EP0735322B1 - Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique dans une flamme et sur des surfaces chaudes - Google Patents

Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique dans une flamme et sur des surfaces chaudes Download PDF

Info

Publication number
EP0735322B1
EP0735322B1 EP96102123A EP96102123A EP0735322B1 EP 0735322 B1 EP0735322 B1 EP 0735322B1 EP 96102123 A EP96102123 A EP 96102123A EP 96102123 A EP96102123 A EP 96102123A EP 0735322 B1 EP0735322 B1 EP 0735322B1
Authority
EP
European Patent Office
Prior art keywords
permeable
flame
substance
combustion chamber
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96102123A
Other languages
German (de)
English (en)
Other versions
EP0735322A3 (fr
EP0735322A2 (fr
Inventor
Horst Dr. Reichardt
Lothar Dipl.-Ing. Ritter
Günter Dipl.-Ing. Firkert
Lutz Dipl.-Phys. Labs
Konrad Dipl.-Phys. Gehmlich
Gerold Hofmann
Michael Dipl.-Ing. Hentrich
Wido Wiesenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Das-Duennschicht Anlagen Systeme Dresden GmbH
Das Duennschicht Anlagen Systeme GmbH
Original Assignee
Das-Duennschicht Anlagen Systeme Dresden GmbH
Das Duennschicht Anlagen Systeme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Das-Duennschicht Anlagen Systeme Dresden GmbH, Das Duennschicht Anlagen Systeme GmbH filed Critical Das-Duennschicht Anlagen Systeme Dresden GmbH
Publication of EP0735322A2 publication Critical patent/EP0735322A2/fr
Publication of EP0735322A3 publication Critical patent/EP0735322A3/fr
Application granted granted Critical
Publication of EP0735322B1 publication Critical patent/EP0735322B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/06Baffles or deflectors for air or combustion products; Flame shields in fire-boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes
    • F23G2209/142Halogen gases, e.g. silane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/30Halogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers

Definitions

  • the invention relates to a method and a device for cleaning exhaust gases with different, preferably fluorine-containing pollutants, especially from plants for Separation and ablation by plasma processes and by chemical vapor deposition. Such processes play a role in the manufacture of semiconductor circuits.
  • the exhaust gases contain pollutants of different chemical composition. Major groups of these Pollutants are hydrides, e.g. Silanes. Fluorocarbons and others often fall Fluorine compounds.
  • the pollutants or their reaction products are toxic or promote ozone depletion due to their harmful effects in the atmosphere Greenhouse effect.
  • the cleaning is very often carried out by sorption of the harmful gases from the exhaust gas in which it is e.g. through oxidizing, aqueous solutions (DE 3342 816 A1).
  • the resulting water soluble compounds can be processed in a second process step, e.g. through basic solutions be canceled.
  • Volatile pollutants or secondary products are in a third Process stage, e.g. by means of activated carbon filters, removed from the exhaust gas.
  • volatile fluorine compounds for example, are removed from the exhaust gas.
  • C 2 F 6 , SiF, 4 COF 2 and other substances are first converted into volatile silicon fluorides on hot silicon oxide surfaces and then precipitated as solid fluorine compounds, for example as CaF 2 , in the aqueous solutions.
  • Poisoning of the reactive surfaces in the solid-state reactor eg by coal or carbides
  • the limited reaction areas of the reactive materials and the limited throughput of pollutant-containing exhaust gases are problematic.
  • a variety of exhaust gas purification processes are based on thermal decomposition or oxidation of the pollutants in a combustion chamber. Are the pollutants themselves non-flammable or are If they are only components of exhaust gases with a high proportion of inert gas, they become a chemical reaction into a fuel gas flame, e.g. from a natural gas / oxygen or hydrogen-oxygen mixture, introduced (US 5 183 646). Harmful secondary substances of the conversion are then, e.g. by sorption or washing processes, removed from the exhaust gas (US-A 288 9002).
  • Exhaust gas cleaning is usually a multi-stage process in which one or more of the following sub-processes, such as thermal decomposition or oxidation, cooling, sorption, hydrolysis and neutralization, run off (034 689 3 B1). by a Device with a combustion chamber and at least one other device, e.g. one that works according to the washing principle.
  • sub-processes such as thermal decomposition or oxidation, cooling, sorption, hydrolysis and neutralization
  • the implementation of the pollutants in a fuel gas flame has however for different pollutants a different efficiency in the cleaning effect. So is the efficiency of the cleaning effect e.g. not sufficient for fluorinated hydrocarbons and other fluorine compounds, to meet required standards. Included with reasonable consumption of fuel gas the cleaned exhaust gases still critically high levels of pollutants.
  • An improvement in efficiency cleaning in the direction of a low pollutant content in the cleaned exhaust gas can to some extent by increasing the amount of fuel gas relative to the amount of fuel supplied Exhaust gas can be achieved, however, leads to an increase in fuel gas consumption critical deterioration in the economy of exhaust gas purification.
  • the invention has for its object to increase the efficiency of cleaning in the removal of pollutants, in particular fluorine compounds, from non-combustible exhaust gases in a combustion chamber with a fuel gas flame.
  • pollutants in particular fluorine compounds
  • the degree of decomposition of compounds which can be thermally decomposed is to be improved and the degree of chemical conversion of other pollutants is to be increased for pollutants which react with components of the fuel gas flame.
  • the economy of the cleaning process can be improved by reducing the fuel gas consumption and by longer uninterrupted operating times.
  • the object is achieved by a method according to claim 1 and a device according to claim 10 .
  • the method assumes that a fuel gas mixture, preferably a hydrogen / oxygen mixture or a methane / oxygen mixture, is burned in a combustion chamber with the aid of a burner and that the pollutant-containing exhaust gas is fed into the flame.
  • the exhaust gases are not combustible themselves, even if they contain combustible components, e.g. B. hydrides, since they usually consist of over 90% of non-flammable inert gases, such as N 2 or Ar. If the pollutants in the flame are only to be activated for thermal decomposition, the components of the fuel gas mixture are supplied stoichiometrically.
  • the hydrogen-containing component or the hydrogen is supplied in excess if this is done by reduction or air or oxygen is supplied in excess if oxidation is to be achieved.
  • the efficiency of the pollutant conversion in the flame is set by precise dosing and / or by separate or additional supply of components. An increase in the efficiency of the pollutant conversion in the flame is achieved with special burner designs or devices for swirling the gas streams and for separately feeding the components of the fuel gas mixture.
  • the hot gas stream at the end of the effective area of the flame then consists of the combusted fuel gas mixture (mostly CO 2 and H 2 O), heated inert gases (mostly N 2 and Ar) and either the products of thermal decomposition in an O 2 atmosphere (e.g. SiO 2 and water vapor) or from products of chemical conversion (e.g. hydrogen fluoride, silicon fluoride, carbon dioxide and water vapor when burning silane and tetrafluoromethane in a detonating gas flame). Solid reaction products are deposited on components of the combustion chamber, eg SiO 2 ).
