EP0763027A1 - Phenylsulfonylharnstoffe mit stickstoffsubstituenten; verfahren zu deren herstellung und verwendung als herbizide und pflanzenwachstumsregulatoren - Google Patents

Phenylsulfonylharnstoffe mit stickstoffsubstituenten; verfahren zu deren herstellung und verwendung als herbizide und pflanzenwachstumsregulatoren

Info

Publication number
EP0763027A1
EP0763027A1 EP95920051A EP95920051A EP0763027A1 EP 0763027 A1 EP0763027 A1 EP 0763027A1 EP 95920051 A EP95920051 A EP 95920051A EP 95920051 A EP95920051 A EP 95920051A EP 0763027 A1 EP0763027 A1 EP 0763027A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
radicals
formula
unsubstituted
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95920051A
Other languages
English (en)
French (fr)
Inventor
Gerhard Schnabel
Lothar Willms
Klaus Bauer
Hermann Bieringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Hoechst Schering Agrevo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Schering Agrevo GmbH filed Critical Hoechst Schering Agrevo GmbH
Publication of EP0763027A1 publication Critical patent/EP0763027A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D521/00Heterocyclic compounds containing unspecified hetero rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/36Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< directly attached to at least one heterocyclic ring; Thio analogues thereof

Definitions

  • Phenylsulfonylureas with nitrogen substituents Process for their preparation and use as herbicides and plant growth regulators
  • the invention relates to the technical field of herbicides and plant growth regulators, in particular herbicides for the selective control of weeds and weeds in crops of useful plants.
  • salts of certain heterocyclically substituted phenylsulfonylureas are particularly suitable as herbicides or plant growth regulators.
  • the present invention relates to compounds of the formula (I) (salts),
  • n 0, 1, 2 or 3
  • R is halogen, alkyl or alkoxy, each independently of the other
  • R 1 is an unsubstituted or substituted hydrocarbon radical or an unsubstituted or substituted heterocyclic radical
  • R 2 is an acyl radical
  • R 3 is hydrogen or C r C 5 alkyl
  • X, Y independently of one another halogen, C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C * -C 6 -alkylthio, where each of the three last-mentioned radicals is unsubstituted or by one or more radicals from the group halogen, C --C 4 alkoxy and C - * - C 4 alkylthio, or C 3 -C 6 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 2 -C 6 alkenyloxy , C 2 -C 6 alkynyloxy, mono- or di- (C., -C 4 alkyl) amino and
  • Z is CH or N.
  • the alkyl, alkoxy, haloalkyl, haloalkoxy, alkylamino and alkylthio radicals and the corresponding unsaturated and / or substituted radicals in the carbon skeleton can each be straight-chain or branched.
  • the lower carbon skeletons e.g. with 1 to 4 carbon atoms or in the case of unsaturated groups with 2 to 4 carbon atoms, preferred.
  • Alkyl radicals also in the composite meanings such as alkoxy, haloalkyl etc., mean e.g.
  • Alkynyl means e.g. Propargyl, but-2-in-1-yl, but-3-in-1-yl, 1-methyl-but-3-in-1-yl.
  • Halogen means, for example, fluorine, chlorine, bromine or iodine.
  • Haloalkyl, alkenyl and alkynyl mean partly or completely by halogen, preferably by fluorine, chlorine and / or bromine, in particular by fluorine or chlorine substituted alkyl, alkenyl or alkynyl, for example CF 3 , CHF 2 , CH 2 F, CF 3 CF 2 , CH 2 FCHCI, CCI 3 , CHCI 2 , CH 2 CH 2 CI;
  • Haloalkoxy is, for example, OCF 3 , OCHF 2 , OCH 2 F, CF 3 CF 2 O, OCH 2 CF 3 and OCH 2 CH 2 CI; The same applies to haloalkenyl and other halogen-substituted radicals.
  • a hydrocarbon residue is a straight chain, branched or cyclic and saturated or unsaturated aliphatic or aromatic hydrocarbon residue, e.g. Alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl or aryl;
  • Aryl here means a mono-, bi- or polycyclic aromatic system, for example phenyl, naphthyl, tetrahydronaphthyl, indenyl, indanyl, pentalenyl, fluorenyl and the like, preferably phenyl;
  • a hydrocarbon radical is preferably alkyl, alkenyl or alkynyl having up to 12 carbon atoms or cycloalkyl having 5 or 6 ring atoms or phenyl;
  • a heterocyclic radical or ring can be saturated, unsaturated or heteroaromatic; it contains one or more hetero ring atoms, preferably from the group N, O and S; for example, it has 3 to 8 ring atoms; it is preferably 5 or 6-membered and contains 1, 2 or 3 hetero ring atoms.
  • the heterocyclic radical can be, for example, a heteroaromatic radical or ring (heteroaryl), such as, for example, a mono-, bi- or polycyclic aromatic system in which at least 1 ring contains one or more heteroatoms, for example pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, thienyl, Thiazolyl, oxazolyl, furyl, pyrrolyl, pyrazolyl and imidazolyl, or is a partially or completely hydrogenated radical such as oxiranyl, pyrrolidyl, piperidyl, piperazinyl, dioxolanyl, morpholinyl, tetrahydrofuryl.
  • heteroaryl such as, for example, a mono-, bi- or polycyclic aromatic system in which at least 1 ring contains one or more heteroatoms, for example pyridyl, pyrimidinyl, pyridazin
  • Possible substituents for a substituted heterocyclic radical are the substituents mentioned below, and additionally oxo.
  • the oxo group can also occur on the hetero ring atoms, which can exist in different oxidation states, for example in the case of N and S.
  • Substituted radicals such as substituted hydrocarbon radicals, for example substituted alkyl, alkenyl, alkynyl, aryl, phenyl and benzyl, or substituted heteroaryl, mean, for example, a substituted radical derived from the unsubstituted basic body, the substituents in principle being able to be selected from a wide range of structurally very different radicals ;
  • Substituents on the main body are, for example, functional groups, including hydrocarbon radicals or heterocyclic radicals which are each connected to the main body by heteroatoms or other functional groups, or are carbocyclic or heterocyclic radicals which are directly linked to the main body, or, in the case of cyclic main bodies, also acyclic hydrocarbon residues that are directly connected to the base body.
  • substituents mentioned can have further substituents.
  • Substituents on the base body mean, for example, one or more, preferably 1, 2 or 3, radicals from the group halogen, alkoxy, haloalkoxy, alkylthio, hydroxy, amino, nitro, cyano, azido, alkoxycarbonyl, alkylcarbonyl, formyl, carbamoyl, mono- and dialkylaminocarbonyl, substituted amino such as acylamino, mono- and dialkylamino, and alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl and, in the case of cyclic bases, also alkyl and haloalkyl as well as unsaturated aliphatic radicals corresponding to the saturated hydrocarbon-containing radicals mentioned, such as alkenyl, alkynyl, alkenyloxy, etc.
  • substituents are selected from the group halogen, for example fluorine and chlorine, C - C 4 alkyl, preferably methyl or ethyl, C, -C 4 - haloalkyl, preferably trifluoromethyl, C ** - C 4 alkoxy, preferably Methoxy or ethoxy, C- ] -C 4 haloalkoxy, nitro and cyano.
  • halogen for example fluorine and chlorine
  • C - C 4 alkyl preferably methyl or ethyl
  • C, -C 4 - haloalkyl preferably trifluoromethyl
  • C ** - C 4 alkoxy preferably Methoxy or ethoxy, C- ] -C 4 haloalkoxy, nitro and cyano.
  • the substituents methyl, methoxy and chlorine are particularly preferred.
  • Substituents on the base body are, for example, also heterocyclic radicals, preferably saturated heterocyclic radicals having 3 to 6 ring atoms and an oxygen atom as a hetero ring atom, which may also be substituted by further substituents such as C 1 -C 4 alkyl.
  • Optionally substituted phenyl is preferably phenyl which is unsubstituted or one or more times, preferably up to three times, by identical or different radicals from the group halogen, C -C 4 alkyl, CC 4 alkoxy, C 1 -C 4 haloalkyl, C ., - C 4 -haloalkoxy and nitro is substituted, for example o-, m- and p-tolyl, dimethylphenyls, 2-, 3- and 4-chlorophenyl, 2-, 3- and 4-trifluoro- and trichlorophenyl, 2nd , 4-, 3,5-, 2,5- and 2,3-dichlorophenyl, o-, m- and p-methoxyphenyl.
  • An acyl residue means the residue of an organic acid, for example the residue of a carboxylic acid and residues of derivatives derived therefrom such as thiocarboxylic acid, optionally N-substituted iminocarboxylic acids, or the rest of carbonic acid monoesters, optionally N-substituted carbamic acid, sulfonic acids, sulfinic acids, phosphonic acids, phosphinic acids.
  • Acyl means, for example, formyl, alkylcarbonyl such as (C 1 -C 4 -alkyl) carbonyl, phenylcarbonyl, where the phenyl ring can be substituted, for example as shown above for phenyl, or alkyloxycarbonyl, phenyloxycarbonyl, benzyloxycarbonyl, alkylsulfonyl, alkylsulfinyl, N-alkyl -1-aminoalkyl and other residues of organic acids.
  • the invention also relates to all stereoisomers which are encompassed by formula (I) and mixtures thereof.
  • Such compounds of the formula (I) contain one or more asymmetric carbon atoms or else double bonds which are not indicated separately in the general formulas (I).
  • the possible stereoisomers defined by their specific spatial shape, such as enantiomers, diastereomers, Z and E isomers, are all encompassed by the formula (I) and can be obtained from mixtures of the stereoisomers by customary methods or else by stereoselective reactions in combination with the use of stereochemically pure starting materials can be produced.
  • the compounds of formula (I) are salts in which the cation is preferably a cation which can be used in the field of agriculture.
  • These salts are, for example, metal salts, preferably alkali or alkaline earth salts, in particular sodium and potassium salts, or also ammonium salts and ammonium salts substituted by organic radicals.
  • n is 0, 1 or 2, preferably 0 and 1, in particular 0,
  • R halogen, C, -C 3 alkyl or C 1 -C 3 alkoxy
  • R 1 is an aliphatic or cycloaliphatic hydrocarbon radical with up to 24 C atoms which is unsubstituted or substituted, or an unsubstituted or substituted saturated heterocyclic radical with 3 to 6 ring atoms, preferably C -C 6 alkyl, C 2 -C 6 - Alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 cycloalkyl, each of the four last-mentioned radicals being unsubstituted or by one or more radicals from the group halogen, CN, C 1 -C 4 -alkoxy, C, -C 4- haloalkoxy, mono- (C 1 -C 4 alkyl) amino, di- (C., - C 4 alkyl) amino, C r C 4 alkylsulfonyl, C 1 -C 4 alkylsulfinyl, (C 1 -C 4 alkoxy) carbonyl, aminocarbony
  • R 4 is hydrogen, C r C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 cycloalkyl, where each of the four last-mentioned radicals is unsubstituted or by one or more radicals from the Group halogen, CN, C r C 4 alkoxy, C, -C 4 haloalkoxy, mono- (C ** - C 4 alkyl) amino, di (C r C 4 alkyl) amino, C r C 4 - alkylsulfonyl, C r C 4 alkylsulfinyl, (C r C 4 alkoxy) carbonyl, aminocarbonyl, mono- (C, -C 4 alkyl) aminocarbonyl, di (C 1 -C 4 alkyl) a is substituted in inocarbonyl, phenyl and substituted phenyl, or phenyl which is unsubstitute
  • R 5 analogous to R 4 , except hydrogen
  • R 6 and R 7 are independently H, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 - alkynyl, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals from the group halogen such as F, Cl and Br, and CN, C r C 4 alkoxy, C r C 4 haloalkoxy, mono- (C r C 4 alkyl) amino, di (C r C 4 alkyl) amino , C r C 4 alkylsulfonyl, C r C 4 alkylsulfinyl, (C r C 4 alkoxy) carbonyl, aminocarbonyl, mono- (C 1 -C 4 alkyl) aminocarbonyl and di- (C r C alkyl) ) -aminocarbonyl is substituted, or
  • R 6 and R 7 together with the N atom bonded to them form an unsubstituted or substituted heterocyclic ring of four to eight ring atoms which, including the substituents, contains up to 1 8 C atoms, preferably up to 12 C atoms,
  • R 8 C-. -Cg-alkyl, C 2 -C 5 alkenyl, each of the latter two radicals unsubstituted or by one or more radicals from the group halogen, C r C 4 alkoxy, C r C 4 haloalkoxy, mono- (C r C 4 -alkyl) -amino and di- (C-
  • X, Y independently of one another halogen, C - * - C 4 alkyl, C-
  • Z is CH or N.
  • R 1 is C r C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 -cycloalkyl, where each of the four last-mentioned radicals are unsubstituted or by one or more radicals from the group F, Cl, Br, I, CN, OCH 3 , OCF 3 , N (CH 3 ) 2 , SO 2 CH 3 , CO 2 CH 3 , CO 2 N (CH 3 ) 2 and phenyl, or a radical of the formulas A- to A 7
  • R 6 and R 7 are independently H, C, -. C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 - alkynyl, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals from the group F, Cl, Br, CN, OCH 3 , OCF 3 , N (CH 3 ) 2 , SO 2 CH 3 , CO 2 CH 3 and CON (CH 3 ) 2 , and
  • Residues unsubstituted or substituted by one or more radicals from the group F, Cl, Br, OCH 3 or N (CH 3 ) 2 Residues unsubstituted or substituted by one or more radicals from the group F, Cl, Br, OCH 3 or N (CH 3 ) 2 .
  • Preferred compounds of the formula (I) according to the invention are those in which
  • R 1 C- j -C 6 alkyl preferably CH 3 , or
  • R 2 CO-R 4 preferably CHO, CO-CH 3 , CO-CH 2 CH 3 , cyclopropyl-carbonyl,
  • R 2 CO-OR 5 preferably COOCH 3 , COOC 2 H 5 and COOCH 2 CH 2 CI, or R 2 CO-NR 6 R 7 , preferably CONH 2 , CONHCH 3 , CO-NH-C 2 H 5 , CON (CH 3 ) 2 , or R 2 SO 2 -R 8 , preferably SO 2 CH 3 , SO 2 C 2 H 5 , SO 2 CH 2 F, SO 2 CH 2 CI, or R 3 is H or M ⁇ Na +, K + 1/2 Mg 2 +, y 2 Ca 2 +, NH 4 +, H 2 NEt 2 +, H 3 NC 4 H 9 +, NH (C 2 H 5) 3 + ,
  • R 2 CO-CH 3 , CO-CH 2 CH 3 , isopropyl-carbonyl, cyclopropyl-carbonyl,
  • COOCH 3 COOC 2 H 5 , in particular COCH 3 , COCH 2 CH 3 or COOCH 3 ,
  • Halogen C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C., - C -alkylthio, where each of the last three radicals unsubstituted or by one or more radicals from the group halogen, C - C 2 - Alkoxy and C 1 -C 2 alkylthio is substituted, or mono- or di (C 1 -C 2 alkyl) amino, preferably halogen, methyl or methoxy, and the other of the radicals X and Y
  • R 1 methyl
  • R 2 acetyl
  • R 3 H
  • X methoxy
  • Y methoxy
  • R 1 methyl
  • R 2 acetyl
  • R 3 H
  • X methoxy
  • Y methoxy
  • R 1 methyl
  • R 2 acetyl
  • R 3 H
  • X methoxy
  • Y methoxy
  • R 1 methyl
  • R 2 propionyl
  • R 3 H
  • X methoxy
  • Y methyl
  • R 1 methyl
  • R 2 propionyl
  • R 3 H
  • X methyl
  • Y methyl
  • R 1 methyl
  • R 2 acetyl
  • R 3 H
  • X methoxy
  • Y methoxy
  • R 1 methyl,
  • R 2 acetyl,
  • R 3 H,
  • X methoxy,
  • Y methoxy,
  • R 1 methyl
  • R 2 methoxycarbonyl
  • R 3 H
  • X methyl
  • Y methyl
  • R 1 methyl
  • R 2 methoxycarbonyl
  • R 3 H
  • X methyl
  • Y methyl
  • R 1 methyl
  • R 2 methoxycarbonyl
  • R 3 H
  • X methyl
  • Y methyl
  • R 1 methyl
  • R 2 ethoxycarbonyl
  • R 3 H
  • X methoxy
  • R 1 methyl
  • R 2 ethoxycarbonyl
  • R 3 H
  • X methoxy
  • Y methyl
  • R 1 methyl
  • R 2 ethoxycarbonyl
  • R 3 H
  • X methyl
  • Y methyl
  • Y methoxy
  • X ⁇ is an anion equivalent, eg ⁇ OH, / 2 CO 3 2 ⁇ , ⁇ O- (C r C 4 ) alkyl, ⁇ O-Ar or H ⁇ , and
  • Ar means aryl
  • reaction of the compounds (II) with the bases of the formula (III) or the amines of the formula (IV) to give the salts of the formula (I) is preferably carried out in inert solvents, such as, for example, dichloromethane, acetonitrile, dioxane, tetrahydrofuran (THF) , N-methylpyrrolidine, dimethylformamide, dimethylacetamide, water or alcohols, such as methanol, ethanol or isopropanol, or also in solvent mixtures at temperatures from -20 ° C to the boiling point of the particular solvent, preferably from -10 to 80 ° C.
  • inert solvents such as, for example, dichloromethane, acetonitrile, dioxane, tetrahydrofuran (THF) , N-methylpyrrolidine, dimethylformamide, dimethylacetamide, water or alcohols, such as methanol, ethanol or isopropanol, or also in solvent mixtures
