EP0735320B1 - Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique - Google Patents

Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique Download PDF

Info

Publication number
EP0735320B1
EP0735320B1 EP96102121A EP96102121A EP0735320B1 EP 0735320 B1 EP0735320 B1 EP 0735320B1 EP 96102121 A EP96102121 A EP 96102121A EP 96102121 A EP96102121 A EP 96102121A EP 0735320 B1 EP0735320 B1 EP 0735320B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
gas
pollutants
fluorine
exhaust gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96102121A
Other languages
German (de)
English (en)
Other versions
EP0735320A2 (fr
EP0735320A3 (fr
Inventor
Horst Dr. Reichardt
Lothar Dipl.-Ing. Ritter
Günter Dipl.-Ing. Firkert
Lutz Dipl.-Phys. Labs
Konrad Dipl.-Phys. Gehmlich
Gerold Hofmann
Michael Dipl.-Ing. Hentrich
Wido Wiesenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Das-Duennschicht Anlagen Systeme Dresden GmbH
Das Duennschicht Anlagen Systeme GmbH
Original Assignee
Das-Duennschicht Anlagen Systeme Dresden GmbH
Das Duennschicht Anlagen Systeme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Das-Duennschicht Anlagen Systeme Dresden GmbH, Das Duennschicht Anlagen Systeme GmbH filed Critical Das-Duennschicht Anlagen Systeme Dresden GmbH
Publication of EP0735320A2 publication Critical patent/EP0735320A2/fr
Publication of EP0735320A3 publication Critical patent/EP0735320A3/fr
Application granted granted Critical
Publication of EP0735320B1 publication Critical patent/EP0735320B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/06Baffles or deflectors for air or combustion products; Flame shields in fire-boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes
    • F23G2209/142Halogen gases, e.g. silane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/30Halogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers

Definitions

  • the invention relates to a method and a device for cleaning exhaust gases with preferably fluorine-containing pollutants, especially from plants for separation and ablation through plasma processes and chemical vapor deposition.
  • gases contain i.a. fluorine-containing hydrocarbons or other fluorine compounds. Fall in other processes mainly silanes as pollutants.
  • the exhaust gases are due to the high proportion of inert carrier gases, like nitrogen or argon, mostly not flammable itself.
  • the pollutants or their reaction products are toxic or promote due to their harmful effects in the atmosphere ozone depletion and the greenhouse effect.
  • a whole series of methods are known for exhaust gas purification.
  • the cleaning is very often carried out by sorption of the harmful gases from the exhaust gas, in which it is passed, for example, through oxidizing, aqueous solutions (DE 3342 816 A1).
  • Pollutants that are not sorbed or only sorely efficiently can be removed from the exhaust gas by chemical conversion processes.
  • fluorine compounds can be converted into volatile silicon fluorides that are easier to dispose of by reacting with SiO 2 surfaces heated by indirect heating (D / 254 723 5).
  • the disadvantage here is the low efficiency of the conversion of the pollutants, for example caused by the cooling of the reaction surfaces by the exhaust gas.
  • a large number of exhaust gas purification processes are based on thermal decomposition or oxidation of the pollutants in a combustion chamber. Are the pollutants themselves non-flammable or are If they are only components of exhaust gases with a high proportion of inert gas, they become a chemical reaction into a fuel gas flame, e.g. from a natural gas or hydrogen / oxygen mixture, introduced (US 5 183 646). Harmful secondary substances of the conversion are then e.g. by sorption or washing processes, removed from the exhaust gas (US-A 288 9002).
  • the Exhaust gas cleaning is usually a multi-stage process in which sub-processes such as thermal Decomposition or oxidation, cooling, sorption, hydrolysis and leaching more solid Reaction products expire (034 689 3 B1).
  • the exhaust gas is successively e.g. by a Device with a combustion chamber and at least one other device, e.g. one that works according to the washing principle.
  • the exhaust gas cleaning in a combustion chamber with a fuel gas flame has a low efficiency in their cleaning effect when you use them for exhaust gases with fluorinated hydrocarbons and applied with other fluorine compounds. Included with reasonable consumption of fuel gas the cleaned exhaust gases still critically high levels of pollutants. Cooling of the reactor walls reduces their corrosion, but rather leads to a deterioration in the efficiency of the Cleaning.
  • An improvement in the efficiency of cleaning towards a low pollutant content in the cleaned exhaust gas to a certain extent by increasing the amount of fuel gas relative to the amount of exhaust gas supplied, but leads because of the increase of fuel gas consumption to a critical deterioration in the economy of exhaust gas cleaning.
  • the object of the invention is to increase the efficiency of cleaning, in particular in the cleaning of fluorine-containing exhaust gases, when cleaning exhaust gases with the aid of a method which works with a combustion chamber and a combustion gas flame. It is also through one and the same process to ensure a high efficiency of cleaning for different toxic components of the exhaust gases.
  • the economy of the cleaning process can be improved by reducing the fuel gas consumption and by longer uninterrupted operating times.
  • the object is achieved by a method according to claim 1 and a device according to claim 3.
  • the method assumes that when carrying out technological processes, in particular in CVD and plasma processes, exhaust gases occur, especially those with different pollutants, which are to be cleaned in a preferably multi-stage process.
  • the exhaust gases contain, partially or at least in a time interval, fluorine-containing Hydrocarbons or other fluorine compounds.
  • the exhaust gases are cleaned in one Device with a combustion chamber and a burner for generating a fuel gas flame, the for heating and / or chemical conversion of pollutants.
  • the inner surfaces of the combustion chamber and / or additionally in the Combustion chamber surfaces covered with a porous layer of silicon dioxide.
  • the flue gas heated with fluorine-containing pollutants is heated along the, through which Fuel gas flame also led heated, said surfaces, the heated fluorine-containing Pollutants react with the heated material of the porous layer.
  • the separation of the Porous layer made of silicon dioxide takes place through thermal oxidation of a gas containing silane the combustion chamber itself, sequentially at time-based cleaning phases of exhaust gases with fluorine-containing pollutants.
  • the chemical reaction with the hot silicon dioxide emerging secondary, volatile pollutants, especially silicon fluorides are combined with the burned fuel gas and other reaction products generated in the fuel gas flame the harmful gases are hydrolyzed in a further process step with a sorbent neutralized if necessary.
  • fluorine compounds that are not thermally decomposed or chemically converted in the fuel gas flame are heated in the fuel gas flame, that is, chemically activated.
  • the silicon dioxide which is located on the surfaces mentioned, by the heat radiation and by convection of the hot combustion gases, is thermally activated for a reaction.
  • the two activated reactants react on the surfaces to form volatile silicon fluoride.
  • the fluorine compounds of the exhaust gas are converted the more completely, the more perfect the contact of the heated exhaust gas flow with the inner surfaces of the combustion chamber and / or the surfaces additionally introduced into the combustion chamber.
  • a prerequisite for this is a sufficient size, surface quality and the arrangement of these surfaces, another is given by the porosity of the silicon dioxide layer. The pores practically guarantee an enlarged reaction area for the heated pollutants.
  • the composition and / or the amount of the fuel gas mixture is also added adapted to the two sequential procedures.
  • the The proportion of oxygen in the silicon dioxide deposition is greater than in the heating of the fluorine-containing one Exhaust gas set.
  • silane-containing gas or directly silane can be supplied.
  • the regeneration of the surfaces in the combustion chamber in which is the cleaning of exhaust gases with fluorine-containing pollutants and the sequential separation of porous silicon oxide on said surfaces of the combustion chamber by the introduction of Exhaust gases of different compositions occur in different CVD or plasma processes semiconductor technology.
  • successively exhaust gases from a CVD device for the deposition of silicon Semiconductor wafers in which, among other things, Silane is obtained and a plasma etching device for Etching of semiconductor wafers, in which a fluorocarbon is obtained as a pollutant, of the exhaust gas cleaning device are fed in succession.
  • An important application for the method according to the invention is the exhaust gas purification of CVD or plasma coating systems, in which the inner Areas of these systems are cleaned with the help of plasma etching processes.
  • CVD or plasma coating systems in which the inner Areas of these systems are cleaned with the help of plasma etching processes.
  • Process parameters of the exhaust gas cleaning device are to be adjusted. This is e.g. an increased intake of fuel gas mixture in the burner of the exhaust gas cleaning device during the separation of silicon on the semiconductor wafers in the coating system.
