EP1299507B1 - Procede d'hydrogenation mettant en oeuvre des reacteurs a lit bouillonnant a etapes multiples - Google Patents

Procede d'hydrogenation mettant en oeuvre des reacteurs a lit bouillonnant a etapes multiples Download PDF

Info

Publication number
EP1299507B1
EP1299507B1 EP00936894A EP00936894A EP1299507B1 EP 1299507 B1 EP1299507 B1 EP 1299507B1 EP 00936894 A EP00936894 A EP 00936894A EP 00936894 A EP00936894 A EP 00936894A EP 1299507 B1 EP1299507 B1 EP 1299507B1
Authority
EP
European Patent Office
Prior art keywords
reactor
stage
catalyst
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00936894A
Other languages
German (de)
English (en)
Other versions
EP1299507A1 (fr
Inventor
James J. Colyar
James B. Mac Arthur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1299507A1 publication Critical patent/EP1299507A1/fr
Application granted granted Critical
Publication of EP1299507B1 publication Critical patent/EP1299507B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps

Definitions

  • This invention pertains to improved catalytic hydrogénation of heavy hydrocarbonaceous feedstocks utilizing catalytic multi-stage ebuliated bed reactors for producing desired lower boiling hydrocarbon liquid products. It pertains particularly to such catalytic multi-stage hydrogénation processes having increased catalyst loading and liquid volume together with reduced gas hold-up in each reactor, and thereby provides improved performance efficiency for the processes.
  • This invention provides an improved catalytic multi-stage hydrogénation process for treating heavy hydrocarbonaceous feedstocks and producing desired lower boiling hydrocarbon liquid products with enhanced process performance.
  • a more efficient catalytic multi-stage ebullated bed reactor system having improved performance resuits can be achieved by maximizing the catalyst loading and also providing increased reactor liquidhiel time in each reactor, by utilizing reduced catalyst space velocity and reduced superficiel gas velocity which are maintained within desired critical ranges in each reactor.
  • the catalytic ebultated bed reactor construction arrangement for the first stage reactor does not include an internai gasiliquidification device, but instead utilizes an efficient external gas/liquid separator. Utilizing such externai gasiliquidification results in an increased volume of particulate catalyst being provided in a particular size reactor and reduces the catalyst space velocity, which is defined as the volumetric rate of feedstock processed per unit weight of fresh catalyst in the reactor.
  • a vertical distance of 5-10 ft. should be maintained between the ebullated bed maximum expansion level and the reactor outlet conduit, so as to avoid any canyover of catalyst from the reactor.
  • operating conditions for each of the two-staged catalytic ebullated bed reactors are selected so that the upward superficiel gas velocity is maintained within a desired critical range, and the gas hold-up volume percentage in each reactor is beneficially reduced, which consequently permits more reactor liquid to be in contact with the catalyst bed, so that the reactor performance as well as the overall process performance results are enhanced.
  • This invention is useful for processing heavy hydrocarbonacaous feedstocks and providing overail hydroconversions in the range of 50-100 vol.% to produce desired lower boiling hydrocarbon liquid products.
  • the fresh feedstock together with hydrogen are introduced into a first stage catalytic ebullated bed reactor, which does not contain an internal gas/liquid phase separator device.
  • the catalyst bed is expanded by 25-75 percent above its settled level by the upflowing liquid and gas streams, and is maintained within the broad operating conditions of 371-455°C (700-850°F)struct, 5.5-20.7 MPa (800-3,000 psi) hydrogen partial pressure at the reactor outlet, liquid hourly space velocity of 0.20-2.0 volume fresh feed per hour per volume of reactor (WhrN,) and at catalyst space velocity of 0.43-4.78 l/h/kg (0.03 - 0.33 barrel feed per day per pound) fresh catalyst in the reactor.
  • the first stage reactor usually hydroconverts 30-95 vol.% of the fresh heavy feedstock and any recycled residua material to a lower boiling hydrocarbon effluent material.
  • the first stage reactor effluent material is phase separated in an external gas/liquid separator, a gas fraction is removed, and a sufficient portion of the remaining liquid is recycled to the reactor to maintain the desired 25-75% catalyst bed expansion therein.
