EP0758716B1 - Flügelzellenpumpe - Google Patents
Flügelzellenpumpe Download PDFInfo
- Publication number
- EP0758716B1 EP0758716B1 EP96112844A EP96112844A EP0758716B1 EP 0758716 B1 EP0758716 B1 EP 0758716B1 EP 96112844 A EP96112844 A EP 96112844A EP 96112844 A EP96112844 A EP 96112844A EP 0758716 B1 EP0758716 B1 EP 0758716B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- pump
- area
- plate
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/06—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
- F01C21/0809—Construction of vanes or vane holders
- F01C21/0818—Vane tracking; control therefor
- F01C21/0854—Vane tracking; control therefor by fluid means
- F01C21/0863—Vane tracking; control therefor by fluid means the fluid being the working fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C14/00—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
- F04C14/06—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for stopping, starting, idling or no-load operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0003—Sealing arrangements in rotary-piston machines or pumps
- F04C15/0023—Axial sealings for working fluid
Definitions
- the invention relates to a pump, in particular Vane pump, according to the preamble of the claim 1.
- Pumps, especially roller cell and vane pumps the type mentioned here are known.
- a pump with a rotor, in the peripheral wall Wing-receiving slots are introduced.
- the rotor turns within a contour ring, the at least one, here two crescent-shaped production rooms forms that go through by the wings become. Rotation of the rotor results in larger and smaller rooms, so suction and Pressure ranges.
- the object of the invention is to provide a pump which has better cold start properties than conventional pumps.
- a is particularly advantageous Sealing element as a hydraulic resistance element. Because the sealing element completely seals a fluid path So it's a resistance element with one infinite resistance. The fact that the sealing element especially the connection between the two Pressure areas with each other, here also the fluid path from the pressure side of the pump to a consumer, interrupts, this will be during the start of the Pumped hydraulic oil only for the Lower wing area used, i.e. exclusively for the wings (in the case of a roller cell pump, the Roles) in their functional position to the outside pushing.
- a vane pump is preferred, at first a fluid connection to a lower wing area leading the conveyor opening will be produced. This will be the lower wing area that wing is pressurized, that just pass through the suction area. It So here is the pump section in its Function supported, which otherwise in cold start none Hydraulic oil delivers.
- An embodiment of a is also preferred Vane pump, in which the hydraulic Resistance element a finite resistance owns, with appropriate design one setting of channel or groove cross-sections of the resistance value is achievable.
- Figure 1 is a first embodiment strong as a vane pump 1 trained pump reproduced schematically in longitudinal section.
- she has a basic housing 3, which is driven by a drive shaft 5 is penetrated into a rotor 7 engages.
- the rotor 7 is on its peripheral surface provided with radial slots, in which wings are movably arranged.
- the rotor 7 is surrounded by a contour ring 9, the inner surface is designed so that at least one, preferably formed two crescent-shaped delivery rooms become. These are traversed by the wings, with two pump sections, each with a suction and a printing area can be realized.
- the rotor 7 and the contour ring 9 lie sealingly a sealing surface of the basic housing 3.
- a pressure plate 11 provided by the vane pump 1 delivered fluid from the pressure side the pump is passed into a pressure chamber 13 which Part of one from the print side to a consumer leading fluid path is.
- the pressure plate 11 is to do this with pressure channels 15 which are on the one hand to the pressure range of the pump sections and on the other hand open to the pressure chamber 13.
- the delivery openings opening into the pressure chamber 13 of the pressure channels 15 are here as a cold start plate 17 designated and trained Sealing element closed by a pressure spring 19 for example a disc spring with a Biasing force is pressed against the pressure plate 11.
- FIG. 2 shows a greatly enlarged surface 33 the pressure plate 11, that of the not shown in Figure 2 Cold start plate 17 is facing.
- the pressure channels 15 have a passage area, the maximum 1/3 of the passage area of the delivery openings 21, 23.
- To the pressure range assigned to the delivery opening 21 belongs to a suction region 25 indicated here of the first pump section. According to that the delivery opening 23 associated pressure range Assigned suction area 27 of the second pump section.
- the pressure plate 11 is here with essentially Feed channels running perpendicular to the image plane provided, through which the pressurized fluid or hydraulic oil to the lower wing areas of the pump sections. It is here a first feed opening 29 can be seen in which the Feed channel of the first lower wing section opens, also a second feed opening 31 in which that assigned to the second lower wing area Feed channel in the printing plate surface 33 opens.
- Figure 2 shows that in the printing plate surface 33 grooves 35 serving as fluid connections and 37 are introduced.
- the first groove 35 runs from the feed opening 21 to the feed opening 31, the second groove 37 extends from the delivery opening 23 to the feed opening 29.
- the delivery openings of a Pump section therefore supply the lower wing area of the other leading pump section.
- the imaginary is by a dashed diagonal 39 Dividing line between the two pump sections indicated.
- Figure 3 again shows the printing plate surface 33 of a pressure plate 11. Parts that match those in Figure 2 match, are with the same reference numerals provided so that on their description can be dispensed with here.