  • the method according to the invention can also be used when fluorine-containing and silane-containing in the exhaust gas Pollutants accumulate together because the silanes are in the volume of the fuel gas flame chemically implemented, the fluorine compounds preferably on the hot surfaces of the In this case, the consumption of silicon dioxide and the deposition, i.e. regeneration, simultaneous.
  • the method is carried out with a device which consists essentially of a preferred rotationally symmetrical combustion chamber with one arranged on one side of the combustion chamber Burner, expediently a ring burner, the arrangement of the axis of the Combustion chamber in the room is irrelevant to the effectiveness of the process.
  • the ring burner becomes a fuel gas and oxygen or a fuel gas mixture e.g. natural gas / oxygen or Hydrogen / oxygen).
  • a fuel gas flame forms on the burner.
  • a feeder preferably in the center of the ring burner, the exhaust gases, especially those containing fluorine and hydride-containing pollutants.
  • the exhaust gas is on all sides the fuel gas flame, an important prerequisite for effective exhaust gas heating in the Interest in the chemical decomposition and / or the chemical conversion of components of the supplied pollutants.
  • the walls of the combustion chamber are opposite the outer ones Limits or cladding thermally insulated, as a result, the wall surfaces of the Combustion chamber heated. They heat up to high temperatures.
  • openings or gaps ensure that the burned fuel gases and decomposition or reaction products of the harmful gases directly or via suction further non-thermal sub-processes of the exhaust gas cleaning are supplied.
  • this is a washing section with e.g. an aqueous sorbent, optionally with a neutralizing agent.
  • the gas stream cleaned in this way then gets into the ventilation system or into the open.
  • the increase in the effective surface of the combustion chamber or parts arranged in it can be done through a variety of processing methods. In the simplest case, one Such an enlarged surface is already achieved by rough turning, which causes grooves in the surfaces of the parts arise. Chemical or electrochemical etching makes them microscopic effective surface is enlarged by the formation of pores. But it can with the said Also target porous, sieve-like or mesh-like coatings or mesh on the surfaces the combustion chamber and / or the additional parts. The materials used are and corrosion-resistant metals or ceramics. Such coatings also improve the adhesive strength of the silicon dioxide layers to be deposited on these surfaces.
  • the instructions given for the design of the facility ensures that between the gas molecules of the heated pollutants and the heated surfaces of the combustion chamber and additionally arranged parts there is a higher number of impacts. This is a requirement for ensuring that there is a high degree of chemical reaction between the activated Pollutant molecules and the activated silicon dioxide comes on said surfaces.
  • a higher number of collisions between the gas molecules of heated pollutants and the heated ones Silicon dioxide surfaces can also be achieved in that the additional in the combustion chamber arranged parts are designed in their geometric shape such that the hot Gas flow or parts of it forced on the way from the fuel gas flame to the washing section will change direction several times. This can be done with concentric, for example Reach rings, the outer surfaces of which are several times zigzag relative to the axis of the combustion chamber are angled. In the resulting ring channels for the hot gases, there is a multiple Impact of the majority of the gas molecules on the wall surfaces only reached when the flow of hot gases is shaped turbulently. Known ways to do this are: one sufficient flow rate, sufficiently narrow ring channels, high combustion gas temperature and roughened Surfaces. The latter has already been in the interest of creating large contact areas for called for the reaction.
  • Fig. 1 shows the device in a schematic longitudinal section.
  • the device according to the invention essentially consists of a cylindrical combustion chamber (1) made of stainless steel. It is 18 cm in diameter and 90 cm long. This combustion chamber is thermally insulated with the help of brackets (2,3,4,5) in an outer envelope (6). In the area of the end face (7) of the combustion chamber (1) there is an annular burner (8) to which the fuel gas mixture of hydrogen and oxygen is fed via a feed (9). The ring burner (8) has a diameter of 25 mm. The fuel gas flame (11) forms on the annular channel (10). The exhaust gas with the fluorine-containing and silane-containing pollutants is fed to the burner (8) via the central feed (12). It enters the fuel gas flame (11) centrally through the bore (13).
  • the inner wall of the combustion chamber is made of heat-resistant, corrosion-resistant sheet metal cylindrical body (14) used, which has 4 wavy ribs with an axial wavelength of 40 mm at a radial shaft height of 20 mm.
  • Two similarly constructed cylindrical bodies (15) and (16) are used on brackets (17), (18), (19) and (20) in the space of the combustion chamber between the combustion gas flame (11) and cover (21) of the combustion chamber. In this way, the flow of hot gases is divided into two cylindrical flow channels in the area of the additionally arranged surfaces, the radial width of each of which is approximately 25 mm. The gas flow is deflected four times in the direction of the body (arrows 22, 23, 24, 25).
  • a 30 mm wide, annular gap (26) for the exit of the burned hot gases from the combustion chamber into a room (27).
  • a tubular connection for the suction (28) through which the combustion gases into a Washing device for carrying out further sub-processes of multi-stage exhaust gas cleaning be transferred.
  • the first part of a technological cycle occurs Separation of silicon dioxide on silicon wafers at 60 l / min exhaust gas.
  • the exhaust gas consists of 57 l / min nitrogen and 31 / min silane as the main pollutant.
  • the internal components of the plasma CVD coating system are processed using a cycle changed process control of contaminating silicon layers by a plasma etching process cleaned. This process is carried out with CF4 and oxygen as the process gas. That included
  • Existing exhaust gas consists of 48 l / min argon, mainly of 2 l / min CF4 and silicon tetrafluoride as pollutants.
  • the coating system is cleaned sequentially the exhaust gas with fluorine-containing compounds.
  • the associated sequential emission control phase is in the exhaust gas flame by feeding l / min hydrogen and l / min Oxygen is maintained by the feed (12) the exhaust gas (48 l / min argon and 2 l / min CH4 and in smaller quantities other pollutants).
  • the exhaust gas, especially the Fluorine compounds are heated to approx. 1400 ° C in the fuel gas flame. It pulls (in Fig. In Arrow direction 22 to 25) through said heated parts of the combustion chamber and comes with their surfaces in intimate contact. As a result of a surface reaction with the Silicon dioxide on the surfaces CF4 is converted to volatile hydrogen fluoride.
  • the hot fuel gases with the secondary reaction products from the two sequentially occurring exhaust gas purification phases enter the space (27) above the combustion chamber through the gap (26), are collected there and are extracted via the suction (28) fed to a washing device.
  • An aqueous sorbent is effective in the washing device.
  • the hot exhaust gases are cooled to around 50 ° C.
  • the hydrogen fluoride is absorbed either with water or a basic solution (KOH, K 2 CO 3 etc.).
  • the process has a high cleaning effect for chemically very differently behaving pollutants.
  • the pollutant content of fluorine-containing compounds in the Exhaust air from the emission control device reduced to less than 10 ppm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Incineration Of Waste (AREA)