  • the hot gases at the exit of the combustion chamber become a device for further treatment fed.
  • one or more sub-processes such as cooling, hydrolizing, neutralizing take place and washing out.
  • Such subprocesses are e.g. in spray washers or columns. largely of toxic pollutants freed, gas flow is now fed to the exhaust air duct with the aid of an extraction system.
  • a body which is permeable to the hot gas stream or a permeable material with a large inner surface is arranged in the hot gas stream within the combustion chamber, thermally insulated from the casing thereof, and in this way to temperatures above 500.degree. C., preferably in the range from 700.degree 1400 ° C, heated.
  • the thermal energy content of the flame is initially used to heat the exhaust gas and in this way in the volume of the flame to bring about the effects which are typical for treatment in a fuel gas flame. These are the thermal decomposition of pollutants and the chemical conversion in thermally stimulated reactions between components of the fuel gas mixture and the pollutants.
  • the energy content of the hot gas stream is now also used to bring said body or material to high temperatures. If heat radiation protection plates, possibly additional heat-insulating materials, are introduced in or around the combustion chamber in the area between the flame and the end of the combustion chamber, the energy content of the hot gas stream is efficiently used to heat the body.
  • Said body consists of a material or a mixture of materials containing one of the primary pollutants at the specified temperature and / or combustion secondary substances forms volatile compounds and / or additional activation and / or catalytically effective.
  • Silicon dioxide can be used as a material. Is e.g. Hexafluoromethane as To dispose of harmful gas, it is known to contain hydrogen and oxygen Flame largely converted into carbon dioxide and hydrogen fluoride. For the valid ones However, the degree of implementation is not entirely sufficient to meet strict environmental requirements. According to the invention, the further conversion of the pollutants takes place, in the example that of hexafluor methane, by volume reaction in the gas permeable heated by the flame Body (or material), which significantly reduces the pollutant content. Extremely low Pollutant proportions are achieved, however, since surface reactions also occur in the hot body Silicon dioxide take effect. In this way, residual hexafluoromethane becomes volatile Silicon fluoride converted.
  • a significant, further effect of the use of the surface reactor which is additionally effective in the combustion chamber for the fuel gas flame is that not only the primary pollutant (in the example hexafluoromethane) is converted chemically, but also in the flame and in the interior of the permeable body (or material ) resulting from thermal decomposition and chemical conversion, often also toxic secondary products, are also converted chemically by surface reactions.
  • the reaction of hexafluoromethane in the flame and in the volume of the body in addition to volatile hydrofluoric acid and carbon dioxide produces various fluorhexamethane degradation products, such as CHF 3 , which also form volatile silicon compounds with silicon dioxide, which also forms harmless inert gases.
  • the surface reactions of the primary and, in this sense, secondary pollutants take place in the presence of hydrogen and oxygen in the hot gas stream.
  • the chemical conversion of these pollutants can be influenced further favorably if excess oxygen or air is fed into the burner to generate the fuel gas flame.
  • the reactions take place on the surfaces of the permeable body (or material) in the presence of an excess of oxygen.
  • This improves the conversion of pollutants on the surfaces by forming further volatile intermediates, such as SiOF 2 .
  • the presence of oxygen in the reaction of primary or secondary pollutants with the introduced material also has the advantage that the deposition of solid substances, for example silicon carbide or coal, is avoided. In this way, a "poisoning" of the surfaces for the intended conversion into gaseous substances is avoided.
  • the additional feeding of oxygen or air can also take place in the area of the entry of the hot gases into the permeable body (or material). In this way, the surface reactions can be optimally adjusted with regard to the required amount of oxygen, regardless of the volume reactions in the flame.
  • a further, decisive effect of the procedure according to the invention is that pollutants which are only slightly or not thermally decomposed or chemically converted in the fuel gas flame are still chemically converted by the surface reaction in the combustion chamber.
  • pollutants which are only slightly or not thermally decomposed or chemically converted in the fuel gas flame are still chemically converted by the surface reaction in the combustion chamber.
  • a high degree of implementation can also be achieved for such pollutants as SF 6 , CHF 3 and CF 4 . Since two different mechanisms are effective in the combustion chamber with the volume reaction, predominantly in the fuel gas flame, and the surface reaction in the permeable body (or material), the process is well suited for cleaning exhaust gases that contain different pollutants. If the exhaust gas contains NF 3 and CF 4 , for example, NF 3 is mainly converted in the fuel gas flame, while the predominant portion of CF 4 is converted on the surfaces of the hot, permeable body (or material).