- the Cold start plate removed to the contours on the Printing plate surface 33 can be seen better allow.
- the support area is respectively Contact area 41 between the pressure plate 11 and cold start plate 17 shown in dashed lines. It can be seen that the touch area much smaller between the two plates is their surface or overall cross-section.
- the outer contour 43 of the cold start plate 17 is also indicated in Figure 4.
- the printing plate surface 33 conveyor openings 21 and 23 as well Has feed openings 29 and 31.
- the printing plate 11 extends as a channel 37c Fluid connection from the delivery opening 23 to the feed opening 29.
- the two feed openings 29 and 31 are connected to one another by an annular groove 45, in fluid communication with the channel 37c stands.
- the annular groove 45 is thus over the as a groove trained channel 37c also with the delivery opening 23 connected.
- Pressure plate 11 is the one between the conveying opening 23 and feed opening 29 extending channel 37c deeper formed as the annular groove 45. It is otherwise possible to form the channel 37c in mirror image and not to the feed opening 29 but to Let feed opening 31 run.
- the contact area 41 is placed so that the Pressure ranges of the pump sections over the Delivery openings 21 and 23 in the printing plate surface 33 open out are covered.
- the Cold start properties of the pump are, however already significantly improved if only the Delivery opening 23 of the lower pump section through the cold start plate 17 is closed. At this Embodiment has proven particularly advantageous found that the noise positively influenced by avoiding an undefined flutter of the Cold-start plate.
- the contact area 41 is chosen to be as small as possible, so that the cold start plate 17 is not on the Pressure plate 11 sticks, also avoiding that the hydrodynamic paradox to effect comes and the cold start plate 17 by escaping oil is attracted to the pressure plate 11.
- the function the cold start plate 17 only guaranteed is when the orientation resulting from Figure 4 guaranteed against the pressure plate 11 is. So it needs both a centering and also an anti-rotation device for the cold start plate 17, for example by pins 47 and 49 shown in Figure 4 are shown. Preferably they are already for centering the pressure plate and the contour ring inserted pens extended so that them in corresponding holes in the cold start plate 17 can intervene. To be particularly advantageous it turned out, however, the pens 47,49 also for centering the pressure spring 19 use. The fact that the pins Penetrate cold start plate 17 and with the spring can work together in vane pumps existing pens for another Use function. For centering the spring therefore no additional parts are required become.
- the cold start plate 17 can be made from a suitable one Metal or plastic can be made.
- the Compressive force of the pressure spring 17 can affect the operating behavior the vane pump 1 in individual cases be coordinated. It is also possible that pressing force acting on the cold start plate the pressing the pressure plate against the rotor 7 Ensure compression spring.
- FIGS. 5 and 6 illustrate exemplary embodiments described by pumps, the two Have printing plates. This is how in the illustrated with reference to Figures 1 to 4 Embodiments to double-stroke vane pumps. The same parts, which are based on FIG have already been explained, bear the same reference numbers, so that their description is omitted here can be.
- the vane pump 101 shown in FIG. 5 has one housed in a basic housing 3 Rotor 7, which is rotatable within a contour ring 9 is stored. From the sectional view in Figure 5 can be seen that on both ends of the rotor 7 and the contour ring 9 pressure plates 11a and 11b are provided.
- the right pressure plate 11a is identical to that of the figure 1 illustrated embodiment. She points two pressure channels 15 penetrating the pressure plate on, which was explained using FIGS. 2 to 4 Delivery openings open into a pressure chamber 13 the appropriate way, for example via a Connection 51 be connected to a consumer can.
- the pressure plate 11a On the surface facing away from the rotor 17 the pressure plate 11a is a start-up or Cold start plate 17 designated sealing element the lower pressure channel 15 of the lower Pump section of the pump 101 completes.
- the lower pressure channel 15 is via a suitable fluid connection 51 ', which is shown in FIGS individual was explained with the lower wing area 53 of the lower and / or upper pump section connected.
- the cold start plate 17 closes the fluid connection 51 'opposite the pressure chamber 13 from so that while the cold start plate 17 on the Pressure plate 11a lies sealingly, one from the Pressure channel 15 emerging fluid via the fluid connection 51 'reaches the lower wing area 53.
- the cold start plate is the upper conveyor opening of the upper pump section cannot be closed via the pressure chamber 13 no pumped fluid from the lower pressure channel 15 to upper pressure channel 15 reach. So it is possible to use the cold start plate To train 17 so small that this is only the Delivery opening of the lower pump section opposite closes the pressure room.
- a second pressure plate 11b On the left side of the rotor 7 respectively of the contour ring 9 is a second pressure plate 11b provided the one the printing area of the lower Passage 55 assigned to the pump section to a has closed space 57. Through the culvert 55 fluid conveyed into the space 57 leads to a Overpressure in this room, so the left Pressure plate 11b sealing against the rotor and contour ring is pressed.
