläche (Anspruch 4) wird in der Resonatormitte ein konstantes oder ein vorgegeben welliges Magnetfeld erzeugt. Räumlich (örtlich) konstante Felder lassen sich im Bereich des Emitters (9) (siehe Fig. 4a) und im Bereich des Kollektors (13) durch zusätzlich axial polarisierte Magnete erreichen. Nulldurchgänge schwacher Felder können so unterdrückt werden.By fine structuring on the inner surface (claim 4) In the middle of the resonator, a constant or a predetermined one wavy magnetic field generated. Spatially (locally) constant Fields can be located in the area of the emitter (9) (see Fig. 4a) and in the area of the collector (13) by additionally axially polarized Reach magnets. Zero crossings of weak fields can be suppressed in this way.

Durch Kombination mit schwachen Elektromagneten läßt sich ein Nachregeln des Magnetfelds erzielen oder auch eine weitere Materialersparnis erreichen. Eine weitere Möglichkeit zum Durchstimmen sind radial und/oder axial verschiebbare Magnete. By combining with weak electromagnets one can Readjust the magnetic field or achieve further material savings to reach. Another way to tune are radially and / or axially displaceable magnets.

BezugszeichenlisteReference list

11
Kathodecathode
33rd
BeschleunisungsanodeAcceleration anode
55
AuskoppelleitungDecoupling line
77
PermanentmagnetsystemPermanent magnet system
88th
GyrotronachseGyrotron axis
99
EmitterEmitter
1010th
KompressionsbereichCompression range
1111
ResonatorResonator
1212th
DekompressionsbereichDecompression area
1313
Kollektorcollector
1414
Zentraler RingmagnetCentral ring magnet
1515
Axial polarisierter RingmagnetAxially polarized ring magnet
1616
FeldlinienField lines
1717th
VakuumgefäßVacuum vessel

Claims (7)

  1. Magnetic system for gyrotrons, which comprises a permanent magnet system (7), for producing the steady axial magnetic field, by which electrons, emerging from the emitter (9), are guided, characterised in that
    the permanent magnet system (7) comprises a central, radially polarised annular magnet (14), an axially polarised annular magnet (15), which attaches to collector (13) in the direction of its end face, and an annular magnet arrangement which attaches to the other end face, said annular magnet arrangement being a partial system which blocks the flow of the magnetic field,
    the partial magnets of the permanent system (7) are in direct contact with their faces which lie opposite one another,
    a constant or variably rippled magnetic field is produced by the geometry of the annular magnets (15, 14, 15) and their mutual mechanical tension in the region of the resonator (11), and no magnetic field reversal or, at most, an easily compensatable axial magnetic field reversal enters the collector (13) and emitter region, and the field reversal of the steady axial magnetic field is effected in the extension of the emitter region externally of the region of the electron trajectories.
  2. Magnetic system for producing the steady axial magnetic field for gyrotrons according to claim 1, characterised in that the permanent magnet system (7) is symmetrical, with an axis perpendicular to the system axis.
  3. Magnetic system for producing the steady axial magnetic field for gyrotrons according to claim 1, characterised in that the permanent magnet system (7) is constructed asymmetrically and produces a powerful magnetic field reversal in the extended emitter region externally of the electron beam source.
  4. Magnetic system for producing the steady axial magnetic field for gyrotrons according to claims 2 and 3, characterised in that the axially polarised annular magnet (15), extending towards the collector (13), has a structured internal surface, whereby the steady magnetic field course in the resonator region is given a prescribed fine structure.
  5. Magnetic system for producing the steady axial magnetic field for gyrotrons according to claim 4, characterised in that an axially polarised, annular permanent magnet is situated in the region of the emitter (9), and the steady magnetic field, which is weaker in the emitter region but is locally constant, is achieved with said permanent magnet by superimposition.
  6. Magnetic system for producing the steady axial magnetic field for gyrotrons according to claim 5, characterised in that, to correct the axial magnetic field strength, at least one current-operated solenoid is combined with the permanent magnet system (7).
  7. Magnetic system for producing the steady axial magnetic field for gyrotrons according to claim 5, characterised in that, to correct the axial magnetic field course and to guide the flow in the gyrotron region, soft iron configurations are tensioned with the permanent magnet system (7).
EP95924292A 1994-07-09 1995-06-20 Magnetic system for gyrotrons Expired - Lifetime EP0770264B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4424230A DE4424230C2 (en) 1994-07-09 1994-07-09 Magnet system for gyrotrons
DE4424230 1994-07-09
PCT/EP1995/002381 WO1996002064A1 (en) 1994-07-09 1995-06-20 Magnetic system for gyrotrons

Publications (2)