  • the remaining liquid fraction is passed together with additional hydrogen to a second stage catalytic ebuliated bed type reactor.
  • the second stage ebullated bed reactor is operated similarly to the first stage reactor.
  • the effluent material is passed to various gas/liquid preservation and distillation steps, from which gases and low-boiling hydrocarbon liquid product and distillation vacuum bottoms fraction materiais are removed.
  • gases and low-boiling hydrocarbon liquid product and distillation vacuum bottoms fraction materiais are removed.
  • a portion of the vacuum bottoms fraction material boiling above at least 343°C (650°F) construct and preferably boiling above about 900°F(482°C) can be recycled back to the first stage catalytic reactor iniet et a recycle volume ratio to the fresh feedstock of 0-1.0/1, and preferably at 0.2-0.7/1 recycle ratio for further hydroconversion strigs therein.
  • Particulate catalyst Implements which are useful in this hydrogénation process may contain 2-25 @. percent total active metals selected from the metals group consisting of cadmium, chromium, cobalt, iron, molybdenum, nickel, tin, tungsten, and mixtures thereof deposited on a support material selected from the group consisting of alumina, silica and combinations thereof. Also, catalyses having the same characteristics may be used in both the first stage and second stage reactors, or each reactor may use catalyses having different characteristics.
  • Useful particulate catalyses will be in the form of beads, extrudâtes or spheres and have broad and preferred characteristics as shown in Table 2 below: TABLE 2 USEFUL CATALYST CHARACTERISTICS CatalVst Characteristic Broad Preferred Particle Diameter, in. 0.025-0.083 0.030-0.065 Particle Diameter, mm 0.63-2.1 0.75-1.65 Bulk Density, lb/ft: 25-50 30-45 Particle Crush Strength, lb/mm 1.8 min. 2.0 min.
  • Catalysts having unimodal, bimodal and trimodal pore size distributions are useful in this process.
  • Preferred catalyses should contain 5-20 wt.% total active metals consisting of combinations of cobalt, molybdenum and nickel deposited on an alumina support material.
  • This improved process for catalytic multi-stage hydrogénation of heavy hydrocarbonaceaus feedstocks advantageously provides enhanced performance results by utilizing increased catalyst loading and liquid volume percent together with reduced gas hold-up in each of the multiple staged reactors with external gas/liquid conservationation. Such enhanced performance efficience is manifested principally by providing better utilisation of the reactor volume for any particular desired hydroconversion result.
  • This process is generally usefui for catalytic hydrogénation and hydroconversion of heavy petroleum crudes, topped crudes, and vacuum residua, bitumen from tar sands, for coal hydrogénation and liqudfaction, and for catalytic co-processing coalloil biends to produce lower boiling, higher value hydrocarbon liquid products.
  • a pressurized heavy hydrocarbon feedstock such as petroieum vacuum residua containing 30-100 vol.% 524°C+ (975°F+) residua and preferably 50-90 vol.% is provided at 10 and combined with hydrogen at 12.
  • a heavy vacuum bottoms recycle liquid can be added at 13, and the combined stream at 14 is pressurized and fed through flow distributor 1@ upwardly into first stage catalytic ebullated bed reactor 16 containing ebullated bed 18.
  • the total feedstock to reactor 16 consists of the fresh hydrocarbon feed material at 10 plus any recycied vacuum bottoms material at 13.
  • the recycle volume ratio of the vacuum bottoms material to the fresh oil feedstock is in the range of 0-1.011, and preferably is 0.2-0.7/1 recycle ratio, with the higher recycle ratios being used for achieving higher overall percentage conversion of the feedstock residua.
  • the first stage reactor 16 contains an ebullated bed 18 of particulate supported type catalyst having the form of beads, extrudâtes, spheres, etc., and is maintained within the range of broad and preferred operating conditions as shown in Table 1 above.
  • the physical level of catalyst at 18a in the reactor is higher than for typical ebuliated-bed reactors. This is because the usuai internal recycle cup device which occupies a significant portion of reactor height, is not provided for separating the reactor liquid and vapor portions within the reactor 16. Instead, an external or interstage phase separator 20 is provided between the first and second stage catalytie reactors to effectively separate the reactor liquid and vapor effluent portions.
