EP1299507B1 - Katalytisches hydrierverfahren in mehreren reaktoren mit wallendem bett - Google Patents

Katalytisches hydrierverfahren in mehreren reaktoren mit wallendem bett Download PDF

Info

Publication number
EP1299507B1
EP1299507B1 EP00936894A EP00936894A EP1299507B1 EP 1299507 B1 EP1299507 B1 EP 1299507B1 EP 00936894 A EP00936894 A EP 00936894A EP 00936894 A EP00936894 A EP 00936894A EP 1299507 B1 EP1299507 B1 EP 1299507B1
Authority
EP
European Patent Office
Prior art keywords
reactor
stage
catalyst
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00936894A
Other languages
English (en)
French (fr)
Other versions
EP1299507A1 (de
Inventor
James J. Colyar
James B. Mac Arthur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1299507A1 publication Critical patent/EP1299507A1/de
Application granted granted Critical
Publication of EP1299507B1 publication Critical patent/EP1299507B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps

Definitions

  • This invention pertains to improved catalytic hydrogénation of heavy hydrocarbonaceous feedstocks utilizing catalytic multi-stage ebuliated bed reactors for producing desired lower boiling hydrocarbon liquid products. It pertains particularly to such catalytic multi-stage hydrogénation processes having increased catalyst loading and liquid volume together with reduced gas hold-up in each reactor, and thereby provides improved performance efficiency for the processes.
  • This invention provides an improved catalytic multi-stage hydrogénation process for treating heavy hydrocarbonaceous feedstocks and producing desired lower boiling hydrocarbon liquid products with enhanced process performance.
  • a more efficient catalytic multi-stage ebullated bed reactor system having improved performance resuits can be achieved by maximizing the catalyst loading and also providing increased reactor liquidhiel time in each reactor, by utilizing reduced catalyst space velocity and reduced superficiel gas velocity which are maintained within desired critical ranges in each reactor.
  • the catalytic ebultated bed reactor construction arrangement for the first stage reactor does not include an internai gasiliquidification device, but instead utilizes an efficient external gas/liquid separator. Utilizing such externai gasiliquidification results in an increased volume of particulate catalyst being provided in a particular size reactor and reduces the catalyst space velocity, which is defined as the volumetric rate of feedstock processed per unit weight of fresh catalyst in the reactor.
  • a vertical distance of 5-10 ft. should be maintained between the ebullated bed maximum expansion level and the reactor outlet conduit, so as to avoid any canyover of catalyst from the reactor.
  • operating conditions for each of the two-staged catalytic ebullated bed reactors are selected so that the upward superficiel gas velocity is maintained within a desired critical range, and the gas hold-up volume percentage in each reactor is beneficially reduced, which consequently permits more reactor liquid to be in contact with the catalyst bed, so that the reactor performance as well as the overall process performance results are enhanced.
  • This invention is useful for processing heavy hydrocarbonacaous feedstocks and providing overail hydroconversions in the range of 50-100 vol.% to produce desired lower boiling hydrocarbon liquid products.
  • the fresh feedstock together with hydrogen are introduced into a first stage catalytic ebullated bed reactor, which does not contain an internal gas/liquid phase separator device.
  • the catalyst bed is expanded by 25-75 percent above its settled level by the upflowing liquid and gas streams, and is maintained within the broad operating conditions of 371-455°C (700-850°F)struct, 5.5-20.7 MPa (800-3,000 psi) hydrogen partial pressure at the reactor outlet, liquid hourly space velocity of 0.20-2.0 volume fresh feed per hour per volume of reactor (WhrN,) and at catalyst space velocity of 0.43-4.78 l/h/kg (0.03 - 0.33 barrel feed per day per pound) fresh catalyst in the reactor.
  • the first stage reactor usually hydroconverts 30-95 vol.% of the fresh heavy feedstock and any recycled residua material to a lower boiling hydrocarbon effluent material.
  • the first stage reactor effluent material is phase separated in an external gas/liquid separator, a gas fraction is removed, and a sufficient portion of the remaining liquid is recycled to the reactor to maintain the desired 25-75% catalyst bed expansion therein.
  • the remaining liquid fraction is passed together with additional hydrogen to a second stage catalytic ebuliated bed type reactor.
  • the second stage ebullated bed reactor is operated similarly to the first stage reactor.
  • the effluent material is passed to various gas/liquid preservation and distillation steps, from which gases and low-boiling hydrocarbon liquid product and distillation vacuum bottoms fraction materiais are removed.