  • the salts of the formula (I) can be prepared from the sulfonylureas (II) by adding suitable bases to the formulation auxiliaries or in a tank mix, ie the compounds of the formula (I) are only in the formulation or shortly before application in Tank mix formed from the sulfonylureas of the formula (II).
  • reaction sequences (1) to (8) are examples of different ways of producing the intermediates of the formula (II):
  • the corresponding sulfonyl carbamates (XIV) are formed from the sulfonamides (V) and, for example, phenyl chloroformate in the presence of a suitable base, such as triethylamine or potassium carbonate.
  • a suitable base such as triethylamine or potassium carbonate.
  • the compounds (XIV) can be converted with heterocyclic amines to the sulfonylureas (II) (Scheme 1, (2)).
  • Heterocyclic carbamates of formula (VIII) react with sulfonamides (II) in the presence of suitable bases, e.g. organic nitrogen bases (e.g. 1, 8-diazabicyclo [5.4.0] undec-7-ene (DBU) or triethylamine), carbonates (e.g. potassium carbonate, sodium carbonate), alcoholates (e.g. sodium methoxide, sodium ethanolate) or phenolates (e.g. sodium phenolate) in inert solvents , such as Acetonitrile, methylene chloride, dioxane or THF, at temperatures from -10 ° C to the boiling point of the respective solvent.
  • suitable bases e.g. organic nitrogen bases (e.g. 1, 8-diazabicyclo [5.4.0] undec-7-ene (DBU) or triethylamine), carbonates (e.g. potassium carbonate, sodium carbonate), alcoholates (e.g. sodium methoxide, sodium ethanolate)
  • the phenylsulfonyl isocyanates of the formula (X) can be prepared, for example, analogously to the processes from EP-A-184 385 from compounds of the formula (V), for example with phosgene.
  • the reaction of the compounds (X) with the amino heterocycles of the formula (VII) is preferably carried out in inert, aprotic solvents, such as, for example, dioxane, acetonitrile or tetrahydrofuran, at temperatures between 0 ° C. and the boiling point of the solvent (Scheme 1, (5) ).
  • the above-mentioned syntheses of the sulfonylureas of the formula (II) according to Schemes 1, (1) to (5) are new and likewise a subject of the invention.
  • the invention also relates to a process for the preparation of the intermediates of the formula (II), characterized in that a nitro-substituted phenylsulfonylurea of the formula (XI) mentioned is catalytically hydrogenated on the nitro group in the presence of an acylating agent of the formula (R 4 CO) 2 O and reacted with the acylating agent (Scheme 1, (6)).
  • the catalytic hydrogenation of the nitro group can be carried out analogously to customary conditions for catalytic hydrogenations with hydrogen in the presence of a suitable hydrogenation catalyst, for example from group VIII of the periodic table, such as Ni, Pd, Pt and Rh, but the hydrogenation is carried out in the presence of the acylating agent with which the nitro group reduced to the amino group is to be acylated.
  • a suitable hydrogenation catalyst for example from group VIII of the periodic table, such as Ni, Pd, Pt and Rh
  • a suspension of a compound of the formula (XI), a suitable anhydride, such as, for example, acetic anhydride, and a suitable catalyst, such as, for example, Raney-Ni or palladium on carbon is carried out under a hydrogen atmosphere with, for example, 1 to 100 atm of H 2 - Pressure, preferably 1 to 10 atm H 2 pressure stirred.
  • the reaction can also be carried out with the addition of inert solvents, such as, for example, acetic acid, propionic acid, dimethylformamide, N-methylpyrrolidone or acetic acid dimethylamide.
  • inert solvents mean in each case solvents which are inert under the respective reaction conditions but do not have to be inert under any reaction conditions.
  • the compounds of formula (I) according to the invention have excellent herbicidal activity against a broad spectrum of economically important mono- and dicotyledonous harmful plants.
  • Perennial weeds that are difficult to control and that sprout from rhizomes, rhizomes or other permanent organs are also well captured by the active ingredients. It does not matter whether the substances are applied by pre-sowing, pre-emergence or post-emergence.
  • some representatives of the monocotyledonous and dicotyledonous weed flora, which are caused by Compounds according to the invention can be controlled without any restriction to certain types being intended by the naming.
  • the compounds according to the invention are applied to the surface of the earth before germination, either the weed seedlings emerge completely or the weeds grow to the cotyledon stage, but then stop growing and finally die completely after three to four weeks.
  • the compounds according to the invention have excellent herbicidal activity against monocotyledonous and dicotyledonous weeds, crop plants of economically important crops such as, for example, wheat, barley, rye, rice, maize, sugar beet, cotton and soybeans are only insignificantly or not at all damaged. For these reasons, the present compounds are very suitable for the selective control of undesired plant growth in agricultural crops.
  • the substances according to the invention have excellent growth-regulating properties in crop plants. They intervene to regulate the plant's own metabolism and can thus be used to specifically influence plant constituents and to facilitate harvesting, e.g. by triggering desiccation and stunted growth. Furthermore, they are also suitable for general control and inhibition of undesirable vegetative growth without killing the plants. Inhibiting vegetative growth plays a major role in many monocotyledonous and dicotyledonous crops, as this can reduce or completely prevent storage.
  • the compounds according to the invention can be used in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules in the customary formulations.
  • the invention therefore also relates to herbicidal and plant growth-regulating compositions which comprise compounds of the formula (I).
  • the compounds of formula (I) can be formulated in different ways, depending on which biological and / or chemical-physical parameters are specified. Possible formulation options are, for example: wettable powder (WP), water-soluble powder (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , Suspension concentrates (SC), dispersions based on oil or water, oil-miscible solutions, capsule suspensions (CS), dusts (DP), mordants, granules for spreading and soil application, granules (GR) in the form of micro, spray, elevator and adsorption granules, water-dispersible granules (WG), water-soluble granules ( SG), ULV formulations, microcapsules and waxes.
  • WP wettable powder
  • SP water-soluble powder
  • EC emulsifiable concentrates
  • combinations with other pesticidally active substances e.g. Manufacture insecticides, acaricides, other herbicides, fungicides, safeners, fertilizers and / or growth regulators, e.g. in the form of a finished formulation or as a tank mix.
  • pesticidally active substances e.g. Manufacture insecticides, acaricides, other herbicides, fungicides, safeners, fertilizers and / or growth regulators, e.g. in the form of a finished formulation or as a tank mix.
  • Spray powders are preparations which are uniformly dispersible in water and which, in addition to the active substance, contain not only a diluent or an inert substance, but also ionic and / or nonionic surfactants (wetting agents, dispersants), for example polyoxyethylated ones Alkylphenols, polyoxethylated fatty alcohols, polyoxethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkane sulfonates, alkylbenzenesulfonates, sodium lignin sulfonate, 2,2'-dinaphthylmethane-6,6'-disulfonic acid sodium, sodium dibutylnaphthalene sulfonate or also oleoyl acid.
  • the herbicidal active ingredients are finely ground, for example in conventional apparatus such as hammer mills, blower mills and air jet mill
  • Emulsifiable concentrates are made by dissolving the active ingredient in an organic solvent e.g. Butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of the organic solvents with the addition of one or more surfactants of ionic and / or nonionic type (emulsifiers).
  • organic solvent e.g. Butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of the organic solvents
  • surfactants of ionic and / or nonionic type emulsifiers
  • alkylarylsulfonic acid calcium salts such as
  • Ca-dodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as e.g. Sorbitan fatty acid esters or polyoxethylene sorbitan esters such as e.g. Polyoxyethylene sorbitan fatty acid esters.
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • finely divided solid substances e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates can be water or oil based. They can be prepared, for example, by wet grinding using commercially available bead mills and, if appropriate, addition of surfactants, such as those already listed above for the other types of formulation.
  • Emulsions for example oil-in-water emulsions (EW)
  • EW oil-in-water emulsions
  • Granules can either be produced by spraying the active ingredient onto adsorbable, granulated inert material or by applying active ingredient concentrates by means of adhesives, e.g. Polyvinyl alcohol, sodium polyacrylic acid or mineral oils, on the surface of carriers such as sand, kaolinite or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules, if desired in a mixture with fertilizers.
  • adhesives e.g. Polyvinyl alcohol, sodium polyacrylic acid or mineral oils
  • Water-dispersible granules are generally produced using the customary methods, such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • the agrochemical preparations generally contain 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of active compound of the formula (I).
  • the active ingredient concentration in wettable powders is, for example, about 10 to 90% by weight, the remainder to 100% by weight consists of customary formulation components.
  • the active substance concentration can be about 1 to 90, preferably 5 to 80,% by weight.
  • Dust-like formulations contain 1 to 30, preferably mostly 5 to 20% by weight of active ingredient, sprayable solutions about 0.05 to 80, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends in part on whether the active compound is in liquid or solid form and which granulating aids, fillers, etc. are used. With those in water In dispersible granules, the active ingredient content is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active ingredient formulations mentioned may contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetrants, preservatives, antifreezes and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and Agents influencing viscosity.
  • active ingredients such as those described, for example, in Weed Research 26, 441 -445 (1 986), or "The Pesticide Manual", 9th edition, The British Crop Protection, can be used as combination partners for the active ingredients according to the invention in mixture formulations or in the tank mix Council, 1990/91, Brackneil, England, and the literature cited therein.
  • herbicides known from the literature which can be combined with the compounds of the formula (I) are the following active ingredients (note: the compounds are either with the "common name” according to the International Organization for Standardization (ISO) or with the chemical name , possibly together with a usual code number): acetochlor; acifluorfen; aclonifen; AKH 7088, ie [[[[1 - [5- [2-chloro-4- (trifluoromethyl) phenoxy] -2-nitrophenyl] -2-methoxyethylidene] amino] oxy] acetic acid and methyl acetate; alachlor; alloxydim; ametryn; amidosulfuron; amitrole; AMS, ie ammonium sulfamate; anilofos; asulam; atrazine; aziprotryn; barban; BAS 51 6 H, ie 5-fluoro-2-phenyl-4H-3, 1-benzoxazin
  • the formulations present in the commercial form are optionally diluted in the customary manner, for example in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules by means of water, and then onto the plants, parts of plants or the agricultural or industrial soil on which the plants stand or in which they grow or are available as seeds.
  • Preparations in the form of dust, ground or scatter granules and sprayable solutions are usually no longer diluted with other inert substances before use.
  • the required application rate of the compounds of formula (I) varies with the external conditions, such as temperature, humidity, the type of herbicide used, and others. It can vary within wide limits, for example between 0.001 and 10.0 kg / ha or more of active substance, but is preferably between 0.005 and 5 kg / ha.
  • a dusting agent is obtained by mixing 10 parts by weight of a compound of the formula (I) and 90 parts by weight of talc as an inert substance and comminuting in a hammer mill.
  • a wettable powder which is readily dispersible in water is obtained by adding 25 parts by weight of a compound of the formula (I),
  • a dispersion concentrate which is readily dispersible in water is obtained by mixing 20 parts by weight of a compound of the formula (I) with
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of formula (I), 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of oxyethylated nonylphenol as emulsifier.
  • a water-dispersible granulate is obtained by 75 parts by weight of a compound of formula (I),
  • Seeds or rhizome pieces of monocotyledonous and dicotyledon weed plants are grown in
  • Plastic pots laid out in sandy loam and covered with earth are then applied as an aqueous suspension or emulsion with a water application rate of the equivalent of 600 to 800 l / ha in different dosages to the surface of the covering earth.
  • the pots After the treatment, the pots are placed in the greenhouse and kept under good growth conditions for the weeds. After the test plants have emerged, the optical damage to the plants or the emergence damage occurs after a test period of 3 to 4 weeks in comparison to untreated controls. As the test results show, the compounds according to the invention have good herbicidal pre-emergence activity against a wide range of grasses and weeds.
  • the compounds of Examples 1, 2, 1, 7, 24, 27, 28, 35, 37, 57, 64, 72, 73, 74 and 75 from Table 1 have very good herbicidal activity against harmful plants such as Alopecurus myosuroides, Sinapis alba , Chrysanthemum segetum, Avena sativa, Stellaria media, Echinochlora crus-galli and Lolium multiflorum in the pre-emergence process with an application rate of 0.3 kg and less active substance per hectare.
  • Seeds or rhizome pieces of monocotyledonous and dicotyledonous weeds are placed in sandy loam soil in plastic pots, covered with soil and grown in the greenhouse under good growth conditions. Three weeks after sowing, the test plants are treated at the three-leaf stage.
  • the compounds according to the invention formulated as wettable powder or as emulsion concentrates are sprayed onto the green parts of the plant in various dosages with a water application rate of the equivalent of 600 to 800 l / ha and after about 3 to 4 weeks of standing of the test plants in the greenhouse under optimal growth conditions
  • the agents according to the invention also have good herbicidal activity against a broad spectrum of economically important grasses and weeds, even after emergence.
  • Table 1 very good herbicidal activity against harmful plants such as Alopecurus myosuroides, Sinapis alba, Stellaria media, Echinochloa crus-galli, Lolium multiflorum, Chrysanthemum segetum and Avena sativa in the post-emergence process with an application rate of 0.3 kg and less active substance per hectare. 3. Crop tolerance