Claims (5)

  1. Procédé pour l'épuration de gaz d'échappement comportant des substances nocives fluorées, notamment en provenance de processus CVD et à plasma, dans une chambre de combustion comportant un brûleur pour la production d'une flamme de gaz combustible qui sert au chauffage ou/et à la transformation chimique des substances nocives, caractérisé en ce que les surfaces de la chambre de combustion ou/et des surfaces placées en plus dans la chambre de combustion sont recouvertes avec une couche poreuse en dioxyde de silicium, en ce que le gaz d'échappement comportant des substances nocives fluorées est chauffé dans la flamme de gaz combustible et est conduit le long desdites surfaces, en ce que le dépôt de la couche de dioxyde de silicium poreuse s'effectue dans la chambre de combustion, par oxydation thermique de silane ou d'un gaz contenant un autre composé du silicium, séquentiellement par rapport à des phases d'épuration temporelles de gaz d'échappement comportant des substances nocives fluorées, et en ce que les substances nocives secondaires volatiles se formant par réaction chimique des substances nocives fluorées avec le dioxyde de silicium chaud, notamment le fluosilicate, sont hydrolysées à l'aide d'un agent de sorption et sont éventuellement en plus neutralisées.
  2. Procédé selon la revendication 1, caractérisé en ce que l'épuration de gaz d'échappement comportant des substances nocives fluorées et le dépôt séquentiel de dioxyde de silicium poreux sur lesdites surfaces de la chambre de combustion s'effectuent au moyen de l'introduction de gaz d'échappement de différentes compositions qui sont issus de différents processus CVD ou à plasma de la technologie des semi-conducteurs.
  3. Dispositif pour la mise en oeuvre du procédé selon la revendication 1 et 2, comportant un brûleur pour la production d'une flamme de gaz combustible et une chambre de combustion dont les parois sont thermiquement isolées par rapport à une enveloppe extérieure, caractérisé en ce que
    les surfaces de la chambre de combustion ou/et des surfaces placées en plus dans la chambre de combustion sont recouvertes d'une couche poreuse de dioxyde de silicium ;
    le gaz d'échappement est chauffé et conduit le long desdites surfaces ;
    il y a pour le dépôt de la couche de dioxyde de silicium poreuse un agent destiné à fournir dans la chambre de combustion du silane ou un gaz contenant un autre composé de silicium séquentiellement par rapport à des phases d'épuration temporelles des gaz d'échappement ; et
    il y a un dispositif de lavage comportant un agent de sorption pour hydrolyser les substances nocives secondaires volatiles et éventuellement pour les neutraliser.
  4. Dispositif selon la revendication 3, caractérisé en ce que des pièces supplémentaires sont agencées sur les parois ou/et dans l'espace de la chambre de combustion dans le flux gazeux chaud au-dessus de la flamme de gaz combustible.
  5. Dispositif selon la revendication 3 ou 4, caractérisé en ce que la forme géométrique des pièces agencées en plus dans la chambre de combustion est conçue de telle sorte que ces pièces forcent le flux gazeux chaud ou des parties de celui-ci sur le trajet menant de la flamme de gaz combustible à la section de lavage à changer plusieurs fois de direction.
EP96102121A 1995-03-30 1996-02-14 Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique Expired - Lifetime EP0735320B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19511643 1995-03-30
DE19511643A DE19511643A1 (de) 1995-03-30 1995-03-30 Verfahren und Einrichtung zur Reinigung von schadstoffhaltigen Abgasen durch chemische Umsetzung