  • the selection of the material for said body (or material) is therefore on the one hand chemical requirements regarding the pollutants to be disposed of, on the other hand through aspects of ensuring permeability for the hot gas flow and Formation of large inner surfaces with low flow resistance for the hot gas.
  • silicon dioxide in addition to said silicon dioxide, it is according to the invention to use silicon dioxide as a mixture with silicon and / or with other silicon-containing compounds as the material. Pollutants such as chlorobenzene react easily with the silicon in such a mixture at temperatures above 600 ° C.
  • the permeable bodies can be designed as sintered bodies or as sintered ceramic bodies which contain Al 2 O 3 or / and other sinterable materials in addition to silicon oxide or the other substances mentioned.
  • Another procedure according to the invention is that the material for the permeable Body (or material) according to consumption by the chemical reactions in the hot area of the flame of the burner is replenished. This ensures that the cleaning process in the combustion chamber is carried out continuously over long times can be.
  • an additional, inventive feature is that the infrared radiation of the heated Material is registered in the combustion chamber with the help of a sensor, and that the measurement signal this sensor is used to control the process. For example, the temperature of the chemically reacting surfaces of the body (or material) by controlling the flows of the body Fuel gas mixture to be regulated. In this way, optimal reaction conditions can be achieved adjust in volume and on the surfaces of the introduced material. In addition, use the sensor signal to refill the devices in the form of a point control to control.
  • the hot gas stream emerging from the permeable body (or material) becomes at the outlet fed to the combustion chamber of a device for further, single or multi-stage treatment and then released into the exhaust air after cleaning.
  • a permeable body or material is arranged in the interior of the combustion chamber at a distance from the ring burner, which does not hinder the formation of the fuel gas flame.
  • this body or material
  • one or more, preferably cylindrical radiation protection plates are arranged between it and the burner wall.
  • heat-insulating, temperature-resistant insulation materials are arranged between the burner wall and the casing of the combustion chamber.
  • the materials for the body in question become coarse granules sintered body or a plurality of sintered bodies, for example in the form of rings, or sintered, in the case of the use of silicon dioxide also melted, shaped or used. These shapes create a large surface in the body (or material) guaranteed for contact or for reaction with the hot gas. On the other hand, on in this way a high permeability for the flowing hot gas is achieved.
  • the sintered body can be inserted directly into the combustion chamber with appropriate holders become.
  • the granules or packing are in a net-like, basket-shaped storage vessel used. If sintered or melted tubes are used as permeable bodies, then they are combined into a bundle in the combustion chamber by means of brackets arranged that the longitudinal direction with the flow direction of the hot gases through the Combustion chamber matches.
  • the permeable body (or the permeable material) are exchanged when it is through Reactions with a corresponding flow rate of pollutants is consumed.
  • Corresponding the consumption of material through the reactions with the harmful gases can also be useful in the interest of long, uninterrupted operating times of the cleaning system, if the materials, e.g. Granules or packing e.g. with a vibratory conveyor, be replenished.
  • a bundle of tubes is used as a permeable, reactive body, the burn-off thereof can be compensated for as a result of the reactions by longitudinal movement of the holders against the direction of flow of the hot gases.
  • a sufficient length of the tube bundle serves as a supply for an uninterrupted operating time to be achieved.
  • controlled end-feeding of the reactive materials can also be achieved by intervening in the vibrating conveyor device or in the feed of the holder for the tubes, by means of an end point control.
  • Another useful device are openings or inlet pipes on the combustion chamber in the Area of entry of the hot gases into the permeable body. Through them the said cause additional supply of oxygen or air.
  • this makes optimization the conditions in the flame considering the implementation of one of the pollutants, e.g. guaranteed by setting a hydrogen excess in the fuel gas mixture, on the other hand the optimization of the conditions in the body (or material) for the implementation of another Pollutant due to an excess of oxygen on the hot reaction surfaces.
  • Another useful device for the device for carrying out the method is a baffle in the immediate vicinity of the permeable body (or material). On the surfaces of this Baflle the solid, secondary products are separated when the hot gases hit, that occur due to volume reaction in the flame. You will be prevented from doing so To deposit surfaces of said hot body and its surfaces for reaction poison with other pollutant components.
  • FIG. 1 shows a schematic longitudinal section.
  • the device according to the invention essentially consists of a cylindrical combustion chamber (1) made of corrosion-resistant material. It is 18 cm in diameter and 80 cm high. This combustion chamber is thermally insulated in an outer casing (2). In the area of an end face (3) of the combustion chamber (1) there is an annular burner (4) to which the fuel gas mixture of hydrogen and oxygen is fed via a feed (5).
  • the ring burner (4) has a diameter of 25 mm.
  • the fuel gas flame (7) forms above the ring channel (6).
  • the exhaust gas with pollutants of different compositions is fed to the burner (4) via the central feed (8). It enters the fuel gas flame (7) centrally through the bore (9).
  • a basket-like container (10) is made at a distance of 40 cm from the burner corrosion-resistant wire mesh with a mesh size of 2 mm and one Permeability of approx. 55% arranged. Between the cylindrical surface of this container and the The cylinder wall of the combustion chamber are two cylindrical radiation protection plates (11) with one radial distance of 3mm to each other and to the inner surface of the combustion chamber. On plate-shaped radiation protection plates (11) are arranged on the end face of the container. in the The area of the basket-like container is between the combustion chamber wall and the casing (2) about 4 cm thick thermal insulation (12) made of rock wool.
  • the basket-like container is included Filling bodies (13) made of quartz rings (diameter 4 mm, wall thickness 1 mm, length 4 mm).
  • An IR sensor (15) is through a bore (14) in the wall of the firing chamber and in the casing. with its receiver surface facing the hot filler. Are offset to the extent of the Combustion chamber three holes for interconnected inlet pipes (16), through the air or Oxygen is admitted into the area where the hot gases enter the quartz packing.
  • a flat baffle (17) made of corrosion-resistant steel sheet with a Length of 4 cm (in the direction of the flowing gases).
  • the hot gases initially flow out of the fuel gas flame (7) in the direction of the arrow (18) through the Baffle, then through the packing (13) and then in the direction of the arrow (19) through the opening (20) and then through the spray washer (21).
  • the spray washer has the same diameter as the combustion chamber. It is 30 cm long. It is integrated into the casing together with the combustion chamber. Between holding sieves (22) washing rings (23) are arranged in the central region of the spray washing device. About the Feed (24) is admitted a one percent, aqueous potassium hydroxide solution and by means of the spray device (25) is sprayed into the washing device (arrow direction 26). The hot one The gas flow and the aqueous solution flow through the washing rings in the direction of the arrow (27). The cleaned and cooled gas flow collects in the room (28) and is over a tubular Aspirated connection (29) and fed to the exhaust air. Collects in the lower part of the room (28) the aqueous solution and is fed to the reprocessing via connection (30).
  • a plasma CVD coating system 60 l / min of exhaust gas is produced when silicon dioxide is deposited on semiconductor wafers.
  • the exhaust gas consists of 30 l / min nitrogen and 3 l / min silane as the predominant pollutant.
  • the coating chamber of a plasma CVD coating system is cleaned by a plasma etching process. This process is carried out with a mixture of tetrafluoromethane and oxygen as the process gas.
  • the resulting exhaust gas consists of 30 l / min N 2 , 1 l / min N 2 O and 2 l / min tetrafluoromethane from a few tenths l / min of silicon tetrafluoride as the main pollutants, in addition to small amounts of fluorine and other substances that decompose tetafluoromethane , eg CHF 3 , in the presence of SiO 2 in the plasma.
  • the pollutant conversion largely takes place after two different reaction principles, which are caused by the listed main pollutants, namely silane and tetrafluoromethane, are determined.
  • the hydrogen / oxygen flame Volume mainly converted the silane to silicon dioxide and water vapor. Silicon dioxide settles on the walls of the combustion chamber and on the flame-side surfaces of the baffles (18). From these surfaces it can easily be achieved with devices known per se, if necessary, also under operating conditions.
  • tetrafluoromethane is also converted chemically in volume, mainly to hydrogen fluoride and carbon dioxide.
  • a number of intermediate products are created in the flame, such as CHF 3 .
  • the body is heated to around 1300 ° C by the hot gases flowing through it.
  • the pollutants come into intimate contact with the surfaces of the hot quartz fillers.
  • the predominant surface reaction is that of tetrafluoromethane to volatile silicon tetrafluoride.
  • Pollutants still contained in the hot gas stream. such as hydrogen fluoride and fluorine are partially converted to volatile silicon tetrafluoride on the hot surfaces.
  • Traces of silanes that have not yet been converted in the volume of the flame are decomposed in the volume of the permeable, hot body or are chemically converted to silicon dioxide with the oxygen which is still present at the same time.
  • the hot gases with the secondary and tertiary reaction products enter through the gap (20) into the spray washing device (21), in which the aqueous absorbent is effective.
  • the hot gases are cooled to around 50 ° C.
  • the hydrogen fluoride and the silicon fluoride are absorbed by the basic active components of the solution, for example by KOH or K 2 CO 3 .
  • the process has a high level of pollutants with very different chemical behaviors Cleaning effect.
  • the pollutant content of fluorine-containing is very toxic acting compounds in the exhaust air of the exhaust gas purification device reduced to a few ppm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)
  • Incineration Of Waste (AREA)

Claims (15)

  1. Procédé de séparation de substances nocives, en particulier de composés fluorés, à partir de gaz résiduaires non combustibles dans une chambre de combustion avec une flamme de gaz combustible qui sert au chauffage et/ou à la réaction chimique des substances nocives, le gaz résiduaire contenant les substances nocives étant injecté dans la flamme, et avec un dispositif de traitement du courant gazeux chaud sortant de la flamme de gaz combustible, dans lequel on dispose dans le courant gazeux chaud, dans la chambre de combustion, de manière isolée de la chaleur par rapport à l'enveloppe de la chambre de combustion, un corps perméable ou un matériau perméable au courant gazeux chaud ayant une grande surface interne et on le chauffe de cette manière à des températures supérieures à 500°C, de préférence comprises entre 700°C et 1400°C, on fait passer ledit gaz à travers ce corps ou ce matériau et on le met en contact intime avec la surface de ce corps ou matériau, ledit corps ou matériau étant constitué d'une matière ou d'un mélange de matières, qui forme à la température indiquée des composés volatils avec l'une des substances nocives primaires et/ou substances secondaires de la combustion et/ou a un effet d'activation supplémentaire et/ou a un effet catalytique, et on envoie le courant gazeux chaud sortant du corps perméable ou du matériau perméable à la sortie de la chambre de combustion vers un dispositif fonctionnant en une ou plusieurs étapes pour le traitement ultérieur, puis on le fait passer à l'état purifié dans l'air d'évacuation.
  2. Procédé selon la revendication 1, caractérisé en ce que l'on utilise du dioxyde de silicium comme matière pour le corps perméable ou le matériau perméable.
  3. Procédé selon la revendication 1, caractérisé en ce que l'on utilise un mélange de dioxyde de silicium avec du silicium ou de dioxyde de silicium avec des alliages contenant du silicium comme matière pour le corps perméable ou le matériau perméable.
  4. Procédé selon la revendication 1, caractérisé en ce que l'on utilise comme matière pour le corps perméable ou le matériau perméable un mélange de dioxyde de silicium, de dioxyde de silicium avec du silicium ou de dioxyde de silicium avec des alliages contenant du silicium, avec de l'oxyde d'aluminium.
  5. Procédé selon la revendication 1, caractérisé en ce que l'on utilise comme matière pour le corps perméable ou le matériau perméable un mélange de dioxyde de silicium, de dioxyde de silicium avec du silicium ou de dioxyde de silicium avec des alliages contenant du silicium, avec des substances céramiques aptes au frittage.
  6. Procédé selon les revendications 1 à 5, caractérisé en ce que l'on injecte dans le brûleur, pour obtenir la flamme de gaz combustible, de l'oxygène ou de l'air en excès.
  7. Procédé selon les revendications 1 à 5, caractérisé en ce que l'on injecte en outre de l'oxygène préchauffé ou de l'air préchauffé dans la flamme dans la zone d'entrée des gaz chauds dans le corps perméable ou dans le matériau perméable.
  8. Procédé selon les revendications 1 à 7, caractérisé en ce que l'on réintroduit de la matière pour le corps perméable ou le matériau perméable dans la zone chaude de la flamme.
  9. Procédé selon les revendications 1 à 8, caractérisé en ce que l'on enregistre au moyen d'un capteur le rayonnement infrarouge de la matière chauffée dans la chambre de combustion et en ce que l'on exploite le signal de mesure de ce capteur pour la conduite de l'opération.
  10. Dispositif pour la mise en oeuvre du procédé selon les revendications 1 à 8 comportant une chambre de combustion (1), un brûleur (4) pour la production d'une flamme de gaz de combustion et un dispositif (8) pour l'introduction du gaz résiduaire contenant les substances nocives dans la flamme de combustion, dans lequel
    à l'intérieur de la chambre de combustion (1), de manière isolée (12) par rapport à l'enveloppe (2) de la chambre de combustion (1), un corps perméable ou un matériau perméable (13) au courant gazeux chaud, ayant une grande surface interne, est disposé dans le courant de gaz chaud;
    ledit corps ou ledit matériau (13) est constitué d'une matière ou d'un mélange de matières qui, à une température supérieure à 500°C, forme avec l'une des substances nocives primaires et/ou des substances secondaires de la combustion des composés volatils et/ou a un effet d'activation supplémentaire et/ou a un effet catalytique;
    à la sortie de la chambre de combustion (1), il y a un dispositif (21) fonctionnant en une ou plusieurs étapes pour purifier le courant gazeux chaud sortant du matériau perméable; et
    comme corps perméable ou comme matériau perméable, on utilise un produit granulé grossier, un corps fritté ou un grand nombre de corps frittés, par exemple sous forme d'anneaux, ou aussi, dans le cas de l'utilisation de dioxyde de silicium, de tubes fondus.
  11. Dispositif selon la revendication 10, caractérisé en ce que, pour l'introduction ultérieure de produit granulé ou de corps de garnissage dans un réservoir de type panier, il est prévu un système de transport par secousses ou convoyeur vibrant.
  12. Dispositif selon l'une des revendications 10 ou 11, caractérisé en ce que ce l'on peut déplacer dans le sens longitudinal la fixation du garnissage de tubes frittés ou fondus.
  13. Dispositif selon l'une des revendications 10 à 12, caractérisé en ce qu'une ouverture ou une fenêtre pour un capteur d'IR est prévue dans la paroi de la chambre de combustion dans la zone comprise entre la flamme et le corps ou le matériau perméable.
  14. Dispositif selon l'une des revendications 10 à 13, caractérisé en ce que des ouvertures ou des tubes d'admission sont disposés dans la paroi de la chambre de combustion dans la zone de l'entrée du courant gazeux chaud dans le corps ou le matériau perméable.
  15. Dispositif selon l'une des revendications 10 à 14, caractérisé en ce qu'un dispositif ayant un effet de chicane pour le courant de gaz chaud est prévu à l'intérieur de la chambre de combustion dans la zone comprise entre le brûleur et le corps ou le matériau combustible, dans le voisinage immédiat de ce dernier.
EP96102123A 1995-03-30 1996-02-14 Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique dans une flamme et sur des surfaces chaudes Expired - Lifetime EP0735322B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19511645A DE19511645A1 (de) 1995-03-30 1995-03-30 Verfahren und Einrichtung zur Reinigung von schadstoffhaltigen Abgasen durch chemische Umsetzung in einer Flamme und an heißen Oberflächen
DE19511645 1995-03-30

Publications (3)

Publication Number Publication Date
EP0735322A2 EP0735322A2 (fr) 1996-10-02
EP0735322A3 EP0735322A3 (fr) 1997-04-23
EP0735322B1 true EP0735322B1 (fr) 2000-10-18

Family

ID=7758137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96102123A Expired - Lifetime EP0735322B1 (fr) 1995-03-30 1996-02-14 Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique dans une flamme et sur des surfaces chaudes

Country Status (2)

Country Link
EP (1) EP0735322B1 (fr)
DE (2) DE19511645A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29712026U1 (de) * 1997-07-09 1998-11-12 Ebara Germany Gmbh Brenner für die Verbrennung von Abgasen mit mindestens einer kondensationsfähigen Komponente
TW506852B (en) * 2000-08-28 2002-10-21 Promos Technologies Inc Device and method for processing exhaust from process chamber
DE10304489B4 (de) * 2002-04-11 2014-07-31 Das Environmental Expert Gmbh Einrichtung zur Reinigung von Abgasen mit fluorhaltigen Verbindungen in einem Verbrennungsreaktor mit niedriger Stickoxidemission
DE102006052586B4 (de) * 2006-11-08 2008-07-03 Schott Solar Gmbh Verfahren und Vorrichtung zur Reinigung der Abgase einer Siliziumdünnschicht-Produktionsanlage
CN102644928B (zh) * 2011-02-18 2015-07-29 Das环境专家有限公司 用于热处理包括有害物质的废气的装置
GB2514341B (en) * 2013-05-20 2016-08-24 Edwards Ltd Radiant burner combustion monitoring
CN104848206A (zh) * 2015-05-28 2015-08-19 苏州斯洛莱自动化设备有限公司 一种抑制氮氧化物排放的燃煤锅炉