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Salze der Formel (I), worin n 0, 1, 2 oder 3, R Halogen, Alkyl oder Alkoxy, und zwar jeweils unabhängig von anderen Substituenten R, wenn n größer 1 ist, R1 einen substituierten oder unsubstituierten Kohlenwasserstoffrest, oder einen substituierten oder unsubstituierten heterocyclischen Rest, R2 einen Acylrest, R3 Wasserstoff oder C¿1?-C5-Alkyl, MO ein Metall- oder Ammoniumion, X, Y unabhängig voneinander Halogen, C1-C6-Alkyl, C1-C6-Alkoxy, C1-C6-Alkylthio, wobei jeder der drei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, C1-C4-Alkoxy, und C1-C4-Alkylthio substituiert ist, oder C3-C6-Cycloalkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Alkenyloxy, C3-C6-Alkinyloxy, Mono- oder Di-(C1-C4-alkyl)-amino und Z CH oder N bedeuten, eignen sich als Herbizide und Pflanzenwachstumsregulatoren. Die Verbindungen (I) können nach Verfahren der Ansprüche 5 bis 7 hergestellt werden, beispielsweise durch Hydrierung von 2-Alkoxycarbonyl-5-nitrophenylsulfonylharnstoffen in Gegenwart von Anhydriden.