  • Removal of the usual internal recycle cup separator results in more catalyst and a higher level for the expanded catalyst bed in the reactor and desirably provides for a lower catalyst space velocity, which contributes to the higher levels of performance for the reactors.
  • a vertical height distance "h" of 5 -10 ft. is maintained between the maximum bed expansion lever and the inlet of reactor outiet conduit 19 to prevent carryover of catalyst particles f rom the expanded bed 1 B.
  • first stage reactor 16 overhead effluent stream 19 is withdrawn and passed to the external phase separator 20. From separator 20, a vapor stream 21 is removed and passed to gas purification section 42. Also, a liquid stream 22 is withdrawn, and a sufficient flow is recirculated through conduit 24 by ebullating pump 25 back to the reactor 16 to expand the catalyst bed 18 by the desired 2575 percent above its normal settied bed height.
  • particulate catalyst material is added at connection 17 at the desired replacement rate, and can be used catalyst withdrawn from second stage reactor 30 at connection 36, and usually treated at unit 38 as desired to remove undesired particulate fines, etc. at 37.
  • Fresh make-up catalyst can be added to catalyst bed 18 as needed at connection 17a, and an ange amount of spent catalyst is withdrawn from catalyst bed 18 at connection 17b.
  • Figure 2 The typical general relationship between reactor catalyst space velocity and reactor performance results is illustrated in Figure 2 , which shows the effect of lower catalyst space velocities on hydrodesulfurization performance for ebullated-bed reactors having equal total volumes, hydrocarbon feedrates, reaction merges and catalyst replacement rates.
  • Figure 2 clearly shows the improvement in first stage reactor desuifurization performance provided by lower catalyst space velocities, resuiting mainly from use of an external gas/liquid conservationation device instead of the usuai internallivingation device and for nominal residue conversion levels between about 65 and 90 vol.%.
  • the hydrocarbon liquid feedstock and hydrogen both react in contact with the catalyst in the reactor ebuliated bed to form lower boiling components which have lower contaminant levels than the feedstock.
  • the hydrogen gas provided at 12 to the first stage reactor 16 is mainly recycled unreacted hydrogen having purity in the range of 85-95 vol. percent and some essentially pure make-up hydrogen as needed.
  • the hydrogen feed rate to the first stage reactor and to the subséquent staged reactors is established at a minimum required level, which provides at each reactor outlet a required hydrogen partial pressure which is determined based on charac teristics for a particular feedstock, the catalyst characteristics, the desired level of reaction severity, and the product quality objectives.
  • the required hydrogen feed rate to a catalytic reactor is expressed as a multiple of the quantity of hydrogen chemically consumed in the reactor, and such hydrogen rate is usually in the range of 2.0 to 5.0 times the chemical hydrogen consomption therein.
  • the volume percent of hydrogen gas hold-up in the catalytic ebullated-bed reactor including hydrocarbon vapors generated therein is primarily related to the reactor superficiel gas velocity, with increased upward superficiel gas velocity resulting in an increased gas hold-up volume percentage in the reactor.
  • Experimental data showing this relationship between the upward superficiel gas velocity and gas hold-up volume percent in catalytic ebullated-bed reactors is shown in Figure 3.
  • the measured gas hold-up volume percent in the reactor is shown as a function of the reactor superficiel gas velocity at three different levels of reactor liquid upward superficiel velocity.
  • the superficiel gas velocity for upflowing hydrogen gas clearly has the primary effect on gas hold-up'volume in the reactor, with a secondary effect being due to different superficiel liquid upward velocities for the feed liquid in the reactor
  • the first stage reactor effluent stream 19 is passed to the interstage separator 20, which has two maincriticals: (a) to provide an ebullating recycle liquid stream back to the first stage reactor with minimal gas entrainment, and (b) to provide a liquid feed stream to the second stage reactor 30 having a minimal vapor content.
  • the effect of the function (b) is reduced gas hold-up in the second stage reactor and the same reaction benefits as described for the first stage reactor.
  • the liquid feed to the second stage reactor 30 contains the unconverted residue from the original feedstock, and hydroconversion fractions which normally boil above about 6000F (3160C).