- the here as cold start plate 17 is designated and designed, no fluid from the Pressure channel 15 'in the pressure chamber 13 respectively in the fluid path to the consumer and to the top Pressure kidney 15 arrive. It shows here that Sealing element can be practically arbitrary can. It is only essential that the fluid path to the Consumer is interrupted and that that of the Pump 101 delivered fluid during the start-up phase or exclusively during the cold start benefits the lower wing area.
- a vane pump 201 the also as a double-stroke pump with two pressure plates 11a and 11b, which, as from the sectional view of Figure 6 can be seen, on the end faces of a rotor 7 or of an associated contour ring 9. Same Parts are here with the same reference numbers provided so that on the description of Figure 5 and to which reference can be made according to FIG. 1.
- the left pressure plate 11b is here with a pressure channel 15 '' provided via a fluid connection 51 with a lower wing area 53 in fluid communication stands. No conclusion is required here the fluid connection because of the pressure channel 15 '', as well as the lower wing area 53, in the room 57 closed in a pressure-tight manner.
- the Pressure plate 11a contains the pressure channel 15 'which arranged here on the right side of the rotor 7 is and of the sealing element, which in turn here as Cold start plate is formed against the Pressure chamber 13 is closed. It can be assumed that Figures 5 and 6, as well as the Figures 7 to 9 and 1 represent pumps, which are in the start-up or cold start phase where the pressure is not is sufficient, the sealing element or the Cold start plate 17 from the associated pressure plate withdraw.
- the pump 201 provides the cold start plate 17 safe in the start-up or cold start phase, that none from the lower pump area Hydraulic oil via the pressure chamber 13 to a consumer arrives.
- the extracted oil is rather about the left pressure channel 15 '' to the closed room 57 conveyed and reaches via a fluid connection, which is only an example here as a groove in the pressure plate 11b is formed to the lower wing area 53 of the lower pump section.
- a fluid connection which is only an example here as a groove in the pressure plate 11b is formed to the lower wing area 53 of the lower pump section.
- FIG The illustrated embodiment must have the fluid connection 51 not as a groove in the surface of the Pressure plate 11b can be introduced because of a fluid connection from the lower pressure channel 15 '', via the hermetically sealed room 57 to the lower wing area 53 exists.
- FIG. 8 shows a first embodiment of the one in FIG 7 addressed pump 301 with two pressure plates 11a and 11b, the right and left of a rotor 7 and a contour ring 9 assigned to them are arranged.
- the right pressure plate 11a is at the embodiment of Figure 7 with the grooves 69 and 71 provided, of which the suction area 65 associated groove 69 with the pressure area respectively with one assigned to the printing area Pressure channel 15 via a fluid connection 51 in hydraulic connection.
- the fluid connection 51 is here inserted into the pressure plate 11a Groove formed in the the rotor 7 facing surface of the pressure plate is located.
- the fluid connection 51 between the pressure channel 15 and the groove 69 is by a cold start plate 17 trained sealing element completed so that Fluid emerging from the pressure channel 15 is not in can reach the pressure chamber 13.
- the cold start plate 17 is pressed against the pressure plate by a pressure spring 19 11a pressed.
- a second pressure plate 11b Opposite the pressure plate 11a is on the other side of the rotor 7 or contour ring 9 a second pressure plate 11b, which with a circumferential groove 73 is provided which the lower wing areas both the suction area 65 and the Pressure area 67 connects to each other.
- the in Wings entering the pressure range supply hydraulic oil to the wings extending in the suction area 65, which increases the functional reliability of the pump becomes.
- the pressure range 67 of the pump 301 can be via a Passage 55 with an enclosed space 57 in Connect. This ensures that the left pressure plate 11b against the rotor 7 and the Contour ring 9 pressed and the leakage on one Minimum is reduced.
- FIG. 9 finally shows a further embodiment a pump 401, in which the Printing plates 11a and 11b of those explained with reference to FIG. 8 Pump 301 are interchanged. Same parts are therefore provided with the same reference numbers.
- the Pressure channel 15 of the right pressure plate 11b is through a sealing element, here through a cold start plate 17 closed. It is clear that the pressure channel 15 closed by any sealing element can be.
- a Passage 55 is provided, which is in a hydraulic closed room 57 and thus one Establishes a fluid connection to a lower wing area 53, which is assigned to the suction area 65.
- the left pressure plate 11a can also be a fluid connection designed as a groove 51, as in the printing plate 11a of the pump 301 according to FIG. 8 was provided.
- the pressure plate 11b is in turn with a rotating Provide groove 73.
- Figure 10 is another embodiment a double-stroke vane pump 1 in longitudinal section reproduced, the upper half a Cut through the print area and the lower one Half represents a section through the suction area.
- the vane pump essentially corresponds that shown in Figure 1, so that on a repeated description of the same reference numerals marked parts is dispensed with.
- Channels 117 can be seen on the rotor facing Side in lower wing areas, not shown and on the opposite side in the Pressure chamber 13 or in the pressure channels 15 lead.
- pressure duct 15 For a better connection of pressure duct 15 with the respective channel 117 are the grooves 35, 37 of the previous embodiments essentially corresponding grooves 119 in the surface introduced the pressure plate 11.
- This hydraulic design according to the invention Resistance causes the cold viscous Fluid first the path of least resistance goes and in this way preferably from the pressure areas flows into the lower wing areas.
- the cold start will cause the Vane pump 1, so if the fluid delivered is very tough and the wings are therefore relatively immobile are stored in the slots in the rotor 7, initially only pump the lower pump section, because in the upper pump section, the blades are not on the contour ring issue.
- 11 to 13 are further exemplary embodiments shown, which are opposite to the previous ones described embodiments by another Mark pressure plate 11.2. It is about also here about double-stroke vane pumps, being the same parts that have already been shown in FIG have been explained, bear the same reference numerals, so that their description is omitted here can be.
- the vane pump 1 shown in FIG. 11 also has one housed in a base case Rotor 7, which is rotatable within a Contour rings 9 is stored. From the sectional view it can be seen that on both ends of the Rotor 7 and the contour ring 9 pressure plates 11.1 and 11.2 are provided.
- the right pressure plate 11.1 has the same structure as that based on Figure 10 illustrated embodiment. she has two penetrating the pressure plate Pressure channels 15, which open into a pressure chamber 13, to which a consumer is connected in a suitable manner can be. With the help of channels 15 and 117, a fluid path 141 is thus formed, which to supply at least one lower wing area serves. By choosing the right hydraulic resistance, for example by providing bars, deeper grooves, throttles etc. is guaranteed that the viscous fluid prefers this Takes away and not the dotted line Fluid path 143.
- Pressure plate 11.2 In the one opposite the first printing plate 11.1 Pressure plate 11.2 is a circumferential groove 145 provided that serves the under-wing supply.
- the continuous circumferential groove 145 by hydraulic Resistors, for example by webs, divided in two be, with one area of the groove one Pump section is assigned. This ensures the one fed to a lower wing area Hydraulic oil in cold start not to the lower wing area of the other pump section, who does not yet have a funding function.
- Essential is that the hydraulic resistance between the suction and the pressure area of a pump section is greater than between these areas and the other's suction and pressure area Pressure range of the pump.
- FIG 12 shows a further embodiment of a Vane pump 1, in which the pressure plate 11.1, however, only has pressure channels 15. A The lower wing areas are not supplied over this pressure plate.
- printing plate 11.2 has next to one Pressure channel 15 also has a supply channel 117 in at least a lower wing area.
- the pressure channel 15 opens into a hermetically sealed one Pressure chamber 147, into which the supply channel 17 also opens.
- the pump builds up in this Druckraum 147 a pressure on the one hand the Press the pressure plate 11.2 tightly against the contour ring and rotor and on the other hand both lower wing areas pressurized.
- the pressure chamber 147 Since the pressure chamber 147 is hermetically sealed, can the groove 149 shown in Figure 12 in the second pressure plate 11.2 easily omitted provided that it is guaranteed that the hydraulic Resistance of the fluid path 141 (pressure area-pressure area-lower wing area) is smaller than that Fluid path 143 between the two pressure areas.
- a vane pump 1 works in the same Wise.
- the second printing plate has an exemplary embodiment 11.2 only one pressure channel 15 which into the hermetically sealed pressure chamber 147 empties. Here too there is a fluid connection between the two pressure areas over the pressure space 147 excluded.
- the one to a lower wing area leading supply channel 117 is in turn the first pressure plate 11.1 is provided.
- the vane pump shown in Figure 14a has in addition to those already in connection with the previous ones Embodiments described in detail Share in the pressure plate 11.2 Vent duct 165 on.
- This vent channel passes through the pressure plate 11.2 and opens into one Pressure kidney 167 associated with the upper pump section is.
- the Vent channel 165 has a small flow cross-sectional area on.
- the one from the vent duct 165 Hydraulic resistance formed must therefore be for cold viscous hydraulic oil can be chosen so large that there is essentially no fluid flow, so almost everything from the lower pump section conveyed into the pressure chamber 147 Hydraulic oil the lower wing area over the channel 145 benefits.
- FIG. 14b A further implementation is shown in FIG. 14b. in which case each of the two pressure kidneys a ventilation channel 165 is assigned to the pressure plate 11.2 is. Because in the fluid path from the lower pressure range via pressure chamber 147 to the upper pressure area two hydraulic resistors in the form of the ventilation channels 165 lie, the flow cross-sectional area of the individual ventilation duct lay out somewhat larger than in the previous embodiment. You just have to make sure that the sum of the two hydraulic resistors is so large that in the start-up phase cold viscous hydraulic oil essentially no fluid flow stops.
- FIG. 14c Another implementation of ventilation is in Figure 14c shown.
- a hydraulic one Resistance in the form of narrowed channels in the Providing pressure plate 11.2 is on the pressure chamber 147 delimiting wall preferably a web 169 trained.