Description

Beschreibung
Phenylsulfonylharnstoffe mit Stickstoffsubstituenten; Verfahren zu deren Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
Die Erfindung betrifft das technische Gebiet der Herbizide und Pflanzenwachstumsregulatoren, insbesondere der Herbizide zur selektiven Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen.
Es ist bekannt, daß heterocyclisch substituierte Phenylsulfonylharnstoffe, die am Phenylring eine Amino- bzw. eine funktionalisierte Aminogruppe tragen, herbizide und pflanzenwachstumsregulierende Eigenschaften besitzen; siehe EP-A-1515, US-A-4,892,946, US-A-4,981 ,509, EP-A-1 16 518 ( = US-A-4,664,695, US-A-4,632,695), DE-A-4236902 (WO 94/10154).
Überraschenderweise wurde nun gefunden, daß Salze bestimmter heterocyclisch substituierter Phenylsulfonylharnstoffe als Herbizide oder Pflanzenwachstumsregulatoren besonders gut geeignet sind.
Gegenstand der vorliegenden Erfindung sind Verbindungen der Formel (I) (Salze),
worin n 0, 1 , 2 oder 3,
R Halogen, Alkyl oder Alkoxy, und zwar jeweils unabhängig von anderen
Substituenten R, wenn n größer 1 ist, R1 einen unsubstituierten oder substituierten Kohlenwasserstoffrest oder einen unsubstituierten oder substituierten heterocyclischen Rest,
R2 einen Acylrest,
R3 Wasserstoff oder CrC5-Alkyl,
MΘ ein Äquivalent eines Kations,
X, Y unabhängig voneinander Halogen, C1-C6-Alkyl, C1-C6-Alkoxy, C* -C6- Alkylthio, wobei jeder der drei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, C--C4-Alkoxy und C-*-C4-Alkylthio substituiert ist, oder C3-C6-Cycloalkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C2-C6-Alkenyloxy, C2-C6-Alkinyloxy, Mono- oder Di-(C., -C4-alkyl)-amino und
Z CH oder N bedeuten.
In Formel (I) und allen nachfolgenden Formeln können die Reste Alkyl, Alkoxy, Haloalkyl, Haloalkoxy, Alkylamino und Alkylthio sowie die entsprechenden ungesättigten und/oder substituierten Reste im Kohlenstoffgerüst jeweils geradkettig oder verzweigt sein. Wenn nicht speziell angegeben, sind bei diesen Resten die niederen Kohlenstoffgerüste, z.B. mit 1 bis 4 C-Atomen bzw. bei ungesättigten Gruppen mit 2 bis 4 C-Atomen, bevorzugt. Alkylreste, auch in den zusammengesetzten Bedeutungen wie Alkoxy, Haloalkyl usw., bedeuten z.B. Methyl, Ethyl, n- oder i-Propyl, n-, i-, t- oder 2-Butyl, Pentyle, Hexyle, wie n-Hexyl, i-Hexyl und 1 ,3-Dimethylbutyl, Heptyle, wie n-Heptyl, 1 -Methylhexyl und 1 ,4-Dimethylpentyl; Alkenyl- und Alkinylreste haben die Bedeutung der den Alkylresten entsprechenden möglichen ungesättigten Reste; Alkenyl bedeutet z.B. Allyl, 1 -Methylprop-2-en-1 -yl, 2-Methyl-prop-2-en-1 -yl, But-2-en-1 -yl, But-3- en-1 -yl, 1 -Methyl-but-3-en-1 -yl und 1 -Methyl-but-2-en-1 -yl; Alkinyl bedeutet z.B. Propargyl, But-2-in-1 -yl, But-3-in-1 -yl, 1 -Methyl-but-3-in-1 -yl.
Halogen bedeutet beispielsweise Fluor, Chlor, Brom oder lod. Haloalkyl, -alkenyl und -alkinyl bedeuten durch Halogen, vorzugsweise durch Fluor, Chlor und/oder Brom, insbesondere durch Fluor oder Chlor, teilweise oder vollständig substituiertes Alkyl, Alkenyl bzw. Alkinyl, z.B. CF3, CHF2, CH2F, CF3CF2, CH2FCHCI, CCI3, CHCI2, CH2CH2CI; Haloalkoxy ist z.B. OCF3, OCHF2, OCH2F, CF3CF2O, OCH2CF3 und OCH2CH2CI; entsprechendes gilt für Haloalkenyl und andere durch Halogen substituierte Reste.
Ein Kohlenwasserstoffrest ist ein geradkettiger, verzweigter oder cyclischer und gesättigter oder ungesättigter aliphatischer oder aromatischer Kohlenwasserstoffrest, z.B. Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl oder Aryl; Aryl bedeutet dabei ein mono-, bi- oder polycyclisches aromatisches System, beispielsweise Phenyl, Naphthyl, Tetrahydronaphthyl, Indenyl, Indanyl, Pentalenyl, Fluorenyl und ähnliches, vorzugsweise Phenyl; vorzugsweise bedeutet ein Kohlenwasserstoffrest Alkyl, Alkenyl oder Alkinyl mit bis zu 12 C-Atomen oder Cycloalkyl mit 5 oder 6 Ringatomen oder Phenyl;
Ein heterocyclischer Rest oder Ring kann gesättigt, ungesättigt oder heteroaromatisch sein; er enthält ein oder mehrere Heteroringatome, vorzugsweise aus der Gruppe N, O und S; beispielsweise hat er 3 bis 8 Ringatome; vorzugsweise ist er 5- oder 6-gliedrig und enthält 1 , 2 oder 3 Heteroringatome. Der heterocyclische Rest kann z.B. ein heteroaromatischer Rest oder Ring (Heteroaryl) sein, wie z.B. ein mono-, bi- oder polycyclisches aromatisches System, in dem mindestens 1 Ring ein oder mehrere Heteroatome enthält, beispielsweise Pyridyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Thienyl, Thiazolyl, Oxazolyl, Furyl, Pyrrolyl, Pyrazolyl und Imidazolyl, oder ist ein partiell oder ganz hydrierter Rest wie Oxiranyl, Pyrrolidyl, Piperidyl, Piperazinyl, Dioxolanyl, Morpholinyl, Tetrahydrofuryl. Als Substituenten für einen substituierten heterocyclischen Rest kommen die weiter unten genannten Substituenten in Frage, zusätzlich auch Oxo. Die Oxogruppe kann auch an den Heteroringatomen, die in verschiedenen Oxidationsstufen existieren können, z.B. bei N und S, auftreten. Substituierte Reste, wie substituierte Kohlenwasserstoffreste, z.B. substituiertes Alkyl, Alkenyl, Alkinyl, Aryl, Phenyl und Beπzyl, oder substituiertes Heteroaryl, bedeuten beispielsweise einen vom unsubstituierten Grundkörper abgeleiteten substituierten Rest, wobei die Substituenten im Prinzip aus einer breiten Palette strukturell unterschiedlichster Reste ausgewählt werden können; Substituenten am Grundkörper sind beispielsweise funktionelle Gruppen, eingeschlossen Kohlenwasserstoffreste oder heterocyclische Reste, die jeweils durch Heteroatome oder andere funktioneile Gruppen mit dem Grundkörper verbunden sind, oder sind carbocyclische oder heterocyclische Reste, die direkt mit dem Grundkörper verbunden sind, oder, im Falle cyclischer Grundkörper, auch acyclische Kohlenwasserstoffreste, die direkt mit dem Grundkörper verbunden sind. Die genannten Substituenten können im Prinzip weitere Substituenten aufweisen. Substituenten am Grundkörper bedeuten beispielsweise einen oder mehrere, vorzugsweise 1 , 2 oder 3 Reste aus der Gruppe Halogen, Alkoxy, Haloalkoxy, Alkylthio, Hydroxy, Amino, Nitro, Cyano, Azido, Alkoxycarbonyl, Alkylcarbonyl, Formyl, Carbamoyl, Mono- und Dialkylaminocarbonyl, substituiertes Amino wie Acylamino, Mono- und Dialkylamino, und Alkylsulfinyl, Haloalkylsulfinyl, Alkylsulfonyl, Haloalkylsulfonyl und, im Falle cyclischer Grundkörper, auch Alkyl und Haloalkyl sowie den genannten gesättigten kohlenwasserstoffhaltigen Resten entsprechende ungesättigte aliphatische Reste, wie Alkenyl, Alkinyl, Alkenyloxy, Alkinyloxy etc.; bei Resten mit C- Atomen sind solche mit 1 bis 4 C-Atomen, insbesondere 1 oder 2 C-Atomen, bevorzugt. Bevorzugt sind in der Regel Substituenten aus der Gruppe Halogen, z.B. Fluor und Chlor, C--C4-Alkyl, vorzugsweise Methyl oder Ethyl, C,-C4- Haloalkyl, vorzugsweise Trifluormethyl, C**-C4-Alkoxy, vorzugsweise Methoxy oder Ethoxy, C-]-C4-Haloalkoxy, Nitro und Cyano. Besonders bevorzugt sind dabei die Substituenten Methyl, Methoxy und Chlor. Substituenten am Grundkörper sind beispielsweise auch heterocyclische Reste, vorzugsweise gesättigte heterocyclische Reste mit 3 bis 6 Ringatomen und einem Sauerstoffatom als Heteroringatom, die noch durch weitere Substituenten wie beispielsweise C1 -C4-Alkyl substituiert sein können. Gegebenenfalls substituiertes Phenyl ist vorzugsweise Phenyl, das unsubstituiert oder ein- oder mehrfach, vorzugsweise bis zu dreifach durch gleiche oder verschiedene Reste aus der Gruppe Halogen, C -C4-Alkyl, C C4-Alkoxy, C1-C4- Halogenalkyl, C.,-C4-Halogenalkoxy und Nitro substituiert ist, z.B. o-, m- und p-Tolyl, Dimethylphenyle, 2-, 3- und 4-Chlorphenyl, 2-, 3- und 4-Trifluor- und -Trichlorphenyl, 2,4-, 3,5-, 2,5- und 2,3-Dichlorphenyl, o-, m- und p-Methoxyphenyl.
Ein Acylrest bedeutet den Rest einer organischen Säure, z.B. den Rest einer Carbonsäure und Reste davon abgeleiteter Säuren wie der Thiocarbonsäure, gegebenenfalls N-substituierter Iminocarbonsäuren, oder der Rest von Kohlensäuremonoestern, gegebenenfalls N-substituierter Carbaminsäure, Sulfonsäuren, Sulfinsäuren, Phosphonsäuren, Phosphinsäuren. Acyl bedeutet beispielsweise Formyl, Alkylcarbonyl wie (C.,-C4-Alkyl)-carbonyl, Phenylcarbonyl, wobei der Phenylring substituiert sein kann, z.B. wie oben für Phenyl gezeigt, oder Alkyloxycarbonyl, Phenyloxycarbonyl, Benzyloxycarbonyl, Alkylsulfonyl, Alkylsulfinyl, N-Alkyl-1 -iminoalkyl und andere Reste von organischen Säuren.
Gegenstand der Erfindung sind auch alle Stereoisomeren, die von Formel (I) umfaßt sind, und deren Gemische. Solche Verbindungen der Formel (I) enthalten ein oder mehrere asymmetrische C-Atome oder auch Doppelbindungen, die in den allgemeinen Formeln (I) nicht gesondert angegeben sind. Die durch ihre spezifische Raumform definierten möglichen Stereoisomeren, wie Enantiomere, Diastereomere, Z- und E-Isomere sind alle von der Formel (I) umfaßt und können nach üblichen Methoden aus Gemischen der Stereoisomeren erhalten oder auch durch stereoselektive Reaktionen in Kombination mit dem Einsatz von stereochemisch reinen Ausgangsstoffen hergestellt werden.
Die Verbindungen der Formel (I) sind Salze, bei denen das Kation vorzugsweise ein auf dem Gebiet der Landwirtschaft einsetzbares Kation ist. Diese Salze sind beispielsweise Metallsalze, vorzugsweise Alkali- oder Erdalkalisalze, insbesondere Natrium- und Kaliumsalze, oder auch Ammoniumsalze und durch organische Reste substituierte Ammoniumsalze.
Von besonderem Interesse sind erfindungsgemäße Verbindungen der Formel (i), worin n 0, 1 oder 2, vorzugsweise 0 und 1 , insbesondere 0,
R Halogen, C,-C3-Alkyl oder C1-C3-Alkoxy,
R1 einen aliphatischen oder cycloaliphatischen Kohlenwasserstoffrest mit bis zu 24 C-Atomen, der unsubstituiert oder substituiert ist, oder einen unsubstituierten oder substituierten gesättigten heterocyclischen Rest mit 3 bis 6 Ringatomen, vorzugsweise C- -C6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6- Cycloalkyl, wobei jeder der vier letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, CN, C1-C4- Alkoxy, C,-C4-Haloalkoxy, Mono-(C1-C4-alkyl)-amino, Di-(C.,-C4-aIkyl)- amino, CrC4-Alkylsulfonyl, C1-C4-Alkylsulfinyl, (C1-C4-Alkoxy)-carbonyl, Aminocarbonyl, Mono-(C-| -C4-alkyl)-aminocarbonyl, Di-(C-|-C4-alkyl)- aminocarbonyl, unsubstituiertes Phenyl, substituiertes Phenyl, unsubstituierter heterocyclischer Rest und substituierter heterocyclischer Rest substituiert ist, oder einen heterocyclischen Rest mit 3, 4, 5 oder 6 Ringatomen und einem Sauerstoffatom als Heteroringatom, wobei der Rest unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe C1-C4-Alkyl substituiert ist,
R2 CO-R4, CO-OR5, CO-NR6R7, SO2-R8,
R3 H, CrC4-Alkyl,
R4 Wasserstoff, CrC6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloalkyl, wobei jeder der vier letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, CN, CrC4-Alkoxy, C,-C4- Haloalkoxy, Mono-(C**-C4-alkyl)-amino, Di-(CrC4-alkyl)-amino, CrC4- Alkylsulfonyl, CrC4-Alkylsulfinyl, (CrC4-Alkoxy)-carbonyl, Aminocarbonyl, Mono-(C, -C4-alkyl)-aminocarbonyl, Di-(C1-C4-alkyl)- a inocarbonyl, Phenyl und substituiertes Phenyl substituiert ist, oder Phenyl, das unsubstituiert oder substituiert ist,
R5 analog R4, außer Wasserstoff,
R6 und R7 unabhängig voneinander H, C1 -C6-Alkyl, C2-C6-Alkenyl, C2-C6- Alkinyl, wobei jeder der drei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, wie F, Cl und Br, und CN, CrC4-Alkoxy, CrC4-Haloalkoxy, Mono-(CrC4-alkyl)-amino, Di-(CrC4-alkyl)-amino, CrC4-Alkylsulfonyl, CrC4-Alkylsulfinyl, (CrC4- Alkoxy)-carbonyl, Aminocarbonyl, Mono-(C1 -C4-alkyl)-aminocarbonyl und Di-(CrC -alkyl)-aminocarbonyl substituiert ist, oder
R6 und R7 gemeinsam mit dem an sie gebundenen N-Atom einen unsubstituierten oder substituierten heterocyclischen Ring aus vier bis acht Ringatomen, der inklusive der Substituenten bis zu 1 8 C-Atome, vorzugsweise bis zu 12 C-Atomen enthält,
R8 C-. -Cg-Alkyl, C2-C5-Alkenyl, wobei jeder der zwei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, CrC4-Alkoxy, CrC4-Haloalkoxy, Mono-(CrC4-alkyl)-amino und Di-(C-|-C -alkyl)-amino substituiert ist,
Mθ das Kationäquivalent eines Alkali- oder Erdalkalimetalls, wie Na + , K + , y2 Mg2 + und y2 Ca2 + , oder NH4 + , 1/2Zn2 + , R°NH3 + , R°2NH2 + , R°3NH + oder R°4N + ,
R° CrC6-Alkyl oder Benzyl,
X, Y unabhängig voneinander Halogen, C-*-C4-Alkyl, C-|-C4-Alkoxy, C* -C4- Alkylthio, wobei jeder der drei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, C.,-C4-Alkoxy und C**-C4-Alkylthio substituiert ist, Mono- oder Di(C1 -C4-alkyl)amino, C3-C6-Cycloalkyl, C2-C5-Alkenyl oder C2-C5-Alkinyloxy und
Z CH oder N bedeuten.
Bevorzugt sind erfindungsgemäße Verbindungen der Formel (I), worin R1 CrC6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloalkyl, wobei jeder der vier letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe F, Cl, Br, I, CN, OCH3, OCF3, N(CH3)2, SO2CH3, CO2CH3, CO2N(CH3)2 und Phenyl substituiert ist, oder einen Rest der Formeln A-, bis A7
( A , ) ( A 2 ) ( A 3 ) ( A 4 )
( A 5 ) ( A 6 ) ( A 7 )
CO-R4, CO-OR5, CO-NR6R7, SO2-R8, H oder CH3,
Wasserstoff, CrC6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloalkyl, wobei jeder der vier letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe F, Cl, Br, I, CN, OCH3, OCF3, N(CH3)2, SO2CH3, CO2CH3, CON(CH3)2 und Phenyl substituiert ist, oder Phenyl, das unsubstituiert oder bis zu dreifach durch gleiche oder verschiedene Reste aus der Gruppe Halogen, CH3, C2H5, OCH3, OC2H5, CF3, C2H5CI, OCHF3, OCHF2 substituiert ist,
R analog R4, ausgenommen Wasserstoff,
R6 und R7 unabhängig voneinander H, C.,-C6-Alkyl, C2-C6-Alkenyl, C2-C6- Alkinyl, wobei jeder der drei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe F, Cl, Br, CN, OCH3, OCF3, N(CH3)2, SO2CH3, CO2CH3 und CON(CH3)2 substituiert ist, und
R8 CrC5-Alkyl oder C2-C5-Alkenyl, wobei jeder der zwei letztgenannten
Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe F, Cl, Br, OCH3 oder N(CH3)2 substituiert ist, bedeuten. Bevorzugt sind erfindungsgemäße Verbindungen der Formel (I), worin
R1 C-j-C6-Alkyl, vorzugsweise CH3, oder
R2 CO-R4, vorzugsweise CHO, CO-CH3, CO-CH2CH3, Cyclopropyl-carbonyl,
Isopropyl-carbonyl oder t-Butyl-carbonyl, oder R2 CO-OR5, vorzugsweise COOCH3, COOC2H5 und COOCH2CH2CI, oder R2 CO-NR6R7, vorzugsweise CONH2, CONHCH3, CO-NH-C2H5, CON(CH3)2, oder R2 SO2-R8, vorzugsweise SO2CH3, SO2C2H5, SO2CH2F, SO2CH2CI, oder R3 H oder Mθ Na + , K + , 1/2 Mg2 + , y2 Ca2 + , NH4 + , H2NEt2 + , H3NC4H9 + , NH(C2H5)3 + ,
N(C2H5)4 + , N(CH3)4 + , HN(CH3)3 + , vorzugsweise Na + , K + , η/2 Mg2 + ,
1/2 Ca2 + , NH4 + -, NH(C2H5)3 + , oder R° C-j-Cg-Alkyl, vorzugsweise Isopropyl, Methyl, Ethyl, n-Propyl, n-Butyl, oder X, Y OCH3, OC2H5, SCH3, NHCH3, N(CH3)2, CH3, OCH2CF3, insbesondere
OCH3, Me oder Cl oder eine Kombination der vorstehenden bevorzugten Reste bedeuten.
Besonders bevorzugt sind Verbindungen der Formel (I), worin
R CH3,
R2 CO-CH3, CO-CH2CH3, Isopropyl-carbonyl, Cyclopropyl-carbonyl,
COOCH3, COOC2H5, insbesondere COCH3, COCH2CH3 oder COOCH3,
R3 H, einer der Reste X und Y
Halogen, C1 -C2-Alkyl, C1-C2-Alkoxy, C.,-C -Alkylthio, wobei jeder der drei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, C--C2-Alkoxy und C1-C2-Alkylthio substituiert ist, oder Mono- oder Di(C1-C2-alkyl)amino, vorzugsweise Halogen, Methyl oder Methoxy, und der andere der Reste X und Y
CrC2-Alkyl, CrC2-Haloalkyl, CrC2-Alkoxy, C, -C2-Haloalkoxy oder C--C2-Alkylthio, vorzugsweise Methyl oder Methoxy, Z CH oder N, vorzugsweise CH, bedeuten.
Beispiele für erfindungsgemäße Verbindungen sind insbesondere Verbindungen der Formel (I), worin
R1 = Methyl, R2 = Acetyl, R3 = H, X = Methoxy, Y = Methoxy,
Z = CH und M+ = Na+ bedeuten;
R1 = Methyl, R2 = Acetyl, R3 = H, X = Methoxy, Y = Methoxy,
Z = CH und M+ = K+ bedeuten;
R1 = Methyl, R2 = Acetyl, R3 = H, X = Methoxy, Y = Methoxy,
Z = CH und M+ = NH4 + bedeuten;
R1 = Methyl, R2 = Acetyl, R3 = H, X = Methoxy, Y = Methyl, Z = CH und M+ = Na+ bedeuten;
R1 = Methyl, R2 = Acetyl, R3 = H, X = Methoxy, Y = Methyl, Z = CH und M+ = K+ bedeuten;
R1 = Methyl, R2 = Acetyl, R3 = H, X = Methoxy, Y = Methyl, Z = CH und M+ = NH4 + bedeuten;
R1 = Methyl, R2 = Acetyl, R3 = H, X = Methyl, Y = Methyl, Z = CH und M+ = Na+ bedeuten;
R1 = Methyl, R2 = Acetyl, R3 = H, X = Methyl, Y = Methyl, Z = CH und M+ = K+ bedeuten;
R1 = Methyl, R2 = Acetyl, R3 = H, X = Methyl, Y = Methyl, Z = CH und M+ = NH4 + bedeuten;
R = Methyl, R2 = Propionyl, R3 = H, X = Methoxy, Y = Methoxy,
Z = CH und M+ = Na+ bedeuten;
R1 = Methyl, R2 = Propionyl, R3 = H, X = Methoxy, Y = Methyl,
Z = CH und M+ = Na+ bedeuten;
R1 = Methyl, R2 = Propionyl, R3 = H, X = Methyl, Y = Methyl,
Z = CH und M+ = Na+ bedeuten;
R1 = Methyl, R2 = Acetyl, R3 = H, X = Methoxy, Y = Methoxy,
Z = CH und M+ = NH(C2H5)3 + bedeuten; R1 = Methyl, R2 = Acetyl, R3 = H, X = Methoxy, Y = Methoxy,
Z = CH und M+ = N(CH3)4 + bedeuten;
R1 = Methyl, R2 = Methoxycarbonyl, R3 = H, X = Methoxy,
Y = Methoxy, Z = CH und M+ = Na+ bedeuten;
R1 = Methyl, R2 = Methoxycarbonyl, R3 = H, X = Methoxy,
Y = Methoxy, Z = CH und M+ = K+ bedeuten;
R1 = Methyl, R2 = Methoxycarbonyl, R3 = H, X = Methoxy,
Y = Methoxy, Z = CH und M+ = NH4 + bedeuten;
R1 = Methyl, R2 = Methoxycarbonyl, R3 = H, X = Methoxy,
Y = Methyl, Z = CH und M+ = Na + bedeuten;
R = Methyl, R2 = Methoxycarbonyl, R3 = H, X = Methoxy,
Y = Methyl, Z = CH und M+ = K+ bedeuten;
R1 = Methyl, R2 = Methoxycarbonyl, R3 = H, X = Methoxy,
Y = Methyl, Z = CH und M+ = NH4 + bedeuten;
R1 = Methyl, R2 = Methoxycarbonyl, R3 = H, X = Methyl, Y = Methyl,
Z = CH und M+ = Na+ bedeuten;
R1 = Methyl, R2 = Methoxycarbonyl, R3 = H, X = Methyl, Y = Methyl,
Z = CH und M+ = K+ bedeuten;
R1 = Methyl, R2 = Methoxycarbonyl, R3 = H, X = Methyl, Y = Methyl,
Z = CH und M+ = NH4 + bedeuten;
R1 = Methyl, R2 = Ethoxycarbonyl, R3 = H, X = Methoxy,
Y = Methoxy, Z = CH und M+ = Na+ bedeuten;
R1 = Methyl, R2 = Ethoxycarbonyl, R3 = H, X = Methoxy, Y = Methyl,
Z = CH und M+ = Na+ bedeuten;
R1 = Methyl, R2 = Ethoxycarbonyl, R3 = H, X = Methyl, Y = Methyl,
Z = CH und M+ = Na+ bedeuten;
R1 = Methyl, R2 = Methoxycarbonyl, R3 = H, X = Methoxy,
Y = Methoxy, Z = CH und M+ = NH(C2H5)3 + bedeuten;
R1 = Methyl, R2 = Methoxycarbonyl, R3 = H, X = Methoxy,
Y = Methoxy, Z = CH und M+ = N(CH3)4 + bedeuten; Weiterer Gegenstand der vorliegenden Erfindung sind Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der Formel (I), dadurch gekennzeichnet, daß man eine Verbindung der Formel
mit einer geeigneten Base der Formel (IM)
MΘ Xθ (III),
worin Xθ ein Anionäquivalent, z.B. θOH, /2 CO3 2 θ, θO-(CrC4)-Alkyl, θO-Ar oder Hθ, und
Mθ wie in der genannten Formel (I) definiert ist, sowie
Ar Aryl bedeutet,
oder, im Falle eines Ammoniumsalzes, entsprechend mit Ammoniak oder einem organischen Amin, vorzugsweise einer Verbindung der Formel (IV)
HmNR°3-m (IV),
worin m = 0, 1 , 2 oder 3 bedeutet und R° wie in Formel (I) definiert ist, umsetzt.
Die Umsetzung der Verbindungen (II) mit den Basen der Formel (III) bzw. den Aminen der Formel (IV) zu den Salzen der Formel (I) erfolgt vorzugsweise in inerten Solventien, wie z.B. Dichlormethan, Acetonitril, Dioxan, Tetrahydrofuran (THF), N-Methylpyrrolidin, Dimethylformamid, Dimethylacetamid, Wasser oder Alkoholen, wie z.B. Methanol, Ethanol oder Isopropanol, oder auch in Solvensgemischen bei Temperaturen von -20°C bis zu dem Siedepunkt des jeweiligen Lösungsmittels, vorzugsweise von -10 bis 80°C. Die Darstellung der Salze der Formel (I) aus den Sulfonylharnstoffen (II) kann auch durch Zusatz geeigneter Basen zu den Formulierungshilfsstoffen oder im Tank-mix erfolgen, d.h. die Verbindungen der Formel (I) werden erst während der Formulierung oder kurz vor der Applikation im Tank-mix aus den Sulfonylharnstoffen der Formel (II) gebildet.
Die Verbindungen der Formel (II) sind aus der weiter oben genannten Literatur bekannt oder können analog den dort beschriebenen Verfahren hergestellt werden.
Die nachstehenden Reaktionssequenzen (1) bis (8) sind Beispiele für verschiedene Möglichkeiten, die Zwischenprodukte der Formel (II) herzustellen:
Schema 1: Synthesewege zu Verbindungen der Formel (II)
(V) (VI )
(V) (VI I )
(3)
(4) — * ( I I )
( I X) (VI I )
( X ) ( V I I )
( X I )
( x i l )
In den Formeln (V)-(XIII) haben R, R1, R2, R3, X, Y, Z und n die in (II) genannte Bedeutung, wobei in der Reaktionssequenz (6) R2 = COR4 ist und in den Reaktionssequenzen (7) und (8) das Acylierungsmittel bzw. Additionreagenz in üblicher Weise gemäß der Bedeutung von R2 ausgewählt werden müssen.
Die Umsetzung von Verbindungen der Formel (V) mit Isocyanaten der Formel (VI) erfolgt analog literaturbekannten Verfahren (EP-A-232 067, EP-A-166 516) bei -10°C bis 150°C, vorzugsweise 20 bis 100°C, in einem inerten Lösungsmittel, wie z.B. Aceton oder Acetonitril, in Gegenwart einer geeigneten Base, wie z.B. Triethylamin oder Kaliumcarbonat (Schema 1 , (1 )). Die Reaktion der Sulfonamide der Formel (V) mit Chlorameisensäurearylester und heterocyclischen Aminen (VII), liefert die Sulfonylharnstoffe (II) (vgl. US-A-4,994,571 ). Zunächst werden aus den Sulfonamiden (V) und beispielsweise Chlorameisensäurephenylester die entsprechenden Sulfonylcarbamate (XIV) in Gegenwart einer geeigneten Base, wie z.B. Triethylamin oder Kaliumcarbonat, gebildet. Die Verbindungen (XIV) lassen sich mit heterocyclischen Aminen zu den Sulfonylharnstoffen (II) umsetzen (Schema 1 , (2)).
Heterocyclische Carbamate der Formel (VIII) reagieren mit Sulfonamiden (II) in Gegenwart geeigneter Basen, wie z.B. organische Stickstoffbasen (z.B. 1 ,8-Diazabicyclo[5.4.0]undec-7-en (DBU) oder Triethylamin), Carbonaten (z.B. Kaliumcarbonat, Natriumcarbonat), Alkoholaten (z.B. Natriummethanolat, Natriumethanolat) oder Phenolaten (z.B. Natriumphenolat) in inerten Solventien, wie z.B. Acetonitril, Methylenchlorid, Dioxan oder THF, bei Temperaturen von -10°C bis zum Siedepunkt des jeweiligen Lösungsmittel. Die für die Umsetzung benötigten Carbamate sind literaturbekannt oder lassen sich analog bekannten Verfahren herstellen (vgl. EP-A-70 804; US-A-4,480, 101 ; EP-A-562 575; EP-A- 562 576) (siehe Schema 1 , (3)).
Die Umsetzung der Sulfochloride (IX) mit den Aminoheterocyclen der Formel (VII) und Cyanaten wie Natriumcyanat und Kaliumcyanat erfolgt z.B. in aprotischen Solventien, wie z.B. Acetonitril, gegebenenfalls in Gegenwart von Basen, z.B. 0,5 bis 2 Äquivalenten Base, oder in basischen aprotischen Solventien bei Temperaturen zwischen -10 und 100°C, vorzugsweise zwischen -10 und 60°C, insbesondere bei 15 bis 40°C. Als Base oder basische aprotische Solventien kommen z.B. Pyridin, Picolin oder Lutidin oder eine Mischung aus diesen in Betracht (vgl. US-A-5, 157, 1 19) (Schema 1 , (4)). Die Phenylsulfonylisocyanate der Formel (X) lassen sich z.B. analog den Verfahren aus EP-A-184 385 aus Verbindungen der Formel (V), z.B. mit Phosgen, herstellen. Die Umsetzung der Verbindungen (X) mit den Aminoheterocyclen der Formel (VII) führt man vorzugsweise in inerten, aprotischen Lösungsmitteln, wie z.B. Dioxan, Acetonitril oder Tetrahydrofuran bei Temperaturen zwischen 0°C und der Siedetemperatur des Lösungsmittels durch (Schema 1 , (5)).
Die genannten Synthesen der Sulfonylharnstoffe der Formel (II) gemäß Schema 1 , (1 ) bis (5) sind neu und ebenfalls Gegenstand der Erfindung. Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung der Zwischenprodukte der Formel (II), dadurch gekennzeichnet, daß man einen nitrosubstituierten Phenylsulfonylharnstoff der genannten Formel (XI) in Gegenwart eines Acylierungsmittels der Formel (R4CO)2O an der Nitrogruppe katalytisch hydriert und mit dem Acylierungsmittel umsetzt (Schema 1 , (6)).
Die katalytische Hydrierung der Nitrogruppe kann analog üblichen Bedingungen für katalytische Hydrierungen mit Wasserstoff in Gegenwart eines geeigneten Hyrierungskatalysators, z.B. aus der Gruppe VIII des Periodensystems wie Ni, Pd, Pt und Rh erfolgen, wobei die Hydrierung jedoch in Gegenwart des Acylierungsmittels durchgeführt wird, mit dem die zur Aminogruppe reduzierte Nitrogruppe acyliert werden soll. Zur Durchführung wird beispielsweise eine Suspension aus einer Verbindung der Formel (XI), einem geeigneten Anhydrid, wie z.B. Essigsäureanhydrid, und einem geeigneten Katalysator, wie z.B. Raney- Ni oder Palladium auf Kohle, unter einer Wasserstoffatmosphäre mit beispielsweise 1 bis 100 atm H2-Druck, vorzugsweise 1 bis 10 atm H2-Druck gerührt. Die Reaktion kann auch unter Zusatz inerter Lösungsmittel, wie z.B. Essigsäure, Propionsäure, Dimethylformamid, N-Methylpyrrolidon oder Essigsäuredimethylamid, durchgeführt werden. Die Hydrogenolyse der Nitrogruppe von Verbindungen (XI) in Gegenwart von Säureanhydriden (Schema 1 , (6)) ermöglicht die Herstellung der Sulfonylharnstoffe (II) nach einem neuen und erfinderischen Verfahren, das einen vorteilhaft kurzen Syntheseweg mit überraschend guten Ausbeuten darstellt.
Daneben existieren zwei weitere Verfahren zur Gewinnung von Verbindungen der Formel (II); siehe Schema 1 , (7) und (8). Diese Verfahren sind in der Literatur (US-A-4,892,946) beschrieben.
Die genannten acht Verfahren zur Synthese von Verbindungen der Formel (II) (Schema 1 ) lassen sich mit der Deprotonierung zur Herstellung der Salzen der Formel (I) direkt kombinieren, z.B. durch Isolierung der Salze der Formel (I) aus einem basischen Reaktionsmedium anstelle der neutralen Verbindungen der Formel (II), die aus aus neutralem bzw. saurem Reaktionsmedium erhalten werden. Geeignete Eintopfsynthesen sind beispielsweise gekennzeichnet durch Zugabe von geeigneten Basen, wie z.B. Na2CO3, NaOH, NaOCH3, u.a., zu den Reaktionsgemischen aus der Darstellung von Verbindungen der Formel (II) und nachfolgende Isolierung der Salze der Formel (I). Diese Verfahren zur direkten Gewinnung der Verbindungen der Formel (I) sind ebenfalls neu und Gegenstand dieser Erfindung.
Mit den in den vorstehenden Verfahrensvarianten bezeichneten "inerten Lösungsmitteln" sind jeweils Lösungsmittel gemeint, die unter den jeweiligen Reaktionsbedingungen inert sind, jedoch nicht unter beliebigen Reaktionsbedingungen inert sein müssen.
Die erfindungsgemäßen Verbindungen der Formel (I) weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler Schadpflanzen auf. Auch schwer bekämpfbare perennierende Unkräuter, die aus Rhizomen, Wurzelstöcken oder anderen Dauerorganen austreiben, werden durch die Wirkstoffe gut erfaßt. Dabei ist es gleichgültig, ob die Substanzen im Vorsaat-, Vorauflauf- oder Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielsweise einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne daß durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll.
Auf der Seite der monokotylen Unkrautarten werden z.B. Avena, Lolium, Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria sowie Cyperusarten aus der annuellen Gruppe und auf Seiten der perennierenden Spezies Agropyron, Cynodon, Imperata sowie Sorghum und auch ausdauernde Cyperusarten gut erfaßt.
Bei dikotylen Unkrautarten erstreckt sich das Wirkungsspektrum auf Arten wie z.B. Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, Ipomoea, Matricaria, Abutilon und Sida auf der annuellen Seite sowie Convolvulus, Cirsium, Rumex und Artemisia bei den perennierenden Unkräutern.
Unter den spezifischen Kulturbedingungen im Reis vorkommende Unkräuter wie z.B. Sagittaria, Alisma, Eleocharis, Scirpus und Cyperus werden von den erfindungsgemäßen Wirkstoffen ebenfalls hervorragend bekämpft.
Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei bis vier Wochen vollkommen ab.
Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt ebenfalls sehr rasch nach der Behandlung ein drastischer Wachstumsstop ein und die Unkrautpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so daß auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird. Obgleich die erfindungsgemäßen Verbindungen eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden Kulturpflanzen wirtschaftlich bedeutender Kulturen wie z.B. Weizen, Gerste, Roggen, Reis, Mais, Zuckerrübe, Baumwolle und Soja nur unwesentlich oder gar nicht geschädigt. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs in landwirtschaftlichen Nutzpflanzungen.
Darüber hinaus weisen die erfindungsgemäßen Substanzen hervorragende wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen und zur Ernteerleichterung, z.B. durch Auslösen von Desikkation und Wuchstauchung, eingesetzt werden. Desweiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativem Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da das Lagern hierdurch verringert oder völlig verhindert werden kann.
Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, die Verbindungen der Formel (I) enthalten.
Die Verbindungen der Formel (I) können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in¬ Wasser- und Wasser-in-ÖI-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse.
Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1 973; K. Martens, "Spray Drying" Handbook, 3rd Ed. 1 979, G. Goodwin Ltd. London.
Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, "Solvents Guide"; 2nd Ed., Interscience, N.Y. 1 963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1 964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.
Auf. der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, anderen Herbiziden, Fungiziden, Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.
Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate, Alkylbenzolsulfonate, ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühien feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt.
Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie
Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfettsäureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitanfettsäureester.
Stäubemittel erhält man durch Vermählen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.
Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden. Emulsionen, z.B. ÖI-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen.
Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.
Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt.
Die agrochemischen Zubereitungen enthalten in der Regel 0, 1 bis 99 Gew.-%, insbesondere 0, 1 bis 95 Gew.-%, Wirkstoff der Formel (I).
In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 0,05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%.
Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel.
Als Kombinationspartner für die erfindungsgemäßen Wirkstoffe in Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte Wirkstoffe einsetzbar, wie sie in z.B. aus Weed Research 26, 441 -445 ( 1 986), oder "The Pesticide Manual", 9th edition, The British Crop Protection Council, 1990/91 , Brackneil, England, und dort zitierter Literatur beschrieben sind. Als literaturbekannte Herbizide, die mit den Verbindungen der Formel (I) kombiniert werden können, sind z.B. folgende Wirkstoffe zu nennen (Anmerkung: Die Verbindungen sind entweder mit dem "common name" nach der International Organization for Standardization (ISO) oder mit dem chemischen Namen, ggf. zusammen mit einer üblichen Codenummer bezeichnet): acetochlor; acifluorfen; aclonifen; AKH 7088, d.h. [[[1 -[5-[2-Chloro-4- (trifluoromethyl)-phenoxy]-2-nitrophenyl]-2-methoxyethylidene]-amino]-oxy]- essigsäure und -essigsäuremethylester; alachlor; alloxydim; ametryn; amidosulfuron; amitrol; AMS, d.h. Ammoniumsulfamat; anilofos; asulam; atrazin; aziprotryn; barban; BAS 51 6 H, d.h. 5-Fluor-2-phenyl-4H-3, 1 - benzoxazin-4-on; benazolin; benfluralin; benfuresate; bensulfuron-methyl; bensulide; bentazone; benzofenap; benzofluor; benzoylprop-ethyl; benzthiazuron; bialaphos; bifenox; bromacil; bromobutide; bromofenoxim; bromoxynil; bromuron; buminafos; busoxinone; butachlor; butamifos; butenachlor; buthidazole; butralin; butylate; carbetamide; CDAA, d.h. 2-Chlor- N,N-di-2-propenylacetamid; CDEC, d.h. Diethyldithiocarbaminsäure-2- chlorallylester; CGA 1 84927, d.h. 2-[4-[(5-Chlor-3-fluor-2-pyridinyl)-oxy]- phenoxyj-propansäure und 2-propynylester; chlomethoxyfen; chloramben; chlorazifop-butyl, pirifenop-butyl; chlorbromuroπ; chlorbufam; chlorfenac; chlorflurecol-methyl; chloridazon; chlorimuron ethyl; chlorπitrofen; chlorotoluron; chloroxuron; chlorpropham; chlorsulfuron; chlorthal-dimethyl; chlorthiamid; cinmethylin; cinosulfuron; clethodim; clomazone; clomeprop; cloproxydim; clopyralid; cyanazine; cycloate; cycloxydim; cycluron; cyperquat; cyprazine; cyprazole; 2,4-DB; dalapon; desmedipham; desmetryn; di-allate; dicamba; dichlobenil; dichlorprop; diclofop-methyl; diethatyl; difenoxuron; difenzoquat; diflufenican; dimefuron; dimethachlor; dimethametryn; dimethazone, clomazon; dimethipin; dimetrasulfuron, cinosulfuron; dinitramine; dinoseb; dinoterb; diphenamid; dipropetryn; diquat; dithiopyr; diuron; DNOC; eglinazine-ethyl; EL 1 77, d.h. 5-Cyano-1 -( 1 , 1 -dimethylethyl)-N-methyl-3H-pyrazole-4-carboxamid; endothal; EPTC; esprocarb; ethalfluralin; ethametsulfuron-methyl; ethidimuron; ethiozin; ethofumesate; F5231 , d.h. N-[2-Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5- dihydro-5-oxo-1 H-tetrazol-1 -yl]-phenyl]-ethansulfonamid; F6285, d.h. 1 -[5-(N- Methylsulfonyl)-amino-2,4-dichlorophenyl]-3-methyl-4-difluoromethyl-1 ,2,4- triazol-5-on; fenoprop; fenoxan, s. clomazon; fenoxaprop-ethyl; fenuron; flamprop-methyl; flazasulfuron; fluazifop und dessen Esterderivate; fluchloralin; flumetsulam; N-[2,6-Difluorphenyl]-5-methyl-(1 ,2,4)-triazolo[1 ,5a]pyrimidin-2- sulfonamid; flumeturon; flumipropyn; fluorodifen; fluoroglycofen-ethyl; fluridone; flurochloridone; fluroxypyr; flurtamone; fomesafen; fosamine; furyloxyfen; glufosinate; glyphosate; halosaten; haloxyfop und dessen Esterderivate; hexazinone; Hw 52, d.h. N-(2,3-Dichlorphenyl)-4-(ethoxymethoxy)-benzamid; imazamethabenz-methyl; imazapyr; imazaquin; imazethamethapyr; imazethapyr; imazosulfuron; ioxynil; isocarbamid; isopropalin; isoproturon; isouron; isoxaben; isoxapyrifop; karbutilate; lactofen; lenacil; linuron; MCPA; MCPB; mecoprop; mefenacet; mefluidid; metamitron; metazachlor; methabenzthiazuron; metham; methazole; methoxyphenone; methyldymron; metobromuron; metolachlor; metoxuron; metribuzin; metsulfuron-methyl; MH; molinate; monalide; monocarbamide dihydrogensulfate; monolinuron; monuron; MT 128, d.h. 6-Chlor-N-(3-chlor-2-propenyl)-5-methyl-N-phenyl-3-pyridazinamin; MT 5950, d.h. N-[3-Chlor-4-(1 -methylethyl)-phenyl]-2-methylpentanamid; naproanilide; napropamide; naptalam; NC 310, d.h. 4-(2,4-dichlorbenzoyl)-1 -methyl-5- benzyloxypyrazol; neburon; nicosulfuron; nipyraclophen; nitralin; nitrofen; nitrofluorfen; norflurazon; orbencarb; oryzalin; oxadiazon; oxyfluorfen; paraquat; pebulate; pendimethalin; perfluidone; phenmedipham; phenisopham; phenmedipham; picloram; piperophos; piributicarb; pirifenop-butyl; pretilachlor; primisulfuron-methyl; procyazine; prodiamine; profluralin; proglinazine-ethyl; prometon; prometryn; propachlor; propanil; propaquizafop und dessen Esterderivate; propazine; propham; propyzamide; prosulfalin; prosulfocarb; prynachlor; pyrazolinate; pyrazon; pyrazosulfuron-ethyl; pyrazoxyfen; pyridate; quinclorac; quinmerac; quinofop und dessen Esterderivate, quizalofop und dessen Esterderivate; quizalofop-ethyl; quizalofop-p-tefuryl; renriduron; dymron; S 275, d.h. 2-[4-Chlor-2-fluor-5-(2-propynyloxy)-phenyl]-4,5,6,7-tetrahydro-2H- indazol; S 482, d.h. 2-[7-Fluor-3,4-dihydro-3-oxo-4-(2-propynyl)-2H-1 ,4- benzoxazin-6-yl]-4,5,6,7-tetrahydro-1 H-isoindol-1 ,3(2H)-dion; secbumeton; sethoxydim; siduron; simazine; simetryn; SN 106279, d.h. 2-[[7-[2-Chlor-4- (trifluor-methyl)-phenoxy]-2-naphthalenyl]-oxy]-propansäure und -methylester; sulfometuron-methyl; sulfazuron; flazasulfuron; TCA; tebutam; tebuthiuron; terbacil; terbucarb; terbuchlor; terbumeton; terbuthylazine; terbutryn; TFH 450, d.h. N,N-Diethyl-3-[(2-ethyl-6-methylphenyl)-sulfonyl]-1 H-1 ,2,4- triazol-1 -carboxamid; thiazafluron; thifensulfuron-methyl; thiobencarb; tiocarbazil; tralkoxydim; tri-allate; triasulfuron; triazofenamide; tribenuron-methyl; triclopyr; tridiphane; trietazine; trifluralin; trimeturon; vernolate; WL 1 10547, d.h. 5-Phenoxy-1 -_3-(trifluormethyl)-phenyl_-1 H-tetrazol.
Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser, und anschließend auf die Pflanzen, Pflanzenteile oder den landwirtschaftlich oder industriell genützten Boden, auf dem die Pflanzen stehen oder in dem sie heranwachsen oder als Saat vorliegen, appliziert. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I). Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 und 5 kg/ha.
A. Chemische Beispiele
A1 ) 5-Acetylamino-N-[(4,6-dimethoxypyrimidin-2-yl)-aminocarbonyl]-2- methoxycarbonyl-benzolsulfonamid-Natriumsalz (Tabelle 1 , Nr. 1 )
12,0 g 5-Acetylamino-N-[(4,6-dimethoxypyrimidin-2-yl)-aminocarbonyl]-2- methoxycarbonyl-benzolsulfonamid (erhalten nach US-A-4,892,946) werden in 80 ml CH2CI2 vorgelegt und mit 26,5 ml 1 N Natronlauge versetzt. Das klare Gemisch wird eingeengt und mit wenig Methanol ausgerührt. Man erhält 10,5 g des Titelprodukts als farbloses Salz mit einem Schmelzpunkt von 210 bis 212°C unter Zersetzung.
A2) N-[(4,6-Dimethoxypyrimidin-2-yl)-aminocarbonyl]-5-formylamino-2- methoxycarbonyl-benzolsulfonamid-Natriumsalz (Tabelle 1 , Nr. 57)
1 ,40 g N-[(4,6-Dimethoxypyrimidin-2-yl)-aminocarbonyl]-5-formylamino-2- methoxycarbonyl-benzolsulfonamid werden in 20 ml Methanol vorgelegt und mit 0,58 ml 30 %iger Natriummethylatlösung versetzt. Nach 30 Minuten Rühren wird Methanol abdestilliert. Der Rückstand wird am Hochvakuum getrocknet. Man erhält so 1 ,31 g des gewünschten Salzes mit einem Schmelzpunkt von 202°C unter Zersetzung. A3) N-[(4,6-Dimethoxypyrimidin-2-yl)-aminocarbonyl]-5- methoxycarbonylamino-2-methoxycarbonyl-benzolsulfonamid-Natriumsalz (Tabelle 1 , Nr. 28)
0,5 g N-[(4,6-Dimethoxypyrimidin-2-yl)-aminocarbonyl]-5- methoxycarbonylamino-2-methoxycarbonyl-benzolsulfonamid werden analog Beispiel 2 in 1 3 ml Methanol mit 0,20 ml 30 %iger Natriummethylatlösung zum entsprechenden Salz umgesetzt. Man erhält so 0,5 g der gewünschten Verbindung mit einem Schmelzpunkt von 1 73 °C (Z).
Die in der nachfolgenden Tabelle 1 beschriebenen Verbindungen erhält man auf analoge Weise.
Folgende Abkürzungen werden in der Tabelle 1 verwendet:
Nr. = Beispielnummer
Fp. = Festpunkt (Schmelzpunkt)
Me = Methyl
Et = Ethyl
Pr = nPr = n-Propyl
'Pr = i-Propyl cPr = Cyclopropyl
*Bu = tert.-Butyl
(Z) = Zersetzung
Tabelle 1
Mθ X
B. Formulierungsbeispiele
a) Ein Stäubemittel wird erhalten, indem man 10 Gew. -Teile einer Verbindung der Formel (I) und 90 Gew. -Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel (I),
64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gewichtsteil oleoylmethyltaurinsaures
Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der Formel (I) mit
® 6 Gewichtsteilen Alkylphenolpolyglykolether ( Triton X 207),
3 Gewichtsteilen Isotridecanolpolyglykolether (8 EO) und 71 Gewichtsteilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gewichtsteilen einer Verbindung der Formel (I), 75 Gewichtsteilen Cyclohexanon als Lösungsmittel und 10 Gewichtsteilen oxethyliertes Nonylphenol als Emulgator.
e) Ein in Wasser dispergierbares Granulat wird erhalten indem man 75 Gewichtsteile einer Verbindung der Formel (I),
10 Gewichtsteile ligninsulfonsaures Calcium, 5 Gewichtsteile Natriumlaurylsulfat,
3 Gewichtsteile Polyvinylalkohol und 7 Gewichtsteile Kaolin mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert.
f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man
25 Gewichtsteile einer Verbindung der Formel (I), 5 Gewichtsteile 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium 2 Gewichtsteile oieoylmethyltaurinsaures Natrium, 1 Gewichtsteil Polyvinylalkohol, 17 Gewichtsteile Calciumcarbonat und
50 Gewichtsteile Wasser auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.
C. Biologische Beispiele
1. Unkrautwirkung im Vorauflauf
Samen bzw. Rhizomstücke von mono- und dikotylen Unkraufpflanzen werden in
Plastiktöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern oder Emulsionskonzentraten formulierten erfindungsgemäßen Verbindungen werden dann als wäßrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha in unterschiedlichen Dosierungen auf die Oberfläche der Abdeckerde appliziert.
Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Unkräuter gehalten. Die optische Bonitur der Pflanzen- bzw. der Auflaufschäden erfolgt nach dem Auflaufen der Versuchspflanzen nach einer Versuchszeit von 3 bis 4 Wochen im Vergleich zu unbehandelten Kontrollen. Wie die Testergebnisse zeigen, weisen die erfindungsgemäßen Verbindungen eine gute herbizide Vorauflaufwirksamkeit gegen ein breites Spektrum von Ungräsern und Unkräutern auf. Beispielsweise haben die Verbindungen der Beispiele 1 , 2, 1 7, 24, 27, 28, 35, 37, 57, 64, 72, 73, 74 und 75 aus der Tabelle 1 sehr gute herbizide Wirkung gegen Schadpflanzen wie Alopecurus myosuroides, Sinapis alba, Chrysanthemum segetum, Avena sativa, Stellaria media, Echinochlora crus-galli und Lolium multiflorum im Vorauflaufverfahren bei einer Aufwandmenge von 0,3 kg und weniger Aktivsubstanz pro Hektar.
2. Unkrautwirkung im Nachauflauf
Samen bzw. Rhizomstücke von mono- und dikotylen Unkräutern werden in Plastiktöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen. Drei Wochen nach der Aussaat werden die Versuchspflanzen im Dreiblattstadium behandelt.
Die als Spritzpulver bzw. als Emulsionskonzentrate formulierten erfindungsgemäßen Verbindungen werden in verschiedenen Dosierungen mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha auf die grünen Pflanzenteile gesprüht und nach ca. 3 bis 4 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen die
Wirkung der Präparate optisch im Vergleich zu unbehandelten Kontrollen bonitiert. Die erfindungsgemäßen Mittel weisen auch im Nachauflauf eine gute herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger Ungräser und Unkräuter auf. Beispielsweise haben die Verbindungen der Beispiele 1 , 2, 1 7, 24, 27, 28, 35, 37, 57, 64, 72, 73, 74 und 75 aus der
Tabelle 1 sehr gute herbizide Wirkung gegen Schadpflanzen wie Alopecurus myosuroides, Sinapis alba, Stellaria media, Echinochloa crus-galli, Lolium multiflorum, Chrysanthemum segetum und Avena sativa im Nachauflaufverfahren bei einer Aufwandmenge von 0,3 kg und weniger Aktivsubstanz pro Hektar. 3. Kulturpflanzenverträglichkeit
In weiteren Versuchen im Gewächshaus werden Samen einer größeren Anzahl von Kulturpflanzen und Unkräutern in sandigem Lehmboden ausgelegt und mit Erde abgedeckt. Ein Teil der Töpfe wird sofort wie unter Abschnitt 1 beschrieben behandelt, die übrigen im Gewächshaus aufgestellt, bis die Pflanzen zwei bis drei echte Blätter entwickelt haben und dann wie unter Abschnitt 2 beschrieben mit den erfindungsgemäßen Substanzen der Formel (I) in unterschiedlichen Dosierungen besprüht. Vier bis fünf Wochen nach der Applikation und Standzeit im Gewächshaus wird mittels optischer Bonitur festgestellt, daß die erfindungsgemäßen Verbindungen zweikeimblättrige Kulturen wie z.B. Soja, Baumwolle, Raps, Zuckerrüben und Kartoffeln im Vor- und Nachauflaufverfahren selbst bei hohen Wirkstoffdosierungen ungeschädigt lassen. Einige Substanzen schonen darüber hinaus auch Gramineen-Kulturen wie z.B. Gerste, Weizen, Roggen, Sorghum-Hirsen, Mais oder Reis. Die
Verbindungen der Formel (I) weisen somit eine hohe Selektivität bei Anwendung zur Bekämpfung von unerwünschten Pflanzenwuchs in landwirtschaftlichen Kulturen auf.