  • Recycled hydrogen, together with fresh make-up hydrogen at 45 is added as stream 32 to the second stage reactor 30, the hydrogen gas rate being selected so as to result in a minimal hydrogen partial pressure at the reactor 30 outlet as needed to meet processing and product objectives as described above.
  • the gas rate provided at 32 to the second stage reactor 30 for this invention is substantially lower. This resuits in lower gas hold-up volume percentages in the reactor, greater liquidsky time, and a more efficient reactor system. In this situation, the gas hold-up is reduced from about 27 to 12 vol. percent, which results in an improvement in second stage desulfurization results from 65 to 70 wt.% based on the fresh feedstock.
  • a liquid portion 26 from the liquid stream 22 provides liquid feed material upwardly through flow distributor 27 into ebullated bed 28 of the second stage catalytic ebullated bed reactor 30.
  • the catalyst bed 28 is expanded by 25-75% above its settled height by the upflowing gas and liquid therein.
  • Reactor liquid is withdrawn from an internal phase separator 33 through conduit 34 to recycle pump 35, and is reintroduced upwardly through the flow distributor 27 into the ebullated bed 28 to maintain the desired catalyst bed expansion therein.
  • the second stage catalytic reactor 30 with ebullated catalyst bed 28 is operated within the broad and preferred conditions as shown in Table 1 above, and maximises resid hydrogénation reactions which occur therein.
  • Recycle and fresh hydrogen is provided at 32 to the second stage reactor 30, so that a minimal but adequate level of hydrogen partial pressure of 6.89-17.24 MPa (1,000-2,500 psi)is maintained at the reactor 30 outlet.
  • the catalyst particles in ebuliated beds 18 and 28 have a relatively narrow size range for uniform bed expansion under controlled upward liquid and gas flow conditions. While the usefui catalyst size range is between 0.025 and 0.083 inch effective diameter, including beads, extrudâtes, or spheres, the catalyst size is preferably particles having sizes of 0.030-0.065 inch effective diameter. In the reactor, the density of the catalyst particles, and the lifting effect of the upflowing liquid and hydrogen gas are important factors in providing the desired 25-75 percent expansion and operation of the catalyst beds. If desired, used particulate catalyst may be withdrawn from the second stage reactor bed 28 at connection 36 and fresh catalyst is added at connection 36a as needed to maintain the desired catalyst volume and catalytic activity therein.
  • This used catalyst withdrawri at 36 which has relatively low metal contaminant concentration, can be passed to a treatment unit 38 where it is washed and screened to remove undesired fines at 37, and the recovered catalyst at 39 can provide used catalyst addition at 17 to the first stage reactor bed 18, together with any fresh make-up catalyst added at connection 17a as needed.
  • an effluent stream is removed ai 31 and passed to a phase separator 40.
  • a hydrogen-containing gas stream 41 is passed to the gas purification section 42 for removai of contaminants such as CO2, H2S, and NH3 ai vent 43.
  • Purifie d hydrogen ai 44 is recycied back to each catalytic reactor 16 and 30 as desired as the hydrogen streams 12 and 32 respectively, while fresh hydrogen is added ai 45 as needed.
  • a liquid fraction 46 is withdrawn, pressurereduced at 47 to 0-0,7 MPa (0-100 psig), and is introduced into fractionation tower unit 48.
  • a gaseous product stream is removed ai 49 and a light hydrocarbon liquid product normally boiling between 204-343°C (400-650°F) is withdrawn at 50.
  • a bottoms nominal 343°C (650°F+) fraction is withdrawn at 52, reheated at heater 53, and passed to vacuum distillation step at 54.
  • a vacuum gas oil liquid product is removed overhead at 55.
  • Vacuum bottoms stream 56 which has been hydrogenated in the second stage catalyst reactor 30, can be recycled back as stream 13 to the first stage catalytic reactor 16.
  • the recycle volume ratio for vacuum bottoms stream 56 to fresh feed ai 10 can be 0-1.0/1, and preferably should be 0.2-0.7/1 for achieving hydroconversion of the feedstock exceeding about 70 vol. percent. It is pointed out that by utilizing this two stage catalytie hydroconversion process, the thermal strigs and catalytic activity in each stage reactor can be effectively matched and enhanced. The remaining unconverted vacuum bottoms material not being recycled ai 13 is withdrawn at 57 as a net product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (19)