Publication Number Publication Date
EP0770264A1 EP0770264A1 (en) 1997-05-02
EP0770264B1 true EP0770264B1 (en) 1998-06-10

Family

ID=6522737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95924292A Expired - Lifetime EP0770264B1 (en) 1994-07-09 1995-06-20 Magnetic system for gyrotrons

Country Status (4)

Country Link
US (1) US5828173A (en)
EP (1) EP0770264B1 (en)
DE (2) DE4424230C2 (en)
WO (1) WO1996002064A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3275166B2 (en) * 1997-02-28 2002-04-15 住友重機械工業株式会社 Vacuum deposition system with plasma beam bias correction mechanism
US6552490B1 (en) * 2000-05-18 2003-04-22 Communications And Power Industries Multiple stage depressed collector (MSDC) klystron based amplifier for ground based satellite and terrestrial communications
US7764020B2 (en) * 2006-07-20 2010-07-27 Barnett Larry R Electro-permanent magnet for power microwave tubes
RU206633U1 (en) * 2020-01-28 2021-09-20 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина") MAGNETIC FOCUSING SYSTEM

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL298777A (en) * 1962-10-04 1900-01-01
US3450930A (en) * 1966-11-14 1969-06-17 Varian Associates Permanent magnet focused linear beam tube employing a compensating magnet structure between the main magnet and the beam collector
DE1959789C3 (en) * 1969-11-28 1978-11-23 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Permanent magnet system
US4395655A (en) * 1980-10-20 1983-07-26 The United States Of America As Represented By The Secretary Of The Army High power gyrotron (OSC) or gyrotron type amplifier using light weight focusing for millimeter wave tubes
US4395656A (en) * 1980-12-24 1983-07-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Gyrotron transmitting tube
US4605911A (en) * 1984-10-24 1986-08-12 The United States Of America As Represented By The Secretary Of The Air Force Magnetic bias and delay linearity in a magnetostatic wave delay line
DE4236149C2 (en) * 1992-10-27 1995-11-02 Karlsruhe Forschzent Gyrotron with a device to increase efficiency
US5576679A (en) * 1994-10-25 1996-11-19 Shin-Etsu Chemical Co., Ltd. Cylindrical permanent magnet unit suitable for gyrotron

Also Published As

Publication number Publication date
DE59502526D1 (en) 1998-07-16
EP0770264A1 (en) 1997-05-02
US5828173A (en) 1998-10-27
WO1996002064A1 (en) 1996-01-25
DE4424230A1 (en) 1996-01-18
DE4424230C2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
DE966270C (en) Electron discharge device for generating ultra-high frequency oscillations
EP2540143B1 (en) Accelerator for charged particles
DE2757079A1 (en) LINEAR ACCELERATOR
EP0770264B1 (en) Magnetic system for gyrotrons
DE1123773B (en) Magnetic focusing system for the bundled guidance of the electron beam of a travel time tube
DE2914533C3 (en) Backward wave oscillator tube
DE2901554A1 (en) PERMANENT MAGNET ARRANGEMENT, CONSTRUCTED OPEN PERMANENT MAGNET CIRCUIT AND CROSS FIELD INTERACTION DEVICE EQUIPPED WITH IT
DE3050257C1 (en) Alternating periodic magnetic focusing system
DE3134582A1 (en) CROSS ENERGY COMPENSATOR FOR GYROTRONE
DE3603149A1 (en) SECOND EMISSION CATHODE AND TUBE EQUIPPED WITH SUCH A CATHODE
DE3525275A1 (en) MICROWAVE TUBES
DE3919210A1 (en) High frequency variable energy accelerator - has multiple separately controlled sections with constant period length and spacing range to axis
DE102010008992A1 (en) DC high voltage source and particle accelerator
DE2513975A1 (en) Efficient AC energy converter - has internal resistance of DC energy converter connected into AC circuit
DE2427060B2 (en) AC ENERGY CONVERTER
DE1297243B (en) Cyclotron wave electron beam amplifier tubes
DE705879C (en) Electrical discharge vessel for the multiple acceleration of charge carriers
DE666136C (en) Method for operating a pipe with transit time oscillations
DE3813460A1 (en) Short-period electron beam wiggler
DE761408C (en) Circuit arrangement for generating ultra-high frequency electromagnetic oscillations by means of a magnetic field tube
DE102010008993A1 (en) Accelerator for charged particles
DE3644797C2 (en)
DE923685C (en) Magnetic field tubes
DE1466153A1 (en) Electron semiconductor device for microwaves
DE721009C (en) Process for generating ultrashort-wave vibrations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971002

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59502526

Country of ref document: DE

Date of ref document: 19980716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980910

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000629

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010501

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010530

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL