EP0732389B1 - Procédé d'hydroconversion de charges hydrocarbonées lourdes - Google Patents
Procédé d'hydroconversion de charges hydrocarbonées lourdes Download PDFInfo
- Publication number
- EP0732389B1 EP0732389B1 EP96103874A EP96103874A EP0732389B1 EP 0732389 B1 EP0732389 B1 EP 0732389B1 EP 96103874 A EP96103874 A EP 96103874A EP 96103874 A EP96103874 A EP 96103874A EP 0732389 B1 EP0732389 B1 EP 0732389B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stage
- reactor
- catalyst
- feedstock
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/10—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
Definitions
- This invention pertains to a catalytic two-stage hydroconversion process for achieving essentially complete hydroconversion of heavy petroleum-based feedstocks to produce lower-boiling hydrocarbon liquid products. It pertains particularly to such a process utilizing a high temperature first stage ebullated bed catalytic reactor and lower temperature second stage ebullated bed catalytic reactor, with extinction recycle of all distilled vacuum bottoms material back to the first stage reactor to provide 90-100 vol% hydroconversion of the feedstocks.
- U.S. No. 3,549,517 to Lehman discloses a single stage catalytic process in which a vacuum distillation side stream is recycled to the reactor.
- U.S. Patent No. 3,184,402 to Kozlowski, et al discloses a two-stage catalytic hydrocracking process with intermediate fractionation and some recycle of a distillation bottoms fraction to either a first or second catalytic cracking zone.
- U.S. Patent No. 3,254,017 to Arey, Jr. et al discloses a two-stage process for hydrocracking heavy oils utilizing small pore zeolite catalyst in the second stage reactor.
- 3,775,293 to Watkins discloses a two-stage catalytic desulfurization process with recycle of some heavy oil fraction boiling above diesel fuel oil to a second stage fixed bed type reactor.
- U.S. No. 4,457,831 to Gendler discloses a two-stage catalytic hydroconversion process in which vacuum bottoms residue material is recycled to the second stage reactor for further hydroconversion reactions.
- U.S. No. 4,576,710 to Nongbri et al discloses a two-stage catalytic desulfurization process for petroleum residua feedstocks utilizing catalyst regeneration.
- the present invention advantageously overcomes the concerns of potential users and provides a desirable improvement over the known prior art hydroconversion processes for heavy petroleum feedstocks.
- This invention provides a catalytic two-stage ebullated bed hydroconversion process for heavy petroleum, residual oil and bitumen feedstocks, which process effectively hydroconverts essentially all of the high boiling residue material in the feedstock to desirable high quality lower boiling hydrocarbon liquid products.
- the process is particularly useful for those feedstocks containing 40-100 vol% 520°C + (about 975°F + ) petroleum resid and 10-50 wt% Conradson carbon residue (CCR), and containing up to 1000 wppm total metals (V+Ni).
- Preferred feedstocks should contain 75-100 vol% 520°C + (about 975°F + ) residual material with 15-40 wt% CCR, and 100-600 wppm total metals (V+Ni).
- Such feedstocks may include but are not limited to heavy crudes, atmospheric bottoms and vacuum resid materials from Alaska, Athabasca, Ba skilletro, Cold Lake, Lloydminster, Orinoco and Saudi Arabia.
- the fresh feedstock is introduced together with hydrogen into a first stage catalytic ebullated bed type reactor, which is essentially a high temperature hydroconversion reactor utilizing a particulate supported hydroconversion catalyst.
- the reactor is maintained at operating conditions of 440-470°C (about 820-875°F) temperature, 105-245 kg/cm 2 (i.e. 1500-3500 psig) hydrogen partial pressure, and space velocity of 0.30-1.0 volume feed per hour per volume of reactor (V f /hr/V r ).
- the catalyst replacement rate should be 0.42-2.54 kg of catalyst per m 3 of the fresh oil feed (about 0.15-0.90 pound catalyst/barrel of fresh oil feed).
- the first stage reactor hydroconverts 70-95 vol.% of the fresh feed material and recycled residue material to form lower boiling hydrocarbon materials.
- the first stage reactor effluent material is phase separated, a gas fraction is removed and the resulting liquid fraction is passed together with additional hydrogen on to a second stage catalytic ebullated bed type reactor containing a particulate high activity catalyst and which is maintained at lower temperature conditions of 370-420°C (about 700-800°F) temperature and 0.10-0.80 V f /hr/V f space velocity, so as to effectively hydrogenate the unconverted residue material therein.
- the second stage reactor catalyst replacement rate should be 0.42-2.54 kg of catalyst per m 3 of the fresh oil feed (about 0.15-0.90 pound catalyst/barrel feed) to the second stage, which hydroconverts 10-50 vol% of the second stage feed material to lower boiling hydrocarbon materials.
- the second stage reactor effluent material is passed to gas/liquid separation and distillation steps, from which hydrocarbon liquid product and distillation vacuum bottoms fraction materials are removed.
- the vacuum bottoms material boiling above at least 450°C (about 850°F) temperature and preferably above 480°C (about 900°F) is recycled back to the first stage catalytic reactor inlet at a volume ratio to the fresh feedstock of 0.2-1.5/1, and preferably at 0.5-1.0/1 recycle ratio for further hydroconversion extinction reactions therein.
- Particulate catalyst materials which are useful in this petroleum hydroconversion process may contain 2-25 wt. percent total active metals selected from the group consisting of cadmium, chromium, cobalt, iron, molybdenum, nickel, tin, tungsten, and mixtures thereof deposited on a support material selected from the group of alumina, silica and combinations thereof. Also, catalysts having the same characteristics may be used in both the first stage and second stage reactors.
- the particulate catalyst will usually be in the form of extrudates or spheres and have the following useful and preferred characteristics: Useful Preferred Particle Diameter, in. 0.025-0.083 0.030-0.065 Particle Diameter, mm 0.63-2.1 0.75-1.65 Bulk Density, g/cm 3 (lb/ft 3 ) (25-45) 0.40-0.72 g/cm 3 (30-40) 0.48-0.64 g/cm 3 Particle Crush Strength, lb/mm 1.8 min 2.0 min. Total Active Metals Content, Wt% 2-25 5-20 Total Pore Volume, cm 2 gm 0.30-1.50 0.50-1.20 Surface Area, m 2 /gm 100-400 150-350 Average Pore Diameter, Angstrom 50-350 100-250
- Catalysts having unimodal, bimodal and trimodal pore size distribution are useful in this process.
- Preferred catalysts should contain 5-20 wt.% total active metals consisting of combinations of cobalt, molybdenum and nickel deposited on alumina support material.
- the heavy petroleum feedstock is first catalytically hydroconverted in the first stage catalytic higher temperature reactor, and the remaining resid fraction is catalytically hydrogenated in the second stage catalytic lower temperature reactor, after which a vacuum distilled 450°C + (about 850°F + ) fraction is recycled back to the first stage reactor for further hydrocracking reactions at the higher temperature maintained therein.
- Passing the first stage reactor liquid phase effluent material to the second stage reactor operated at lower temperature and space velocity conditions concentrates unconverted residue material, minimizes any gas velocity related problems in the second stage reactor, and reduces contaminant partial pressures (H 2 S, NH 3 , H 2 O).
- the second stage catalytic reactions increase the hydrogen/carbon ratio of the residue being processed therein, thereby decreasing aromaticity and increasing the hydrogen donor capability of the residue, so that by its recycle back to the first stage reactor the hydrogenated residue can donate hydrogen to the fresh feedstock and the hydrogenated residue can also be more readily hydroconverted to desirable lower boiling fractions.
- This approach is more selective to producing high yields of desirable hydrocarbon liquid fuel products, i.e. reduced hydrocarbon gas contributes to high conversion operations.
- This catalytic hydroconversion process can also be further improved by selectively feeding fresh hydrogen to the second stage reactor and recycling hydrogen gas to the first stage reactor, so as to maximize hydrogen partial pressure in the more catalytic second stage hydrogenation reactor.
- used catalyst in the second stage ebullated bed reactor can be withdrawn, treated to remove undesired fines, etc., and introduced into the first stage ebullated bed reactor for further use therein, before the used catalyst is withdrawn from the first stage reactor and discarded.
- utilizing used second stage catalyst material in the first stage reactor is appropriate and beneficial, because use of fresh, high activity catalyst in the higher temperature mainly thermal type reactor would not provide substantially improved catalytic activity therein.
- any disposition problems usually related to an unconverted bottoms fraction material are eliminated.
- Fig. 1 is a schematic flow diagram of a catalytic two-stage hydroconversion process for processing heavy petroleum feedstocks to produce lower-boiling liquid and gas products according to the invention.
- the total feedstock consists of the fresh hydrocarbon feed material at 10 plus the recycled vacuum bottoms material at 13.
- the recycle rate for the vacuum bottoms material at 13 to the first stage reactor 16 is selected so as to completely destroy or extinct this residue material in two staged catalytic reactors, with the recycle volume ratio of the vacuum bottoms material to the fresh oil feedstock being in the range of 0.2-1.5/1, and preferably 0.50-1.0/1 recycle ratio.
- the hydrocracking reactions are primarily thermal type as the reactor is maintained at a relatively high temperature of 440-470°C (about 820-875°F), at 105-245 kg/cm 2 (i.e. 1,500-3,500 psig) hydrogen partial pressure, and liquid hourly space velocity of 0.30-1.0 volume feed/hr/volume of reactor (V l /hr/V f ).
- the feedstock hydroconversion achieved therein is typically 70-95 vol %, with about 75-90 vol. % conversion usually being preferred.
- Preferred first stage reaction conditions are 440-455°C (about 825-850°F) temperature, 140-210 kg/cm 2 (i.e.
- the catalyst bed 18 in first stage reactor 16 is expanded by the upflowing gas and reactor liquid to 30-60% above its settled height and is ebullated as described in more detail in U.S. Patent No. 3,322,665 which is incorporated herein by reference to the extent needed to describe operation of the reactor ebullated catalyst beds.
- first stage reactor 16 From first stage reactor 16, overhead effluent stream 19 is withdrawn and passed to phase separator 20. A liquid stream is withdrawn from the separator 20 through downcomer conduit 22, and is recirculated through conduit 24 by ebullating or recycle pump 25 back to the reactor 16.
- the particulate catalyst material added at 17 is preferably used extrudate catalyst withdrawn at 36 from second stage reactor 30, and usually treated at zone 38 as desired to remove particulate fines, etc. at 37.
- Fresh make-up catalyst can be added as needed at 17a, and spent catalyst is withdrawn at connection 17b from catalyst bed 18.
- gaseous material at 21 is passed to a gas purification section 42, which is described further herein below. Also from the separator 20, a liquid portion 26 from the liquid stream 22 provides the liquid feed 370°C (about ⁇ 700°F + ) material upwardly through flow distributor 27 into the second stage catalytic ebullated bed reactor 30.
- the second stage catalytic reactor 30 which preferably has larger volume and provides lower space velocity than for the first-stage reactor 16, less hydroconversion and more catalytic hydrogenation type reactions occur.
- the second stage reactor 30 contains ebullated catalyst bed 28 and is operated at conditions of 370-420°C (about 700-800°F) temperature, 105-245 kg/cm 2 (i.e. 1,500-3,500 psig) hydrogen partial pressure, and 0.10-0.80 V f /hr/V r space velocity, and thereby maximizes resid hydrogenation reactions which occur therein.
- Preferred second stage reaction conditions are 385-415°C (about 730-780°F) temperature, and 0.20-0.60 V f /hr/V r space velocity. Additional fresh hydrogen is provided at 32 to the second stage reactor 30, so that a high level of hydrogen partial pressure is maintained in the reactor.
- the catalyst bed 28 is expanded by 30-60% above its settled height by the upflowing gas and liquid therein.
- Reactor liquid is withdrawn from an internal phase separator 33 through downcomer conduit 34 to recycle pump 35, and is reintroduced upwardly through the flow distributor 27 into the ebullated bed 28.
- Used particulate catalyst is withdrawn at 36 from the second stage reactor bed 28 and fresh catalyst is added at 36 a as needed to maintain the desired catalyst volume and catalytic activity therein.
- This used catalyst withdrawn which is relatively low in metal contaminant concentration, is passed to a treatment unit 38 where it is washed, and screened to remove undesired fines at 37, and the recovered catalyst at 39 provides the used catalyst addition at 17 to the first stage reactor bed 18, together with any fresh make-up catalyst added at connection 17a as needed.
- the catalyst particles in ebullated beds 18 and 28 usually have a relatively narrow size range for uniform bed expansion under controlled upward liquid and gas flow conditions. While the useful catalyst size range is between 6 and 60 mesh (U.S. Sieve Series), the catalyst size is preferably particles between 8 and 40 mesh size including beads, extrudates, or spheres of approximately 0.05-0.25 cm (0.020-0.100 inch) effective diameter. In the reactor, the density of the catalyst particles, the liquid upward flow rate, and the lifting effect of the upflowing hydrogen gas are important factors in the desired expansion and operation of the catalyst bed.
- an effluent stream is withdrawn at 31 and passed to a phase separator 40.
- a hydrogen-containing gas stream 41 is passed to the purification section 42 for removal of contaminants such as CO 2 , H 2 S, and NH 3 at 43.
- Purified hydrogen at 44 is recycled back to each reactor 16 and 30 as desired as the H 2 streams 12 and 32, respectively, while fresh hydrogen is added at 45 as needed.
- a liquid fraction 46 is withdrawn, pressure-reduced at 47 to 0-100 psig, and is introduced into fractionation unit 48.
- a gaseous product stream is withdrawn at 49 and a light hydrocarbon liquid product normally boiling between 205-455°C (about 400-850°F) are withdrawn at 50.
- a bottoms 455°C + (about 850°F + ), fraction is withdrawn at 52, reheated at heater 53, and passed to vacuum distillation step at 54.
- a vacuum gas oil liquid product is withdrawn overhead at 55.
- Vacuum bottoms stream 56 which has been hydrogenated in the second stage catalyst reactor 30, is completely recycled back to the first stage catalytic reactor 16 for predominantly thermal hydrocracking reactions therein using the low activity catalyst provided at 17.
- the recycle volume ratio for vacuum bottoms stream 56 to fresh feed 10 should be 0.2-1.5/1, and preferably should be 0.50-1.0/1. It is pointed out that by utilizing this two stage catalytic hydroconversion process, the thermal reactions and catalytic activity in each stage reactor are effectively matched, so that there is essentially no net 520°C + , about 975°F + hydrocarbon material produced from the process.
- a typical heavy vacuum resid feedstock such as Cold Lake vacuum resid is processed by using the catalytic two-stage hydroconversion process with vacuum bottoms recycle arrangement of the present invention.
- This Cold Lake vacuum resid feedstock contains 90 vol % 520°C, about 975°F + material, 5.1 wt.% sulfur, 19 wt.% CCR, and 350 wppm metals (V+Ni), with the vacuum bottoms fraction normally boiling above 520°C, about 975°F being recycled back to the first stage catalytic reactor of the two-reactor system for further hydroconversion reactions and extinction recycle therein.
- Table 1 The reaction conditions used and overall conversion results are summarized in Table 1 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Claims (13)
- Procédé d'hydrotransformation catalytique à deux étages de charges de départ à base de pétrole lourd pour réaliser une hydrotransformation élevée de la charge et pour produire des gaz et des liquides hydrocarbures légers, ledit procédé comprenant :(a) l'amenée d'une charge de départ de liquide hydrocarbure lourd contenant au moins 40 % en volume à point d'ébullition normal au-dessus de 520 °C (environ 975 °F) en même temps que de l'hydrogène dans un réacteur catalytique à lit bouillonnant de premier étage contenant un lit de catalyseur en particules, ledit catalyseur contenant un total de 2 à 25 % en poids d'oxydes métalliques actifs sélectionnés à partir du groupe constitué par le cadmium, le chrome, le cobalt, le fer, le molybdène, le nickel, l'étain, le tungstène et des mélanges de ces derniers, déposés sur une matière de support sélectionnée à partir du groupe constitué par l'alumine, la silice et des combinaisons de ces dernières, ledit réacteur étant maintenu à une température de 440 à 470 °C (environ 820 à 875 °F), à une pression partielle d'hydrogène de 105 à 245 kg/cm2 (c'est-à-dire 1 500 à 3 500 psig), et à une vitesse spatiale globale de volume de charge/heure/volume du réacteur (Vf/h/Vr) de 0,30 à 1,0, et à un taux de remplacement de catalyseur de 0,42 à 2,54 kg de catalyseur par m3 de charge de départ neuve (environ 0,15 à 0,90 livre de catalyseur par baril de charge de départ neuve), pour l'hydrotransformation partielle de la charge de départ et pour la production d'une matière formant effluent contenant des fractions gazeuses et liquides ;(b) la séparation de phase de ladite matière formant effluent ayant subi une hydrotransformation partielle, le retrait de la fraction gazeuse et le passage de la fraction liquide dans un réacteur catalytique à lit bouillonnant de second étage contenant un lit de catalyseur en particules, ledit catalyseur contenant un total de 2 à 25 % en poids d'oxydes métalliques actifs sélectionnés à partir du groupe constitué par le cadmium, le chrome, le cobalt, le fer, le molybdène, le nickel, l'étain, le tungstène et des mélanges de ces derniers, déposés sur une matière de support sélectionnée à partir du groupe constitué par l'alumine, la silice et des combinaisons de ces dernières, ledit réacteur étant maintenu à une température de 370 à 420 °C (environ 700 à 800 °F), à une pression partielle d'hydrogène de 1 500 à 3 500 psi, et à une vitesse spatiale de volume de charge/heure/volume du réacteur (Vf/h/Vr) de 0,10 à 0,80, et à un taux de remplacement de catalyseur de 0,42 à 2,54 kg de catalyseur par m3 de charge de départ neuve (environ 0,15 à 0,90 livre de catalyseur par baril de charge de départ neuve), pour maximiser les réactions d'hydrotransformation catalytique et davantage faire subir une hydrotransformation à la fraction liquide en son sein pour produire des gaz hydrocarbures et des fractions liquides légères ;(c) l'enlèvement desdites fractions liquides et gazeuses hydrocarbures à partir dudit réacteur de second étage, la séparation des gaz hydrocarbures desdites fractions liquides et le retrait des fractions liquides ;(d) la distillation desdites fractions liquides pour produire un produit liquide hydrocarbure à point d'ébullition intermédiaire ayant une plage d'ébullition normale de 205 à 455 °C (environ 400 à 850 °F) et une matière de fond de lit sous vide ayant un point d'ébullition normal au-dessus de 455 °C (environ 850 °F) ; et(e) le recyclage de ladite matière de fond de lit sous vide directement vers ledit réacteur catalytique à lit bouillonnant de premier étage pour donner un rapport de volume de recyclage de matière de fond de lit sous vide sur la charge de départ neuve de 0,2 à 1,5/1, de façon à atteindre une transformation d'au moins environ 75 % en volume de la fraction à 520 °C (environ 975 °F) dans la charge en une matière hydrocarbure légère et de façon à produire des rendements augmentés dudit produit liquide hydrocarbure à point d'ébullition intermédiaire.
- Procédé d'hydrotransformation selon la revendication 1, dans lequel lesdites conditions de réaction de premier étage sont une température de 440 à 455 °C (environ 825 à 850 °F), une pression partielle d'hydrogène de 140 à 210 kg/cm2 (c'est-à-dire 2 000 à 3 000 psig), et une vitesse spatiale Vf/h/Vr de 0,40 à 0,80.
- Procédé d'hydrotransformation selon la revendication 1, dans lequel lesdites conditions de réaction de second étage sont une température de 385 à 415 °C (environ 730 à 780 °F), une pression partielle d'hydrogène de 140 à 210 kg/cm2 (c'est-à-dire 2 000 à 3 000 psig), et une vitesse spatiale Vf/h/Vr de 0,20 à 0,60.
- Procédé d'hydrotransformation selon la revendication 1, dans lequel ladite matière de fond de lit sous vide recyclée a un point d'ébullition normal au-dessus de 480 °C, environ 900 °F.
- Procédé d'hydrotransformation selon la revendication 1, dans lequel le rapport volumique de la matière de fond de lit sous vide recyclée vers ledit réacteur de premier étage sur la charge de départ neuve amenée vers ledit réacteur de premier étage est d'environ 0,5 à 1,0/1.
- Procédé d'hydrotransformation selon la revendication 1, dans lequel le catalyseur utilisé dans lesdits réacteurs de premier et de second étages contient un total de 5 à 20 % en poids de métaux actifs et a un volume total de pore de 0,30 à 1,50 cm3/g, une aire surfacique totale de 100 à 400 m2/g et un diamètre moyen de pore d'au moins 50 unités d'angström.
- Procédé d'hydrotransformation selon la revendication 1, dans lequel le catalyseur utilisé dans les réacteurs de premier et de second étages a un volume total de pore de 0,50 à 1,20 cm3/g, une aire surfacique totale de 150 à 350 m2/g et un diamètre moyen de pore de 100 à 250 unités d'angström.
- Procédé d'hydrotransformation selon la revendication 1, dans lequel le catalyseur utilisé dans ledit réacteur de second étage contient de 5 à 20 % en poids de cobalt-molybdène sur une matière de support d'alumine.
- Procédé d'hydrotransformation selon la revendication 1, dans lequel le catalyseur utilisé dans ledit réacteur de second étage contient de 5 à 20 % en poids de nickel-molybdène sur une matière de support d'alumine.
- Procédé d'hydrotransformation selon la revendication 1, dans lequel le catalyseur utilisé est retiré dudit réacteur catalytique de second étage et est passé audit réacteur catalytique de premier étage en tant qu'ajout de catalyseur en son sein et dans lequel le taux de remplacement de catalyseur est de 0,57 kg à 2,26 kg de catalyseur par m3 de charge de départ neuve (environ 0,20 à 0,80 livre de catalyseur par baril de charge de départ neuve) vers ledit réacteur de premier étage.
- Procédé d'hydrotransformation selon la revendication 1, dans lequel la charge de départ est une matière de résidu de pétrole ayant 75 à 100 % en volume à point d'ébullition normal au-dessus de 520 °C (environ 975 °F) et contenant 10 à 50 % en poids de résidu d'après Conradson (CCR) et jusqu'à un total de 1 000 parties par million en poids de métaux.
- Procédé d'hydrotransformation selon la revendication 1, dans lequel la charge de base est du bitume obtenu à partir de sables bitumineux.
- Procédé d'hydrotransformation selon la revendication 9, dans lequel la charge de base contient de 15 à 40 % en poids de résidu d'après Conradson (CCR) et un total de 100 à 600 parties par million en poids de métaux (Va + Ni).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40601695A | 1995-03-16 | 1995-03-16 | |
US406016 | 1995-03-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0732389A2 EP0732389A2 (fr) | 1996-09-18 |
EP0732389A3 EP0732389A3 (fr) | 1996-12-18 |
EP0732389B1 true EP0732389B1 (fr) | 2001-08-01 |
Family
ID=23606192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96103874A Expired - Lifetime EP0732389B1 (fr) | 1995-03-16 | 1996-03-12 | Procédé d'hydroconversion de charges hydrocarbonées lourdes |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0732389B1 (fr) |
JP (1) | JP3864319B2 (fr) |
CA (1) | CA2171894C (fr) |
DE (1) | DE69614165T2 (fr) |
ZA (1) | ZA961830B (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8372267B2 (en) | 2008-07-14 | 2013-02-12 | Saudi Arabian Oil Company | Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil |
US8491779B2 (en) | 2009-06-22 | 2013-07-23 | Saudi Arabian Oil Company | Alternative process for treatment of heavy crudes in a coking refinery |
US8632673B2 (en) | 2007-11-28 | 2014-01-21 | Saudi Arabian Oil Company | Process for catalytic hydrotreating of sour crude oils |
US9260671B2 (en) | 2008-07-14 | 2016-02-16 | Saudi Arabian Oil Company | Process for the treatment of heavy oils using light hydrocarbon components as a diluent |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001097971A1 (fr) * | 2000-06-19 | 2001-12-27 | Institut Francais Du Petrole | Procede de presulfuration et preconditionnement du catalyseur d'hydroconversion residuel |
JP4834875B2 (ja) * | 2000-06-19 | 2011-12-14 | アンスティテュ フランセ デュ ペトロール | 多段沸騰床反応器を用いた接触水素添加方法 |
US7060228B2 (en) | 2001-07-06 | 2006-06-13 | Institut Francais Du Petrole | Internal device for separating a mixture that comprises at least one gaseous phase and one liquid phase |
US20050075527A1 (en) * | 2003-02-26 | 2005-04-07 | Institut Francais Du Petrole | Method and processing equipment for hydrocarbons and for separation of the phases produced by said processing |
US10941353B2 (en) | 2004-04-28 | 2021-03-09 | Hydrocarbon Technology & Innovation, Llc | Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock |
KR101493631B1 (ko) | 2004-04-28 | 2015-02-13 | 헤드워터스 헤비 오일, 엘엘씨 | 에뷸레이트 베드 하이드로프로세싱 방법 및 시스템 및 기존의 에뷸레이트 베드 시스템을 개량하는 방법 |
US7491313B2 (en) | 2004-06-17 | 2009-02-17 | Exxonmobil Research And Engineering Company | Two-step hydroprocessing method for heavy hydrocarbon oil |
US20070140927A1 (en) * | 2005-12-16 | 2007-06-21 | Chevron U.S.A. Inc. | Reactor for use in upgrading heavy oil admixed with a highly active catalyst composition in a slurry |
US7938953B2 (en) * | 2008-05-20 | 2011-05-10 | Institute Francais Du Petrole | Selective heavy gas oil recycle for optimal integration of heavy oil conversion and vacuum gas oil treating |
FR2940313B1 (fr) * | 2008-12-18 | 2011-10-28 | Inst Francais Du Petrole | Procede d'hydrocraquage incluant des reacteurs permutables avec des charges contenant 200ppm poids-2%poids d'asphaltenes |
JP6046136B2 (ja) * | 2011-07-29 | 2016-12-14 | サウジ アラビアン オイル カンパニー | 溶存水素を含む原料の沸騰床プロセス |
US9790440B2 (en) | 2011-09-23 | 2017-10-17 | Headwaters Technology Innovation Group, Inc. | Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker |
US9644157B2 (en) | 2012-07-30 | 2017-05-09 | Headwaters Heavy Oil, Llc | Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking |
ITMI20130131A1 (it) * | 2013-01-30 | 2014-07-31 | Luigi Patron | Processo a migliorata produttività per la conversione di olii pesanti |
CN105441126B (zh) * | 2014-09-24 | 2017-05-24 | 中国石油化工股份有限公司 | 一种渣油加氢处理方法 |
CN105524653B (zh) * | 2014-09-29 | 2017-05-24 | 中国石油化工股份有限公司 | 一种渣油加氢处理方法 |
US11414608B2 (en) | 2015-09-22 | 2022-08-16 | Hydrocarbon Technology & Innovation, Llc | Upgraded ebullated bed reactor used with opportunity feedstocks |
US11414607B2 (en) | 2015-09-22 | 2022-08-16 | Hydrocarbon Technology & Innovation, Llc | Upgraded ebullated bed reactor with increased production rate of converted products |
US11421164B2 (en) | 2016-06-08 | 2022-08-23 | Hydrocarbon Technology & Innovation, Llc | Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product |
KR102505534B1 (ko) | 2017-03-02 | 2023-03-02 | 하이드로카본 테크놀로지 앤 이노베이션, 엘엘씨 | 오염 침전물이 적은 업그레이드된 에뷸레이티드 베드 반응기 |
US11732203B2 (en) | 2017-03-02 | 2023-08-22 | Hydrocarbon Technology & Innovation, Llc | Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling |
CA3057131C (fr) | 2018-10-17 | 2024-04-23 | Hydrocarbon Technology And Innovation, Llc | Reacteur a lit bouillonnant ameliore sans accumulation liee au recyclage d'asphaltenes dans des residus de tour sous vide |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1770263A1 (de) * | 1967-04-25 | 1971-10-07 | Atlantic Richfield Co | Verfahren zur Reinigung von Erdoel |
GB2066287B (en) * | 1980-12-09 | 1983-07-27 | Lummus Co | Hydrogenation of high boiling hydrocarbons |
US4457831A (en) * | 1982-08-18 | 1984-07-03 | Hri, Inc. | Two-stage catalytic hydroconversion of hydrocarbon feedstocks using resid recycle |
US4765882A (en) * | 1986-04-30 | 1988-08-23 | Exxon Research And Engineering Company | Hydroconversion process |
-
1996
- 1996-03-06 ZA ZA9601830A patent/ZA961830B/xx unknown
- 1996-03-12 DE DE69614165T patent/DE69614165T2/de not_active Expired - Lifetime
- 1996-03-12 EP EP96103874A patent/EP0732389B1/fr not_active Expired - Lifetime
- 1996-03-15 JP JP05905296A patent/JP3864319B2/ja not_active Expired - Lifetime
- 1996-03-15 CA CA002171894A patent/CA2171894C/fr not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8632673B2 (en) | 2007-11-28 | 2014-01-21 | Saudi Arabian Oil Company | Process for catalytic hydrotreating of sour crude oils |
US8372267B2 (en) | 2008-07-14 | 2013-02-12 | Saudi Arabian Oil Company | Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil |
US9260671B2 (en) | 2008-07-14 | 2016-02-16 | Saudi Arabian Oil Company | Process for the treatment of heavy oils using light hydrocarbon components as a diluent |
US8491779B2 (en) | 2009-06-22 | 2013-07-23 | Saudi Arabian Oil Company | Alternative process for treatment of heavy crudes in a coking refinery |
Also Published As
Publication number | Publication date |
---|---|
CA2171894A1 (fr) | 1996-09-17 |
DE69614165D1 (de) | 2001-09-06 |
EP0732389A2 (fr) | 1996-09-18 |
EP0732389A3 (fr) | 1996-12-18 |
JPH08325580A (ja) | 1996-12-10 |
JP3864319B2 (ja) | 2006-12-27 |
ZA961830B (en) | 1997-10-31 |
DE69614165T2 (de) | 2001-11-22 |
CA2171894C (fr) | 2006-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0732389B1 (fr) | Procédé d'hydroconversion de charges hydrocarbonées lourdes | |
US6841062B2 (en) | Crude oil desulfurization | |
US5925238A (en) | Catalytic multi-stage hydrodesulfurization of metals-containing petroleum residua with cascading of rejuvenated catalyst | |
US6270654B1 (en) | Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors | |
US6190542B1 (en) | Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds | |
US6277270B1 (en) | Process for converting heavy petroleum fractions that comprise a fixed-bed hydrotreatment stage, an ebullated-bed conversion stage, and a catalytic cracking stage | |
US7279090B2 (en) | Integrated SDA and ebullated-bed process | |
EP2844721B1 (fr) | Procede de valorisation du petrole brut dans un reacteur en lit bouillonnant | |
US5300212A (en) | Hydroconversion process with slurry hydrotreating | |
US4564439A (en) | Two-stage, close-coupled thermal catalytic hydroconversion process | |
US5522983A (en) | Hydrocarbon hydroconversion process | |
US4427535A (en) | Selective operating conditions for high conversion of special petroleum feedstocks | |
KR20190082994A (ko) | 다단 잔유(resid) 수소첨가분해 | |
US4176048A (en) | Process for conversion of heavy hydrocarbons | |
US20080289999A1 (en) | Process for Pre-Refining Crude Oil with Moderate Multi-Step Hydroconversion of Virgin Asphalt in the Presence of Diluent | |
US4576710A (en) | Catalyst desulfurization of petroleum residua feedstocks | |
AU714130B2 (en) | Hydroconversion process | |
US6280606B1 (en) | Process for converting heavy petroleum fractions that comprise a distillation stage, ebullated-bed hydroconversion stages of the vacuum distillate, and a vacuum residue and a catalytic cracking stage | |
KR100188422B1 (ko) | 잔유의 질을 향상시키는 방법 | |
EP1299507B1 (fr) | Procede d'hydrogenation mettant en oeuvre des reacteurs a lit bouillonnant a etapes multiples | |
US4469587A (en) | Process for the conversion of asphaltenes and resins in the presence of steam, ammonia and hydrogen | |
US20080223751A1 (en) | Non Asphaltenic Oil | |
CN118725907A (zh) | 一种劣质含烃原料组合处理工艺和处理系统 | |
JPH05230474A (ja) | 重質炭化水素油の処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE GB IT NL |
|
17P | Request for examination filed |
Effective date: 19970430 |
|
17Q | First examination report despatched |
Effective date: 19991115 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE GB IT NL |
|
REF | Corresponds to: |
Ref document number: 69614165 Country of ref document: DE Date of ref document: 20010906 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030224 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20030321 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 |
|
BERE | Be: lapsed |
Owner name: INSTITUT FRANCAIS DU *PETROLE Effective date: 20040331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040312 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 69614165 Country of ref document: DE Owner name: IFP ENERGIES NOUVELLES, FR Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR Effective date: 20110331 Ref country code: DE Ref legal event code: R081 Ref document number: 69614165 Country of ref document: DE Owner name: IFP ENERGIES NOUVELLES, FR Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR Effective date: 20110331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150227 Year of fee payment: 20 Ref country code: NL Payment date: 20150319 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150330 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69614165 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20160311 |