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2090402A5 (fr) * 1970-01-12 1972-01-14 Muller Maurice
NL7710924A (nl) * 1976-10-13 1978-04-17 Air Resources Werkwijze voor het katalytisch verbranden van een gas, dat brandbaar materiaal bevat.
DE3529309A1 (de) * 1985-08-16 1987-03-19 Hoechst Ag Vorrichtung zum verbrennen von fluorkohlenwasserstoffen
GB8927314D0 (en) * 1989-12-02 1990-01-31 Plasma Products Limited Exhaust gas conditioning

Also Published As

Publication number Publication date
EP0735322A3 (fr) 1997-04-23
EP0735322A2 (fr) 1996-10-02
DE19511645A1 (de) 1996-10-02
DE59605997D1 (de) 2000-11-23

Similar Documents

Publication Publication Date Title
EP0702771B1 (fr) Dispositif d'epuration de gaz brules
DE69820926T2 (de) Verfahren, Vorrichtung und Verwendung eines Katalysators zur Zersetzung fluorierter Verbindungen
DE102007044731A1 (de) Verfahren und Vorrichtung zur Abscheidung von Quecksilber aus Rauchgasen
DE19731062A1 (de) Verfahren zum Entfernen von Schwefeloxiden aus Rauchgasen
EP0301272A2 (fr) Procédé et dispositif pour l'épuration des gaz ou d'air d'échappement
DE10218491B3 (de) Verfahren zur Vermeidung der Selbstentzündung von brennbaren Stäuben in Prozessabgasen sowie Vorrichtung zur Durchführung des Verfahrens sowie Siliciumscheibe erhältlich aus diesem Verfahren
EP0735322B1 (fr) Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique dans une flamme et sur des surfaces chaudes
DE3841889C2 (fr)
AT399828B (de) Verfahren und anlage zur reinigung von abgasen
DE10304489B4 (de) Einrichtung zur Reinigung von Abgasen mit fluorhaltigen Verbindungen in einem Verbrennungsreaktor mit niedriger Stickoxidemission
EP0140944A1 (fr) Procede et installation de purification des gaz de combustion provenant par exemple de chauffages domestiques, de moteurs a combustion ou de chauffages similaires
DE60131826T2 (de) Entsorgung fluorhaltiger Substanzen aus Gasströmen
DE69832905T2 (de) Verfahren zur entfernung von stickoxiden aus abgasen
DE3629688C2 (de) Verfahren zur Reinigung von Rauch- und anderen Industrieabgasen
EP0502192B1 (fr) Procede d'elimination d'oxydes azotes d'emissions de gaz
EP0735321B1 (fr) Procédé pour la purification des effluents gazeux nocifs par conversion chimique
EP0735320B1 (fr) Procédé et dispositif pour la purification des effluents gazeux nocifs par conversion chimique
DE19631873C1 (de) Einrichtung zur Reinigung von schadstoffhaltigen Abgasen in einer Brennkammer mit anschließender Wascheinrichtung
EP0577677B1 (fr) Procede de reduction de la teneur en substances polluantes de gaz de fumee degages pendant des processus thermiques
DE19600873A1 (de) Verfahren und Einrichtung zur Reinigung von schadstoffhaltigen Abgasen durch Verbrennen und chemische Umsetzung mit Hilfe einer Flamme in einer Brennkammer
EP1291069B1 (fr) Procédé et dispositif pour la purification d'effluents gazeux, en particulier chargés avec des composés fluorés, dans une chambre de combustion avec alimentation separée des gaz
DE1150955B (de) Verfahren und Vorrichtung zum Reinigen von hochdispersen Oxyden
DE2700435A1 (de) Verfahren zur reduktion von no tief x
WO2003085321A1 (fr) Dispositif de purification de gaz d'echappement renfermant des composes contenant du fluor dans un reacteur de combustion
EP0342588B1 (fr) Méthode et dispositif pour purifier des gaz d'échappement avec des corps en forme de nid d'abeilles faits de composés de calcium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE ES FR GB IE IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE ES FR GB IE IT LI NL

17P Request for examination filed

Effective date: 19970423

17Q First examination report despatched

Effective date: 19990301

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990601

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IE IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001018

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20001018

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001018

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001018

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59605997

Country of ref document: DE

Date of ref document: 20001123

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: DAS-DUNNSCHICHT ANLAGEN SYSTEME G.M.B.H. DRESDEN

Effective date: 20010228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020122

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020221

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030425

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901