- This web 169 serves as a hydraulic Resistance element that in the fluid path between introduced lower and upper pressure range is. Its resistance value is so great again chosen that cold viscous hydraulic oil is not from one assigned to the lower pump section Pressure chamber area in the upper pump section associated pressure chamber area flows, the Limit of the two pressure chamber areas of the web 169 represents.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Description
- Figur 1
- eine Prinzipskizze eines ersten Ausführungsbeispiels einer Flügelzellenpumpe;
- Figur 2
- eine Draufsicht einer ersten Ausführungsform einer der Kaltstartplatte zugewandten Oberfläche einer Druckplatte;
- Figur 3
- eine zweite Ausführungsform einer der Kaltstartplatte zugewandten Oberfläche einer Druckplatte;
- Figur 4
- eine Prinzipskizze zur Darstellung der Fluidführung zwischen einer Druck- und einer Kaltstartplatte;
- Figur 5
- eine Prinzipskizze eines zweiten Ausführungsbeispiels einer Flügelzellenpumpe;
- Figur 6
- eine Prinzipskizze eines dritten Ausführungsbeispiels einer Flügelzellenpumpe;
- Figur 7
- eine Prinzipskizze einer einhubigen Pumpe;
- Figur 8
- eine Prinzipskizze eines Querschnitts einer in Figur 7 gezeigten einhubigen Pumpe;
- Figur 9
- eine Prinzipskizze eines weiteren Ausführungsbeispiels einer einhubigen Pumpe, und
- Figur 10
- eine Prinzipskizze eines weiteren Ausführungsbeispiels einer Flügelzellenpumpe;
- Figur 11
- eine Prinzipskizze eines weiteren Ausführungsbeispiels einer Flügelzellenpumpe;
- Figur 12
- eine Prinzipskizze eines weiteren Ausführungsbeispiels einer Flügelzellenpumpe;
- Figur 13
- eine Prinzipskizze eines weiteren Ausführungsbeispiels einer Flügelzellenpumpe, und
- Figuren 14a-14c
- Prinzipskizzen weitere Ausführungsbeispiele einer Flügelzellenpumpe.
Claims (20)
- Pumpe, insbesondere Flügelzellenpumpe, mit mindestens zwei jeweils einen Saugbereich und einen Druckbereich aufweisenden Pumpenabschnitten, mit einem zu einem Verbraucher führenden ersten Fluidpfad, und mit mindestens einem hydraulischen Widerstandselement, das im ersten Fluidpfad zum Verbraucher angeordnet ist, dadurch gekennzeichnet, daß das hydraulische Widerstandselement so in einem die Druckbereiche verbindenden zweiten Fluidpfad angeordnet ist, daß der aufgebaute Druck des Druckbereichs des einen Pumpenabschnitts den Unterflügelbereich des anderen Pumpenabschnitts beaufschlagt.
- Pumpe nach Anspruch 1, dadurch gekennzeichnet, daß das hydraulische Widerstandselement mit einem unendlichen Widerstand als Dichtelement (Kaltstartplatte 17) ausgebildet ist, durch das die Druckbereiche der Pumpenabschnitte voneinander trennbar sind.
- Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie als Flügelzellenpumpe ausgebildet ist, die einen radialverlaufenden, Flügel aufnehmenden Schlitze umfassenden Rotor (7) eine an dessen einer Stirnseite dicht anliegende Druckplatte (11) und eine Fluidverbindung (51') zwischen mindestens einem Druckbereich der Flügelzellenpumpe und einem Unterflügelbereich (53) aufweist.
- Pumpe nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Druckplatte (11) auf ihrer dem als Kaltstartplatte (17) ausgebildeten Dichtelement zugewandten Seite mit mindestens einer vorzugsweise als Nut (35;37) ausgebildeten Fluidverbindung versehen ist, über die das Fluid von einer Förderöffnung (21;23) zu mindestens einem Unterflügelbereich gelangt.
- Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kaltstartplatte (17) mindestens eine Nut in der der Kaltstartplatte (17) zugewandten Oberfläche (33) der Druckplatte (11) gegenüber dem ersten und dem zweiten Fluidpfad abschließt, über die das Fluid von der Förderöffnung (21;23) zu mindestens einem Unterflügelbereich gelangt.
- Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Fluidverbindung von einer Förderöffnung (23) zu einem Unterflügelbereich besteht, der -in Drehrichtung gesehen- der Förderöffnung nacheilt.
- Pumpe nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß eine Fluidverbindung von einer Förderöffnung (23) zu einem Unterflügelbereich besteht, der -in Drehrichtung gesehen- der Förderöffnung voreilt.
- Pumpe nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß sowohl der nacheilende als auch der voreilende Unterflügelbereich mit der Förderöffnung (23) in Fluidverbindung stehen.
- Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fluidverbindung durch in die Oberfläche der Druckplatte (11) und/oder der Kaltstartplatte (17) eingebrachte Nuten realisiert wird, die vorzugsweise verschiedene Tiefen aufweisen.
- Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kaltstartplatte (17) mit einer vorzugsweise von einer Feder aufgebrachten Vorspannkraft gegen die Druckplatte (11) gedrückt wird.
- Pumpe nach Anspruch 10, dadurch gekennzeichnet, daß die Vorspannkraft so gewählt ist, daß die Kaltstartplatte (17) nach dem Anlaufen abhebt und die Verbindung der Druckbereiche zum Verbraucher freigibt.
- Pumpe nach Anspruch 10 oder 11, mit zwei die Druckplatte (11) zentrierenden Stiften (47, 49) dadurch gekennzeichnet, daß die Stifte derart ausgebildet sind, daß sie die Kaltstartplatte (17) alleine oder die Kaltstartplatte (17) und die Feder sowohl zentrieren als auch gegen Verdrehung sichern.
- Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Druckplatte (11) und/oder die Kaltstartplatte (17) so ausgebildet ist, daß sich nur ein schmaler Auflage- beziehungsweise Berührungsbereich (41) zwischen den Platten ergibt.
- Pumpe nach Anspruch 1, mit einem Flügel aufnehmenden Rotor (7) und mit mindestens einer an einer Stirnseite des Rotors (7) dicht anliegenden Druckplatte (11), wobei ein dritter Fluidpfad (141) zwischen einem Druckbereich der Pumpe und zumindest einem Unterflügelbereich ausgebildet ist, dadurch gekennzeichnet, daß das hydraulische Widerstandselement so ausgelegt ist, daß der hydraulische Widerstand des dritten Fluidpfads (141) gegenüber dem des zweiten Fluidpfads (143) so klein ist, daß zumindest bei kaltem zu förderndem Fluid dieses bevorzugt den dritten Fluidpfad (141) durchströmt.
- Pumpe nach Anspruch 14, dadurch gekennzeichnet, daß die Druckplatte (11) auf ihrer dem Rotor (7) abgewandten Seite eine Nut (119) aufweist, die zusammen mit einer Förderöffnung (21;23) und zumindest einer Zufuhröffnung (29;31) in der Druckplatte den dritten Fluidpfad (141) bilden.
- Pumpe nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß eine der anderen Stirnseite des Rotors (7) zugeordnete weitere Druckplatte (11.2) vorgesehen ist, die eine umlaufende, die Unterflügelbereiche verbindende Nut (145) aufweist, und daß zwischen einem einem ersten Pumpenabschnitt zugeordneten Nutbereich und einem einem zweiten Pumpenabschnitt zugeordnete Nutbereich ein hydraulischer Widerstand, vorzugsweise eine Steg vorgesehen ist.
- Pumpe nach Anspruch 16, dadurch gekennzeichnet, daß in der weiteren Druckplatte (11.2) ein diese durchsetzender Kanal (15) ausgebildet ist, der eine Fluidverbindung zwischen einem Druckbereich und einem Druckraum (147) herstellt.
- Pumpe nach Anspruch 17, dadurch gekennzeichnet, daß die weitere Druckplatte (11.2) einen weiteren Kanal (165) aufweist, der eine Fluidverbindung zwischen dem Druckraum und dem anderen Druckbereich herstellt, wobei im Fluidpfad zwischen den Druckbereichen über den Druckraum (147) ein hydraulisches Widerstandselement (165;169) ausgebildet ist, das bei kaltem zähflüssigem Fluid eine Verbindung nahezu unterbindet.
- Pumpe nach Anspruch 18, dadurch gekennzeichnet, daß das hydraulische Widerstandselement in Form eines hinsichtlich der Strömungsquerschnittsfläche verkleinerten Kanals (165) vorgesehen ist.
- Pumpe nach Anspruch 18, dadurch gekennzeichnet, daß das hydraulische Widerstandselement in Form eines im Druckraum (147) angeordneten Stegs (169) vorgesehen ist.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19529803 | 1995-08-14 | ||
DE19529803 | 1995-08-14 | ||
DE19531701 | 1995-08-28 | ||
DE19531701A DE19531701C1 (de) | 1995-08-14 | 1995-08-28 | Pumpe |
DE29610896U | 1996-06-21 | ||
DE29610896 | 1996-06-21 | ||
DE1996129336 DE19629336C2 (de) | 1996-07-20 | 1996-07-20 | Flügelzellenpumpe |
DE19629336 | 1996-07-20 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0758716A2 EP0758716A2 (de) | 1997-02-19 |
EP0758716A3 EP0758716A3 (de) | 1998-04-01 |
EP0758716B1 true EP0758716B1 (de) | 2003-12-10 |
Family
ID=27438170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96112844A Expired - Lifetime EP0758716B1 (de) | 1995-08-14 | 1996-08-09 | Flügelzellenpumpe |
Country Status (3)
Country | Link |
---|---|
US (1) | US5807090A (de) |
EP (1) | EP0758716B1 (de) |
JP (1) | JP4164133B2 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013185751A1 (de) | 2012-06-12 | 2013-12-19 | Ixetic Bad Homburg Gmbh | Pumpe |
DE102015215982A1 (de) | 2015-08-21 | 2017-02-23 | Magna Powertrain Bad Homburg GmbH | Pumpe sowie System zur Versorgung eines Verbrauchers |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6030195A (en) * | 1997-07-30 | 2000-02-29 | Delaware Capital Formation Inc. | Rotary pump with hydraulic vane actuation |
DE19857560A1 (de) * | 1997-12-23 | 1999-06-24 | Luk Fahrzeug Hydraulik | Pumpe ohne eigene Lagerung |
DE19900926B4 (de) * | 1998-01-28 | 2015-01-22 | Magna Powertrain Bad Homburg GmbH | Pumpe |
DE10030838A1 (de) * | 1999-07-05 | 2001-01-11 | Luk Lamellen & Kupplungsbau | Verfahren zur Versorgung eines eine Getriebesteuerung aufweisenden Automatik-Getriebes und Automatik-Getriebe |
DE10027811A1 (de) * | 2000-06-05 | 2001-12-13 | Luk Fahrzeug Hydraulik | Pumpe |
US6450146B1 (en) | 2000-12-12 | 2002-09-17 | International Engine Intellectual Property Company, L.L.C. | High pressure pump with a close-mounted valve for a hydraulic fuel system |
US6688851B2 (en) | 2001-12-28 | 2004-02-10 | Visteon Global Technologies, Inc. | Oil pump for controlling planetary system torque |
JP2007113640A (ja) * | 2005-10-19 | 2007-05-10 | Toyota Motor Corp | 駆動装置 |
US7955063B2 (en) * | 2008-05-19 | 2011-06-07 | Stackpole Limited | Vane pump |
CA2679776A1 (en) * | 2008-10-08 | 2010-04-08 | Magna Powertrain Inc. | Direct control variable displacement vane pump |
DE112009002350A5 (de) * | 2008-10-22 | 2011-06-30 | ixetic Bad Homburg GmbH, 61352 | Pumpe, insbesondere Flügelzellenpumpe |
WO2010051640A1 (en) | 2008-11-07 | 2010-05-14 | Stt Technologies Inc., A Joint Venture Of Magna Powertrain Inc. And Shw Gmbh | Fully submerged integrated electric oil pump |
US8696326B2 (en) * | 2009-05-14 | 2014-04-15 | Magna Powertrain Inc. | Integrated electrical auxiliary oil pump |
JP5214644B2 (ja) * | 2010-02-09 | 2013-06-19 | ジヤトコ株式会社 | 自動変速機用オイルポンプの空気抜き構造 |
US9127674B2 (en) * | 2010-06-22 | 2015-09-08 | Gm Global Technology Operations, Llc | High efficiency fixed displacement vane pump including a compression spring |
US20130089456A1 (en) * | 2011-10-07 | 2013-04-11 | Steering Solutions Ip Holding Corporation | Cartridge Style Binary Vane Pump |
DE102014212022B4 (de) | 2013-07-08 | 2016-06-09 | Magna Powertrain Bad Homburg GmbH | Pumpe |
DE112014003453A5 (de) * | 2013-07-26 | 2016-05-04 | Schaeffler Technologies AG & Co. KG | Fluidsystem |
DE102017222825A1 (de) | 2017-12-15 | 2019-06-19 | Robert Bosch Gmbh | Verfahren zur Ansteuerung einer Flüssigkeitspumpen-/Antriebskombination in einem Fahrzeug |
CN109812298A (zh) * | 2019-02-19 | 2019-05-28 | 东南大学 | 一种气缸随转的滑片式膨胀机 |
DE102019132729A1 (de) * | 2019-12-02 | 2021-07-01 | Schwäbische Hüttenwerke Automotive GmbH | Sickendichtung |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3781145A (en) * | 1972-05-10 | 1973-12-25 | Abex Corp | Vane pump with pressure ramp tracking assist |
DE2423474C3 (de) * | 1974-05-14 | 1981-11-05 | Daimler-Benz Ag, 7000 Stuttgart | Flügelzelleneinrichtung, insbesondere -pumpe für Flüssigkeiten |
DE2512433C2 (de) * | 1975-03-21 | 1982-03-04 | Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen | Doppelhubige Drehkolbenpumpe, insbesondere für Hilfskraftlenkungen |
DE2835816C2 (de) * | 1978-08-16 | 1984-10-31 | Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen | Drehkolbenpumpe |
US4386891A (en) * | 1981-04-23 | 1983-06-07 | General Motors Corporation | Rotary hydraulic vane pump with undervane passages for priming |
EP0083491A1 (de) * | 1981-12-24 | 1983-07-13 | Concentric Pumps Limited | Gerotorpumpe |
JPH02252988A (ja) * | 1988-12-02 | 1990-10-11 | Jidosha Kiki Co Ltd | オイルポンプ |
JP2963519B2 (ja) * | 1990-10-11 | 1999-10-18 | 豊田工機株式会社 | ベーンポンプ |
DE4209840A1 (de) * | 1992-03-26 | 1993-09-30 | Zahnradfabrik Friedrichshafen | Flügelzellenpumpe |
DE19529806C2 (de) * | 1995-08-14 | 1999-04-01 | Luk Fahrzeug Hydraulik | Flügelzellenpumpe |
-
1996
- 1996-08-09 EP EP96112844A patent/EP0758716B1/de not_active Expired - Lifetime
- 1996-08-13 US US08/696,806 patent/US5807090A/en not_active Expired - Lifetime
- 1996-08-14 JP JP21487096A patent/JP4164133B2/ja not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013185751A1 (de) | 2012-06-12 | 2013-12-19 | Ixetic Bad Homburg Gmbh | Pumpe |
CN104541058A (zh) * | 2012-06-12 | 2015-04-22 | 麦格纳动力系巴德霍姆堡有限责任公司 | 泵 |
CN104541058B (zh) * | 2012-06-12 | 2016-08-24 | 麦格纳动力系巴德霍姆堡有限责任公司 | 泵 |
DE112013002905B4 (de) * | 2012-06-12 | 2016-09-15 | Magna Powertrain Bad Homburg GmbH | Pumpe |
DE102015215982A1 (de) | 2015-08-21 | 2017-02-23 | Magna Powertrain Bad Homburg GmbH | Pumpe sowie System zur Versorgung eines Verbrauchers |
DE102015215982B4 (de) * | 2015-08-21 | 2017-03-16 | Magna Powertrain Bad Homburg GmbH | Pumpe sowie System zur Versorgung eines Verbrauchers |
US11098714B2 (en) | 2015-08-21 | 2021-08-24 | Hanon Systems Efp Deutschland Gmbh | Pump and system for supplying a consumer |
Also Published As
Publication number | Publication date |
---|---|
JP4164133B2 (ja) | 2008-10-08 |
JPH09119383A (ja) | 1997-05-06 |
EP0758716A3 (de) | 1998-04-01 |
EP0758716A2 (de) | 1997-02-19 |
US5807090A (en) | 1998-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0758716B1 (de) | Flügelzellenpumpe | |
DE19846815B4 (de) | Ventilanordnung und Pumpe für ein Getriebe | |
DE19631846A1 (de) | Pumpe | |
DE3319000A1 (de) | Drehkolbenpumpe | |
DE1808826A1 (de) | Drehlkolbenmaschine | |
DE19531701C1 (de) | Pumpe | |
EP0906512B1 (de) | Flügelzellenpumpe | |
DE19703113C2 (de) | Hydraulische Flügelzellenmaschine | |
DE1703077B2 (de) | Hydraulische Zahnradpumpe oder hydraulischer Zahnradmotor mit Außeneingriffszahnrädern | |
DE4326627B4 (de) | Flügelzellenpumpe | |
DE19529806C2 (de) | Flügelzellenpumpe | |
DE3045192C2 (de) | Zahnradpumpe | |
DE19703114C2 (de) | Hydraulische Flügelzellenmaschine | |
DE69300335T2 (de) | Drehkolbenpumpe mit vereinfachtem Pumpengehäuse. | |
CH638590A5 (de) | Hydrostatische kolbenmaschine. | |
WO1984000606A1 (en) | Volumetric control device for fluids | |
DE19629336C2 (de) | Flügelzellenpumpe | |
DE3022090A1 (de) | Druckmittelbetaetigter rotationskolbenmotor | |
WO2005001291A1 (de) | Pumpe | |
DE2857227A1 (de) | Fluessigkeitsringpumpe | |
DE2641451A1 (de) | Kompressor | |
DE1503329C3 (de) | ||
WO1995002124A1 (de) | Innenzahnradmaschine (pumpe oder motor) | |
DE29624460U1 (de) | Innenzahnradmaschine (Pumpe oder Motor) | |
DE3423812A1 (de) | Fluegelzellenpumpe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19980916 |
|
17Q | First examination report despatched |
Effective date: 20000829 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LUK FAHRZEUG-HYDRAULIK GMBH & CO. KG |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59610858 Country of ref document: DE Date of ref document: 20040122 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040308 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040913 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59610858 Country of ref document: DE Representative=s name: RAUSCH, GABRIELE, DIPL.-PHYS. DR.RER.NAT., DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59610858 Country of ref document: DE Representative=s name: RAUSCH, GABRIELE, DIPL.-PHYS. DR.RER.NAT., DE Effective date: 20140910 Ref country code: DE Ref legal event code: R081 Ref document number: 59610858 Country of ref document: DE Owner name: MAGNA POWERTRAIN BAD HOMBURG GMBH, DE Free format text: FORMER OWNER: IXETIC BAD HOMBURG GMBH, 61352 BAD HOMBURG, DE Effective date: 20140910 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140828 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150821 Year of fee payment: 20 Ref country code: GB Payment date: 20150819 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150820 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150809 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59610858 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20160808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20160808 |