Publications (3)

Publication Number Publication Date
EP0735320A2 EP0735320A2 (fr) 1996-10-02
EP0735320A3 EP0735320A3 (fr) 1997-03-26
EP0735320B1 true EP0735320B1 (fr) 2000-10-11

Family

ID=7758135

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96102121A Expired - Lifetime EP0735320B1 (fr) 1995-03-30 1996-02-14 Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique

Country Status (2)

Country Link
EP (1) EP0735320B1 (fr)
DE (2) DE19511643A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006052586A1 (de) * 2006-11-08 2008-05-29 Schott Solar Gmbh Verfahren und Vorrichtung zur Reinigung der Abgase einer Siliziumdünnschicht-Produktionsanlage

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19600873A1 (de) * 1996-01-12 1997-10-02 Das Duennschicht Anlagen Sys Verfahren und Einrichtung zur Reinigung von schadstoffhaltigen Abgasen durch Verbrennen und chemische Umsetzung mit Hilfe einer Flamme in einer Brennkammer
GB2323312B (en) * 1997-03-21 2001-08-08 Korea M A T Co Ltd Gas scrubber and methods of disposing a gas using the same
DE29712026U1 (de) * 1997-07-09 1998-11-12 Ebara Germany Gmbh Brenner für die Verbrennung von Abgasen mit mindestens einer kondensationsfähigen Komponente
TW506852B (en) * 2000-08-28 2002-10-21 Promos Technologies Inc Device and method for processing exhaust from process chamber

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE431196B (sv) * 1980-12-12 1984-01-23 Flemmert Goesta Lennart Sett att genom hydrolys av kiseltetrafluorid i en laga framstella finfordelad kiseloxid
DE3144744C2 (de) * 1981-11-11 1984-04-12 Lafarge Réfractaires, 92542 Montronge Heizungskessel
DD221088A1 (de) * 1983-09-12 1985-04-17 Univ Schiller Jena Verfahren und anordnung zur entgiftung von f-kohlenstoffhaltigen abgasen
DE3529309A1 (de) * 1985-08-16 1987-03-19 Hoechst Ag Vorrichtung zum verbrennen von fluorkohlenwasserstoffen
DD273008A1 (de) * 1988-06-15 1989-11-01 Elektromat Veb Vorrichtung zum reinigen von abgasen aus niederdruckprozessen
US4957717A (en) * 1989-01-09 1990-09-18 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of disposal of organic chlorine compounds by combustion
DE4107595C2 (de) * 1991-03-09 1994-02-17 Forschungszentrum Juelich Gmbh Metallischer Katalysator zur Entfernung von Wasserstoff aus einem Wasserstoff und Sauerstoff enthaltenden Gasgemisch und Verfahren zu seiner Herstellung
DE4413734C2 (de) * 1993-04-29 1996-02-29 Univ Karlsruhe Katalysatoren für die Verbrennung chlorierter Kohlenwasserstoffe
DE4319118A1 (de) * 1993-06-09 1994-12-15 Breitbarth Friedrich Wilhelm D Verfahren und Vorrichtung zur Entsorgung von Fluorkohlenstoffen und anderen fluorhaltigen Verbindungen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006052586A1 (de) * 2006-11-08 2008-05-29 Schott Solar Gmbh Verfahren und Vorrichtung zur Reinigung der Abgase einer Siliziumdünnschicht-Produktionsanlage
DE102006052586B4 (de) * 2006-11-08 2008-07-03 Schott Solar Gmbh Verfahren und Vorrichtung zur Reinigung der Abgase einer Siliziumdünnschicht-Produktionsanlage