  1. Procédé d'hydrogénation catalytique à lit bouillonnant multi-étagé de charges d'hydrocarbures lourds en vue de produire des gaz et des liquides hydrocarbonés à point d'ébullition inférieur, comportant les étapes suivantes :
    (a) on introduit une charge liquide d'hydrocarbures lourds avec du gaz hydrogène dans le réacteur catalytique à lit bouillonnant de la première étape à une vitesse spatiale du liquide de 0,2-2,0 volume de charge par heure par volume de réacteur (V/hr/V) et à une vitesse spatiale du catalyseur de 0,43-4,78 1/h/kg (0,03-0,33 b/j/lb), on établit une vitesse superficielle du flux ascendant de gaz de 0,006-0,09 m/s (0,02-0,30 ft/sec) en maintenant des températures réactionnelles de 371-455°C (700-850°F) et une pression partielle d'hydrogène de 5,5-20,7 MPa (800-3000 psi) à la sortie du réacteur, et on produit un effluent issu du réacteur de la première étape,
    (b) l'effluent issu de la première étape est soumis à une séparation de phase donnant lieu à une fraction gazeuse et à une première fraction liquide, et on fait passer la première fraction liquide dans le réacteur catalytique à lit bouillonnant de la seconde étape tout en maintenant les conditions réactionnelles de l'étape (a), et on produit un effluent issu de la seconde étape,
    (c) l'effluent issu de la seconde étape est soumis à une séparation de phase donnant lieu à une fraction gazeuse et à une seconde fraction liquide,
    (d) on fractionne ladite seconde fraction liquide afin de produire une fraction liquide hydrocarbonée à point d'ébullition moyen dont le point d'ébullition normal est compris dans une fourchette de 204-343°C (400-650°F) et une fraction de résidu sous vide présentant un point d'ébullition normal supérieur à environ 343°C (650°F), et
    (e) on recycle ladite fraction de résidu sous vide directement dans ledit réacteur catalytique à lit bouillonnant de la première étape afin d'obtenir un taux de recyclage des résidus sous vide par rapport au volume de charge fraîche de 0-1,0/l de manière à avoir une conversion de 50 à 100 % volume de la fraction à 524°C+ (975°F+) dans la charge en un liquide hydrocarboné à point d'ébullition inférieur et à produire des rendements supérieurs en ledit liquide hydrocarboné à point d'ébullition moyen.
  2. Procédé d'hydrogénation selon la revendication 1, dans lequel les conditions de la première étape sont les suivantes : température de 399-449°C (750-840°F), pression partielle d'hydrogène à la sortie du réacteur de 6,89-17,24 MPa (1000-2500 psig), vitesse spatiale du liquide (VVH) de 0,40-1,2 V/hr/V et vitesse spatiale du catalyseur de 0,58-2,90 l/h/kg (0,04-0,20 b/j/lb).
  3. Procédé d'hydrogénation selon la revendication 1, dans lequel les conditions de la seconde étape sont les suivantes : température de 399-449°C (750-840°F), pression partielle d'hydrogène à la sortie du réacteur de 6,89-17,24 MPa (1000-2500 psig), vitesse spatiale du liquide (VVH) de 0,40-1,2 V/hr/V et vitesse spatiale du catalyseur de 0,58-2,90 l/h/kg (0,04-0,20 b/j/lb).
  4. Procédé d'hydrogénation selon la revendication 2, dans lequel la vitesse superficielle du gaz dans le réacteur est de 0,0076-0,061 m/s (0,025-0,20 ft/sec) et le pourcentage volumique de rétention de gaz est minimisé.
  5. Procédé d'hydrogénation selon la revendication 3, dans lequel la vitesse superficielle du gaz dans le réacteur est de 0,0076-0,061 m/s (0,025-0,20 ft/sec) et le pourcentage volumique de rétention de gaz dans le réacteur est minimisé.
  6. Procédé d'hydrogénation selon la revendication 1, dans lequel on maintient une distance d'une hauteur de 1,5-3,0 m (5-10 ft) dans le réacteur catalytique de la première étape entre le niveau supérieur du lit bouillonnant et la connexion à la sortie du réacteur.
  7. Procédé d'hydrogénation selon la revendication 1, dans lequel lesdits résidus sous vide recyclés ont un point d'ébullition normal supérieur à environ 482°C (900°F) et sont recyclés dans le réacteur de la première étape à un taux de recyclage par rapport au volume de charge fraîche de 0-1,0/1 afin d'atteindre 65-90 % volume de conversion de la charge en produits liquides hydrocarbonés à point d'ébullition inférieur.
  8. Procédé d'hydrogénation selon la revendication 1, dans lequel le taux de recyclage des résidus sous vide recyclés dans ledit réacteur de la première étape par rapport au volume de charge fraîche introduite dans ledit réacteur de la première étape est d'environ 0,2/l-0,7/l.
  9. Procédé d'hydrogénation selon la revendication 1, dans lequel le catalyseur utilisé dans lesdits réacteurs de la première et de la seconde étape contient 2-25 % poids total de métaux actifs et présente un volume total de pores de 0,30-1,50 cc/gm, une surface totale de 100-400 m2/gm et un diamètre moyen de pores d'au moins 50 angströms.
  10. Procédé d'hydrogénation selon la revendication 1, dans lequel le catalyseur utilisé dans les réacteurs de la première et de la seconde étape présente un volume total de pores de 0,40-1,20 cc/gm, une surface totale de 150-350 m2/gm et un diamètre moyen de pores de 80-250 angströms.
  11. Procédé d'hydrogénation selon la revendication 1, dans lequel le catalyseur utilisé dans ledit réacteur catalytique de la seconde étape contient 5-20 % poids de cobalt-molybdène sur un support d'alumine.
  12. Procédé d'hydrogénation selon la revendication 1, dans lequel le catalyseur utilisé dans ledit réacteur catalytique de la seconde étape contient 5-20 % poids de nickel-molybdène sur un support d'alumine.
  13. Procédé d'hydrogénation selon la revendication 1, dans lequel le catalyseur usé est soutiré dudit réacteur catalytique de la seconde étape et introduit dans ledit réacteur catalytique de la première étape sous forme d'ajout catalytique, et on établit un taux de remplacement de catalyseur frais de 0,05-0,50 livre de catalyseur par baril de charge fraîche dans ledit réacteur de la seconde étape.
  14. Procédé d'hydrogénation selon la revendication 1, dans lequel la charge est un résidu pétrolier de 30-100 % volume présentant normalement un point d'ébullition supérieur à 524°C (975°F) et comportant 5-50 % poids de résidu Conradson (CCR) et une quantité totale de métaux jusqu'à 1000 wppm.
  15. Procédé d'hydrogénation selon la revendication 1, dans lequel la charge est un bitume dérivé de sables asphaltiques.
  16. Procédé d'hydrogénation catalytique à lit bouillonnant multi-étagé de charges d'hydrocarbures lourds en vue de produire des gaz et des liquides hydrocarbonés à point d'ébullition inférieur selon l'une des revendications ci-avant, le procédé comportant les étapes suivantes :
    (a) on introduit une charge liquide d'hydrocarbures lourds contenant 50-90 % volume de résidus à 524°C (975°F) avec du gaz hydrogène dans le réacteur catalytique à lit bouillonnant de la première étape à une vitesse spatiale du liquide de 0,4-1,2 volume de charge par heure par volume de réacteur (V/hr/V) et à une vitesse spatiale du catalyseur de 0,58-2,90 l/h/kg (0,04-0,20 b/j/lb), on établit une vitesse superficielle du flux ascendant de gaz de 0,0076-0,061 m/s (0,025-0,20 ft/sec) en maintenant des températures réactionnelles de 399-449°C (750-840°F) et une pression partielle d'hydrogène de 6,89-17,24 MPa (1000-2500 psi) à la sortie du réacteur, et on produit un effluent issu du réacteur de la première étape comportant des fractions gazeuses et liquides,
    (b) l'effluent issu de la première étape est soumis à une séparation de phase donnant lieu à une fraction gazeuse et à une première fraction liquide, et on fait passer la première fraction liquide dans le réacteur catalytique à lit bouillonnant de la seconde étape tout en maintenant les conditions réactionnelles de l'étape (a), et on produit un effluent issu de la seconde étape,
    (c) l'effluent issu de la seconde étape est soumis à une séparation de phase donnant lieu à une fraction gazeuse et à une seconde fraction liquide, et on soutire la seconde fraction liquide,
    (d) on fractionne ladite seconde fraction liquide afin de produire une fraction liquide hydrocarbonée à point d'ébullition moyen dont le point d'ébullition normal est compris dans une fourchette de 204-343°C (400-650°F), un gasoil sous vide présentant un point d'ébullition normalement compris entre 343-524°C (650-950°F) et une fraction de résidus sous vide présentant un point d'ébullition normal supérieur à environ 524°C (950°F), et
    (e) on recycle ladite fraction de résidus sous vide directement dans ledit réacteur catalytique à lit bouillonnant de la première étape afin d'obtenir un taux de recyclage des résidus sous vide par rapport au volume de charge fraîche de 0-0,7/l de manière à avoir une conversion de 50 à 100 % volume de la fraction à 524°C+ (975°F+) dans la charge en un liquide hydrocarboné à point d'ébullition inférieur et à produire des rendements supérieurs en ledit liquide hydrocarboné à point d'ébullition moyen à basse teneur en soufre et en azote.
  17. Procédé selon l'une quelconque des revendications précédentes en vue de l'hydrogénation catalytique d'une charge d'hydrocarbures lourds au moyen de réacteurs catalytiques à lit bouillonnant multi-étagés, dans lequel la charge, un catalyseur particulaire et de l'hydrogène sont mis en contact intime dans les conditions réactionnelles suivantes : température de 371-455°C (700-850°F), pression partielle d'hydrogène de 5,5-20,7 MPa (800-3000 psi), vitesse spatiale du liquide (VVH) de 0,2-2,0 V/hr/V dans chaque étape réactionnelle, l'effluent issu du réacteur de la dernière étape est soumis à une séparation de phase et la fraction liquide qui en résulte est fractionnée en vue de produire des produits gazeux et liquides hydrocarbonés, le perfectionnement consistant à :
    (a) maintenir dans le réacteur de chacune desdites étapes une vitesse spatiale du catalyseur de 0,43-4,78 l/h/kg (0,03-0,33 b/j/lb), et à
    (b) maintenir dans le réacteur de chacune desdites étapes une vitesse superficielle du gaz de 0,006-0,076 m/s (0,02-0,25 ft/sec) de manière à augmenter le pourcentage volumique de liquide dans chacun desdits réacteurs et à réduire le volume de rétention de gaz dans le réacteur.
  18. Procédé selon la revendication 17, dans lequel un effluent soutiré d'au moins un réacteur catalytique de la première étape est soumis à une séparation de phase externe au réacteur.
  19. Procédé selon la revendication 18, dans lequel la vitesse spatiale du catalyseur est maintenue à 0,58-2,9 l/h/kg (0,04-0,2 b/j/lb) et la vitesse superficielle du gaz est maintenue à 0,0076-0,061 m/s (0,025-0,20 ft/sec) dans chacun desdits réacteurs.
EP00936894A 2000-06-19 2000-06-19 Procede d'hydrogenation mettant en oeuvre des reacteurs a lit bouillonnant a etapes multiples Expired - Lifetime EP1299507B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2000/005628 WO2001098436A1 (fr) 2000-06-19 2000-06-19 Procede d'hydrogenation mettant en oeuvre des reacteurs a lit bouillonnant a etapes multiples

Publications (2)

Publication Number Publication Date
EP1299507A1 EP1299507A1 (fr) 2003-04-09
EP1299507B1 true EP1299507B1 (fr) 2006-01-04

Family

ID=8163992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00936894A Expired - Lifetime EP1299507B1 (fr) 2000-06-19 2000-06-19 Procede d'hydrogenation mettant en oeuvre des reacteurs a lit bouillonnant a etapes multiples

Country Status (6)

Country Link
EP (1) EP1299507B1 (fr)
JP (1) JP4834875B2 (fr)
CA (1) CA2412923C (fr)
DE (1) DE60025350T2 (fr)
MX (1) MXPA02012003A (fr)
WO (1) WO2001098436A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073436A2 (fr) 2007-11-28 2009-06-11 Saudi Arabian Oil Company Processus d'hydrotraitement catalytique des pétroles bruts sulfureux
US7938953B2 (en) * 2008-05-20 2011-05-10 Institute Francais Du Petrole Selective heavy gas oil recycle for optimal integration of heavy oil conversion and vacuum gas oil treating
US7938952B2 (en) * 2008-05-20 2011-05-10 Institute Francais Du Petrole Process for multistage residue hydroconversion integrated with straight-run and conversion gasoils hydroconversion steps
US9260671B2 (en) 2008-07-14 2016-02-16 Saudi Arabian Oil Company Process for the treatment of heavy oils using light hydrocarbon components as a diluent
US8372267B2 (en) 2008-07-14 2013-02-12 Saudi Arabian Oil Company Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil
EP2445997B1 (fr) 2009-06-22 2021-03-24 Saudi Arabian Oil Company Demetallisation et desulfurisation d'un petrole brut por coquage retardé
JP6046136B2 (ja) * 2011-07-29 2016-12-14 サウジ アラビアン オイル カンパニー 溶存水素を含む原料の沸騰床プロセス
ITMI20130131A1 (it) * 2013-01-30 2014-07-31 Luigi Patron Processo a migliorata produttività per la conversione di olii pesanti

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322665A (en) * 1965-05-18 1967-05-30 Hydrocarbon Research Inc High conversion hydrogenation of heavy gas oil
US4457831A (en) * 1982-08-18 1984-07-03 Hri, Inc. Two-stage catalytic hydroconversion of hydrocarbon feedstocks using resid recycle
JPS61287438A (ja) * 1985-06-14 1986-12-17 Mitsubishi Heavy Ind Ltd 三相流動反応器の分散装置
JPS627436A (ja) * 1985-07-03 1987-01-14 Mitsubishi Heavy Ind Ltd 三相流動反応器の分散機構
US4765882A (en) * 1986-04-30 1988-08-23 Exxon Research And Engineering Company Hydroconversion process
ZA961830B (en) * 1995-03-16 1997-10-31 Inst Francais Du Petrole Catalytic hydroconversion process for heavy petroleum feedstocks.

Also Published As

Publication number Publication date
CA2412923C (fr) 2008-10-07
JP4834875B2 (ja) 2011-12-14
MXPA02012003A (es) 2003-05-27
WO2001098436A1 (fr) 2001-12-27
CA2412923A1 (fr) 2001-12-27
JP2004515568A (ja) 2004-05-27
DE60025350D1 (de) 2006-03-30
DE60025350T2 (de) 2006-07-13
EP1299507A1 (fr) 2003-04-09

Similar Documents

Publication Publication Date Title
US6270654B1 (en) Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors
US5925238A (en) Catalytic multi-stage hydrodesulfurization of metals-containing petroleum residua with cascading of rejuvenated catalyst
EP1840190B1 (fr) Procédé et installation pour la conversion de fractions lourdes de pétrole dans un lit bouillonnant avec production intégrée de distillats moyens à très faible teneur en soufre
US8926824B2 (en) Process for the conversion of residue integrating moving-bed technology and ebullating-bed technology
EP0732389B1 (fr) Procédé d'hydroconversion de charges hydrocarbonées lourdes
US5522983A (en) Hydrocarbon hydroconversion process
US6190542B1 (en) Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds
US6841062B2 (en) Crude oil desulfurization
US5660715A (en) Apparatus and method for quenching in hydroprocessing of a hydrocarbon feed stream
CA1229570A (fr) Hydroconversion catalytique bi-etagee des charges d'hydrocarbures par recyclage des residus
US4576710A (en) Catalyst desulfurization of petroleum residua feedstocks
US4853111A (en) Two-stage co-processing of coal/oil feedstocks
CA1230570A (fr) Refroidissement des residus d'hydrocraquage catalytique pour eviter la precipitation des composes d'asphaltene
US4427535A (en) Selective operating conditions for high conversion of special petroleum feedstocks
US6200462B1 (en) Process for reverse gas flow in hydroprocessing reactor systems
US6017443A (en) Hydroprocessing process having staged reaction zones
GB1602639A (en) Process for hydrodesulphurization of heavy hydrocarbon oils
EP1299507B1 (fr) Procede d'hydrogenation mettant en oeuvre des reacteurs a lit bouillonnant a etapes multiples
US3975259A (en) Hydrodesulfurization of liquid hydrocarbon utilizing a suspended catalyst particle of less than 10 microns
US3207688A (en) Hydrocracking process in two stages employing finely divided catalyst particles
CA1238005A (fr) Procede catalytique multi-etage pour la conversion d'hydrocarbures liquides lourds
GB2066287A (en) Hydrogenation of high boiling hydrocarbons
EP0102112B1 (fr) Procédé d'hydrotraitement d'huile lourde
CN114196439A (zh) 一种页岩油加氢处理工艺和处理系统

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030120

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20031229

RBV Designated contracting states (corrected)

Designated state(s): DE IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT NL

REF Corresponds to:

Ref document number: 60025350

Country of ref document: DE

Date of ref document: 20060330

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60025350

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160630

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190626

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190830

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60025350

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200618