Claims

Patentansprüche:
worin n 0, 1 , 2 oder 3,
R Halogen, Alkyl oder Alkoxy, und zwar jeweils unabhängig von anderen
Substituenten R, wenn n größer 1 ist,
R einen unsubstituierten oder substituierten Kohlenwasserstoffrest oder einen unsubstituierten oder substituierten heterocyclischen Rest,
R2 einen Acylrest,
R3 Wasserstoff oder C1-C5-Alkyl,
Mθ ein Metall- oder Ammoniumion,
X, Y unabhängig voneinander Halogen, C**-C6-Alkyl. C.,-C6-Alkoxy, C,-C6- Alkylthio, wobei jeder der drei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, C.,-C4-Alkoxy, und C-|-C4-Alkylthio substituiert ist, oder C3-C6-Cycloalkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Alkenyloxy, C3-C6-Alkinyloxy, Mono- oder DMC- C^alkyO-amino und
Z CH oder N bedeuten.
2. Verbindungen der Formel (I) nach Anspruch 1 , dadurch gekennzeichnet, daß n 0, 1 oder 2,
R Halogen, C1-C3-Alkyl oder C-j-C3-Alkoxy, R1 Cj-Cg-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloalkyl, wobei jeder der vier letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, CN, CrC4-Alkoxy, CrC4- Haloalkoxy, Mono-(C.,-C4-alkyl)-amino, Di-(CrC4-alkyl)-amino, C-,-C4- Alkylsulfonyl, C.*-C4-Alkylsulfinyl, (C1 -C4-Alkoxy)-carbonyl, Aminocarbonyl, Mono-(C1 -C4-alkyl)-aminocarbonyl, Di-(C1-C4-alkyl)- aminocarbonyl, unsubstituiertes Phenyl, substituiertes Phenyl, unsubstituierter heterocyclischer Rest und substituierter heterocyclischer
Rest substituiert ist, oder einen heterocyclischen Rest mit 3, 4, 5 oder 6 Ringatomen und einem Sauerstoffatom als Heteroringatom, wobei der Rest unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe CrC4-Alkyl substituiert ist, R2 CO-R4, CO-OR5, CO-NR6R7 oder SO2-R8,
R3 H, CrC4-Alkyl,
R4 Wasserstoff, CrC6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloalkyl, wobei jeder der vier letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, CN, C.,-C4-Alkoxy, C,-C4- Haloalkoxy, Mono-(C.*-C4-alkyl)-arr.ino, Di-(C.,-C4-alkyl)-amino, C,-C4-
Alkylsulfonyl, C.*-C4-Alkylsulfinyl, (C1 -C4-Alkoxy)-carbonyl, Aminocarbonyl, Mono-(C*,-C4-alkyl)-anninocarbonyl, Di-(C1-C4-alkyl)- aminocarbonyl, Phenyl und substituiertes Phenyl substituiert ist, oder Phenyl, das unsubstituiert oder substituiert ist, R5 analog R4, außer Wasserstoff,
R6 und R7 unabhängig voneinander H, C-j-Cg-Alkyl, C2-C6-Alkenyl, C2-C6- Alkinyl, wobei jeder der drei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, wie F, Cl und Br, CN, CrC4-Alkoxy, CrC4-Haloalkoxy, Mono-(CrC4-alkyl)-amino, Di- (C.*-C4-alkyl)-anr.ino, CrC4-Alkylsulfonyl, CrC4-Alkylsulfinyl, (CrC4-
Alkoxy)-carbonyl, Aminocarbonyl, Mono-(C1-C4-alkyl)-aminocarbonyl und Di-(C.|-C4-aIkyl)-anr.inocarbonyl substituiert ist, oder R6 und R7 gemeinsam mit dem an sie gebundenen N-Atom einen unsubstituierten oder substituierten heterocyclischen Ring aus vier bis acht Ringatomen, der inklusive der Substituenten bis zu 18 C-Atome enthält, R8 C*,-C5-Alkyl, C2-C5-Alkenyl, wobei jeder der zwei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, C..-C4-Alkoxy, C*-C4-Haloalkoxy, Mono-(C1-C4-alkyl)-amino und Di-(C1-C4-alkyl)-amino substituiert ist,
MΘ das Kationäquivalent eines Alkali- oder Erdalkalimetalls oder NH4 + , 1/2Zn2 + -, R°NH3 + , R°2NH2 + , R°3NH+ oderR°4N + ,
R° CrC6-Alkyl oder Benzyl,
X, Y unabhängig voneinander Halogen, C.|-C4-Alkyl, CrC4-Alkoxy, CrC4- Alkylthio, wobei jeder der drei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, C C4-Alkoxy und C--C4-Alkylthio substituiert ist, Mono- oder Di(C1-C4-alkyl)amino, C3-C6-Cycloalkyl, C2-C5-Alkenyl oder C2-C5-Alkinyloxy und
Z CH oder N bedeuten.
3. Verbindungen der Formel (I) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß
R1 CrC6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloalkyl, wobei jeder der vier letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe F, Cl, Br, I, CN, OCH3, OCF3, N(CH3)2, SO2CH3, CO2CH3, CO2N(CH3)2 und Phenyl substituiert ist, oder einen
Rest der Formeln A-, bis A7
( A, ) ( A2 ) ( A3) ( A4)
2-
( A5 ) ( A6) ( A7 ) R2 CO-R4, CO-OR5, CO-NR6R7 oder SO2-R8,
R3 H oder CH3,
R4 Wasserstoff, C. -Cg-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloalkyl, wobei jeder der vier letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe F, Cl, Br, I, CN, OCH3, OCF3,
N(CH3)2, SO2CH3, CO2CH3, CON(CH3)2 und Phenyl substituiert ist, oder Phenyl, das unsubstituiert oder bis zu dreifach durch gleiche oder verschiedene Reste aus der Gruppe Halogen, CH3, C2H5, OCH3, OC2H5, CF3, C2H5CI, OCHF3, OCHF2 substituiert ist, R5 analog R4, ausgenommen Wasserstoff,
R6 und R7 unabhängig voneinander H, C-|-C6-Alkyl, C2-C6-Alkenyl, C2-C6- Alkinyl, wobei jeder der drei letztgenannten Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe F, Cl, Br, CN, OCH3, OCF3, N(CH3)2, SO2CH3, CO2CH3 und CON(CH3)2 substituiert ist, und R8 C--C5-Alkyl oder C2-C5-Alkenyl, wobei jeder der zwei letztgenannten
Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe F, Cl, Br, OCH3 oder N(CH3)2 substituiert ist, bedeuten.
4. Verbindungen der Formel (I) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß
R1 CrC6-Alkyl,
R2 CO-R4, CO-OR5, CO-NR6R7 oder SO2-R8,
R3 H, MΘ Na + , K + , 1/2 Mg2 + , 1/2 Ca2 + , NH4 + , H2NEt2 + , H3NC4H9 + , NH(C2H5)3 + ,
N(C2H5)4 + , N(CH3)4 + , HN(CH3)3 +
R° CrC6-Alkyl,
X, Y OCH3, OC2H5, SCH3, NHCH3, N(CH3)2, CH3 oder OCH2CF3.
5. Verfahren zur Herstellung der Verbindungen der Formel (I), wie sie nach einem der Ansprüche 1 bis 4 definiert sind, dadurch gekennzeichnet, daß man Verbindungen der Formel (II)
R ' worin
R, R1, R2, R3, X, Y, Z und n wie in Formel (I) definiert sind,
mit einer geeigneten Base der Formel (III)
Mθ Xθ (III),
worin Xθ ein Anionäquivalent bedeutet und M® wie in der genannten Formel (I) definiert ist sowie Ar Aryl bedeutet, umsetzt
oder, im Falle eines Ammoniumsalzes, entsprechend mit Ammoniak oder einem organischen Amin umsetzt.
6. Verfahren zur Herstellung von Verbindungen der Formel (II),
dadurch gekennzeichnet, daß man eine Umsetzung gemäß einer der folgenden
Reaktionsgleichungen (1 ) bis (6) durchführt:
(V) (V I )
(2) + C I -CO-0-Ar + HNR ( ι i ) NH:
(V) (V I I )
(3 ) (ι ι)
( V ) ( V I I I )
(4) + NαOCN HNR ( I I )
(x) ( V I I )
(X I ) wobei in der Reaktionssequenz (6) R2 in Formel (II) die Bedeutung der Formel COR4 hat und in den Formeln (II), (V)-(XIII) und (R4CO)2O die Reste R, R1 , R2, R3, R4, X, Y, Z und der Index n wie in Formel (I) nach einem der Ansprüche 1 bis 4 definiert sind.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß man eine Verbindung der Formel (XI)
in Gegenwart eines Acylierungsmittels der Formel (R CO)2O an der Nitrogruppe katalytisch hydriert und mit dem Acylierungsmittel umsetzt.
8. Herbizides oder pflanzenregulierendes Mittel, dadurch gekennzeichnet, daß es mindestens eine Verbindung der Formel (I) nach einem der Ansprüche 1 bis 4 und im Pflanzenschutz übliche Formulierungshilfsmittel enthält.
9. Verfahren zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung von Pflanzen, dadurch gekennzeichnet, daß man ein wirksame Menge von mindestens einer Verbindung der Formel (I) nach einem der Ansprüche 1 bis 4 auf die Schadpflanzen bzw. Pflanzen, deren Pflanzensamen oder die Fläche, auf der die Pflanzen wachsen, appliziert.
10. Verwendung der Verbindungen der Formel (I) nach einem der Ansprüche 1 bis 4 als Herbizide oder Pflanzenwachstumsregulatoren.
EP95920051A 1994-06-01 1995-05-17 Phenylsulfonylharnstoffe mit stickstoffsubstituenten; verfahren zu deren herstellung und verwendung als herbizide und pflanzenwachstumsregulatoren Withdrawn EP0763027A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4419259A DE4419259A1 (de) 1994-06-01 1994-06-01 Phenylsulfonylharnstoffe mit Stickstoffsubstituenten; Verfahren zu deren Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE4419259 1994-06-01
PCT/EP1995/001868 WO1995032951A1 (de) 1994-06-01 1995-05-17 Phenylsulfonylharnstoffe mit stickstoffsubstituenten; verfahren zu deren herstellung und verwendung als herbizide und pflanzenwachstumsregulatoren

Publications (1)

Publication Number Publication Date
EP0763027A1 true EP0763027A1 (de) 1997-03-19

Family

ID=6519594

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95920051A Withdrawn EP0763027A1 (de) 1994-06-01 1995-05-17 Phenylsulfonylharnstoffe mit stickstoffsubstituenten; verfahren zu deren herstellung und verwendung als herbizide und pflanzenwachstumsregulatoren

Country Status (16)

Country Link
US (1) US5696053A (de)
EP (1) EP0763027A1 (de)
JP (1) JPH10501525A (de)
CN (1) CN1149290A (de)
AU (1) AU2564995A (de)
BG (1) BG100999A (de)
BR (1) BR9507802A (de)
CA (1) CA2191757A1 (de)
CZ (1) CZ349596A3 (de)
DE (1) DE4419259A1 (de)
HU (1) HUT76486A (de)
MX (1) MX9605995A (de)
PL (1) PL317419A1 (de)
TR (1) TR28544A (de)
WO (1) WO1995032951A1 (de)
ZA (2) ZA954463B (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440354A1 (de) * 1994-11-11 1996-05-15 Hoechst Schering Agrevo Gmbh Kombinationen aus Phenylsulfonylharnstoff-Herbiziden und Safenern
DE19544743A1 (de) * 1995-12-01 1997-06-05 Hoechst Schering Agrevo Gmbh 5-Acylamino-2-alkoxycarbonylphenylsulfonylharnstoffe als selektive Herbizide
BR9713395A (pt) * 1996-11-22 2000-03-21 Du Pont paração de um sal de amÈnio quaternário
AU744497B2 (en) * 1996-11-22 2002-02-28 E.I. Du Pont De Nemours And Company Quaternary ammonium salts of a sulfonylurea
AU4521700A (en) * 1999-01-27 2000-08-18 Aventis Cropscience Gmbh Herbicidal formulation
DE19963383A1 (de) 1999-12-28 2001-07-05 Aventis Cropscience Gmbh Formulierung von Herbiziden und Pflanzenwachstumsregulatoren
CA2822296A1 (en) 2010-12-21 2012-06-28 Bayer Cropscience Lp Sandpaper mutants of bacillus and methods of their use to enhance plant growth, promote plant health and control diseases and pests
EP2755485A1 (de) 2011-09-12 2014-07-23 Bayer Cropscience LP Verfahren zur verbesserung der gesundheit und/oder der förderung des wachstums einer pflanze und/oder zur verbesserung der fruchtreifung
CN112661704B (zh) * 2020-12-22 2023-09-05 南开大学 单嘧磺隆衍生物及其制备方法、除草剂和除草方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK401978A (da) * 1977-10-06 1979-04-07 Du Pont Herbicide sulfonamider
US4892946A (en) * 1979-11-30 1990-01-09 E. I. Du Pont De Nemours And Company Agricultural sulfonamides
DE3466986D1 (de) * 1983-02-04 1987-12-03 Ciba Geigy Ag N-phenylsulfonyl-n'-pyrimidinyl- and -triazinylurea
US4981509A (en) * 1984-05-24 1991-01-01 E. I. Du Pont De Nemours And Company Herbicidal sulfonamides
WO1989001477A1 (en) * 1987-08-19 1989-02-23 E.I. Du Pont De Nemours And Company Process for preparing sulfonylurea salts
US5157119A (en) * 1991-10-15 1992-10-20 E. I. Du Pont De Nemours And Company Process for preparing sulfonylureas
DE4236902A1 (de) * 1992-10-31 1994-05-05 Hoechst Ag Neue Phenylsulfonylharnstoffe, Darstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9532951A1 *

Also Published As

Publication number Publication date
BG100999A (en) 1997-08-29
PL317419A1 (en) 1997-04-14
AU2564995A (en) 1995-12-21
JPH10501525A (ja) 1998-02-10
US5696053A (en) 1997-12-09
DE4419259A1 (de) 1995-12-07
BR9507802A (pt) 1997-08-05
CA2191757A1 (en) 1995-12-07
WO1995032951A1 (de) 1995-12-07
CZ349596A3 (en) 1997-03-12
HU9603292D0 (en) 1997-02-28
CN1149290A (zh) 1997-05-07
ZA954463B (en) 1996-01-24
MX9605995A (es) 1997-12-31
TR28544A (tr) 1996-09-30
HUT76486A (en) 1997-09-29
ZA954464B (en) 1996-01-24

Similar Documents

Publication Publication Date Title
EP0757679B1 (de) Acylierte aminophenylsulfonylharnstoffe, verfahren zu deren herstellung und verwendung als herbizide und pflanzenwachstumsregulatoren
EP0706518B1 (de) Acylierte aminophenylsulfonylharnstoffe; darstellung und verwendung als herbizide und pflanzenwachstumsregulatoren
DE4335297A1 (de) Phenylsulfonylharnstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwachstumsregulatoren
EP0666852B1 (de) Neue phenylsulfonylharnstoffe, ihre darstellung und ihre verwendung als herbizide und pflanzenwachstumsregulatoren
EP0660828A1 (de) Hydroxylamino-phenylsulfonylharnstoffe, ihre darstellung und ihre verwendung als herbizide und pflanzenwachstumsregulatoren
US5696053A (en) Nitrogen-substituted phenylsulfonylureas; processes for their preparation, and their use as herbicides and plant growth regulators
EP0763028B1 (de) Formylaminophenylsulfonylharnstoffe, verfahren zur herstellung und verwendung als herbizide und pflanzenwachstumsregulatoren
WO1993012094A1 (de) Pyrimidinyl- oder triazinyl-oxy-(oder -thio)-aldehydderivate, und verwendung als herbizide oder pflanzenwachstumsregulatoren
EP0794947A1 (de) N-substituierte hydrazinophenylsulfonylharnstoffe als herbizide und pflanzenwachstumsregulatoren
EP0673359A1 (de) Benzocyclohexenone, verfahren zu ihrer herstellung und ihre verwendung als herbizide und pflanzenwachstumgsregulatoren
EP0715629B1 (de) N-heteroaryl-n-(pyrid-2-yl-sulfonyl)-harnstoffe, verfahren zu ihrer herstellung und ihre verwendung als herbizide und pflanzenwachstumsregulatoren
EP0790984A1 (de) Schwefelsubstituierte phenylsulfonylharnstoffe; verfahren zu deren herstellung und verwendung als herbizide und pflanzenwachstumsregulatoren
EP0863707B1 (de) 5-acylamino-2-alkoxycarbonylphenylsulfonylharnstoffe als selektive herbizide
DE4304288A1 (de) Thienylsulfonylharnstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwachstumsregulatoren
WO1996015119A1 (de) Acylaminophenylsulfonylharnstoffsalze als herbizide und pflanzenwachstumsregulator
EP0790985A1 (de) N-acyl-n-alkylaminophenylsulfonylharnstoffe mit schwefelsubstituenten, verfahren zur herstellung und verwendung als herbizide und pflanzenwachstumsregulatoren
WO1995006039A1 (de) Neue phenylglyoxylsäurederivate, verfahren zu ihrer herstellung und ihre verwendung als herbizide und pflanzenwachstumsregulatoren
EP0562510A1 (de) Optisch aktive Pyrimidinyl- oder Triazinyl-oxy-(oder -thio)-carbonsäurederivate, Verfahren zur ihrer Herstellung und Verwendung als Herbizide oder Pflanzenwachstumsregulatoren
DE19510078A1 (de) Formylaminophenylsulfonylharnstoffe, Verfahren zur Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE4311787A1 (de) Fluormethylsulfonyl-substituierte Pyridylsulfonylharnstoffe als Herbizide, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4335587A1 (de) N-Heteroaryl-N&#39;-(pyrid-2-yl-sulfonyl)-Harn- stoffe, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwachstumsregulatoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL PT SE

17Q First examination report despatched

Effective date: 19980122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980804