Also Published As

Publication number Publication date
DE19511643A1 (de) 1996-10-02
EP0735320A2 (fr) 1996-10-02
EP0735320A3 (fr) 1997-03-26
DE59605974D1 (de) 2000-11-16

Similar Documents

Publication Publication Date Title
EP0702771B1 (fr) Dispositif d'epuration de gaz brules
DE19802404B4 (de) Vorrichtung zur Gasreinigung sowie Verfahren zur Behandlung eines zu reinigenden Gases
EP0979135A1 (fr) Dispositif et procede de decomposition de substances nocives contenues dans des gaz de combustion
DE2601077C2 (fr)
DE102007044731A1 (de) Verfahren und Vorrichtung zur Abscheidung von Quecksilber aus Rauchgasen
DE4319118A1 (de) Verfahren und Vorrichtung zur Entsorgung von Fluorkohlenstoffen und anderen fluorhaltigen Verbindungen
DE2550635A1 (de) Verfahren zur entfernung von stickstoffoxiden aus verbrennungsabgasen
DE3512922A1 (de) Verfahren und einrichtung zur reinigung von abgasen
AT399828B (de) Verfahren und anlage zur reinigung von abgasen
EP0735320B1 (fr) Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique
DE2259763A1 (de) Vorrichtung zur reinigung von stickstoffoxide enthaltenden gasen
DE10304489B4 (de) Einrichtung zur Reinigung von Abgasen mit fluorhaltigen Verbindungen in einem Verbrennungsreaktor mit niedriger Stickoxidemission
DE60131826T2 (de) Entsorgung fluorhaltiger Substanzen aus Gasströmen
EP0735322B1 (fr) Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique dans une flamme et sur des surfaces chaudes
EP1646408B1 (fr) Dispositif pour nettoyer de l'air d'evacuation contenant des contaminants
EP0735321B1 (fr) Procédé pour la purification des effluents gazeux nocifs par conversion chimique
DE3432033C2 (de) Verfahren und Anordnung zur Entgiftung von F-kohlenstoffhaltigen Abgasen
DE19600873A1 (de) Verfahren und Einrichtung zur Reinigung von schadstoffhaltigen Abgasen durch Verbrennen und chemische Umsetzung mit Hilfe einer Flamme in einer Brennkammer
EP0502192B1 (fr) Procede d'elimination d'oxydes azotes d'emissions de gaz
DE19631873C1 (de) Einrichtung zur Reinigung von schadstoffhaltigen Abgasen in einer Brennkammer mit anschließender Wascheinrichtung
EP1291069B1 (fr) Procédé et dispositif pour la purification d'effluents gazeux, en particulier chargés avec des composés fluorés, dans une chambre de combustion avec alimentation separée des gaz
EP0166846A2 (fr) Dispositif pour purifier des gaz d'échappement contenant des halogènes
DE3447066A1 (de) Verfahren zur katalytischen entfernung von chlorkohlenwasserstoffen aus deponiegasen
DE10123402A1 (de) Verfahren zum Behandeln von ammoniakhaltigen Rauchgasen
DE3639657A1 (de) Verfahren zum reinigen von metallbauteilen fuer kathodenstrahlroehren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE ES FR GB IE IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE ES FR GB IE IT LI NL

17P Request for examination filed

Effective date: 19970423

17Q First examination report despatched

Effective date: 19990608

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IE IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001011

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20001011

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001011

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001011

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59605974

Country of ref document: DE

Date of ref document: 20001116

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010129

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010215

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: DUNNSCHICHT ANLAGEN SYSTEME G.M.B.H. DRESDEN DAS

Effective date: 20010228

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020422

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902