  • gases and low-boiling hydrocarbon liquid product and distillation vacuum bottoms fraction materiais are removed.
  • a portion of the vacuum bottoms fraction material boiling above at least 343°C (650°F) construct and preferably boiling above about 900°F(482°C) can be recycled back to the first stage catalytic reactor iniet et a recycle volume ratio to the fresh feedstock of 0-1.0/1, and preferably at 0.2-0.7/1 recycle ratio for further hydroconversion strigs therein.
  • Particulate catalyst Implements which are useful in this hydrogénation process may contain 2-25 @. percent total active metals selected from the metals group consisting of cadmium, chromium, cobalt, iron, molybdenum, nickel, tin, tungsten, and mixtures thereof deposited on a support material selected from the group consisting of alumina, silica and combinations thereof. Also, catalyses having the same characteristics may be used in both the first stage and second stage reactors, or each reactor may use catalyses having different characteristics.
  • Useful particulate catalyses will be in the form of beads, extrudâtes or spheres and have broad and preferred characteristics as shown in Table 2 below: TABLE 2 USEFUL CATALYST CHARACTERISTICS CatalVst Characteristic Broad Preferred Particle Diameter, in. 0.025-0.083 0.030-0.065 Particle Diameter, mm 0.63-2.1 0.75-1.65 Bulk Density, lb/ft: 25-50 30-45 Particle Crush Strength, lb/mm 1.8 min. 2.0 min.
  • Catalysts having unimodal, bimodal and trimodal pore size distributions are useful in this process.
  • Preferred catalyses should contain 5-20 wt.% total active metals consisting of combinations of cobalt, molybdenum and nickel deposited on an alumina support material.
  • This improved process for catalytic multi-stage hydrogénation of heavy hydrocarbonaceaus feedstocks advantageously provides enhanced performance results by utilizing increased catalyst loading and liquid volume percent together with reduced gas hold-up in each of the multiple staged reactors with external gas/liquid conservationation. Such enhanced performance efficience is manifested principally by providing better utilisation of the reactor volume for any particular desired hydroconversion result.
  • This process is generally usefui for catalytic hydrogénation and hydroconversion of heavy petroleum crudes, topped crudes, and vacuum residua, bitumen from tar sands, for coal hydrogénation and liqudfaction, and for catalytic co-processing coalloil biends to produce lower boiling, higher value hydrocarbon liquid products.
  • a pressurized heavy hydrocarbon feedstock such as petroieum vacuum residua containing 30-100 vol.% 524°C+ (975°F+) residua and preferably 50-90 vol.% is provided at 10 and combined with hydrogen at 12.
  • a heavy vacuum bottoms recycle liquid can be added at 13, and the combined stream at 14 is pressurized and fed through flow distributor 1@ upwardly into first stage catalytic ebullated bed reactor 16 containing ebullated bed 18.
  • the total feedstock to reactor 16 consists of the fresh hydrocarbon feed material at 10 plus any recycied vacuum bottoms material at 13.
  • the recycle volume ratio of the vacuum bottoms material to the fresh oil feedstock is in the range of 0-1.011, and preferably is 0.2-0.7/1 recycle ratio, with the higher recycle ratios being used for achieving higher overall percentage conversion of the feedstock residua.
  • the first stage reactor 16 contains an ebullated bed 18 of particulate supported type catalyst having the form of beads, extrudâtes, spheres, etc., and is maintained within the range of broad and preferred operating conditions as shown in Table 1 above.
  • the physical level of catalyst at 18a in the reactor is higher than for typical ebuliated-bed reactors. This is because the usuai internal recycle cup device which occupies a significant portion of reactor height, is not provided for separating the reactor liquid and vapor portions within the reactor 16. Instead, an external or interstage phase separator 20 is provided between the first and second stage catalytie reactors to effectively separate the reactor liquid and vapor effluent portions.
  • Removal of the usual internal recycle cup separator results in more catalyst and a higher level for the expanded catalyst bed in the reactor and desirably provides for a lower catalyst space velocity, which contributes to the higher levels of performance for the reactors.
  • a vertical height distance "h" of 5 -10 ft. is maintained between the maximum bed expansion lever and the inlet of reactor outiet conduit 19 to prevent carryover of catalyst particles f rom the expanded bed 1 B.
  • first stage reactor 16 overhead effluent stream 19 is withdrawn and passed to the external phase separator 20. From separator 20, a vapor stream 21 is removed and passed to gas purification section 42. Also, a liquid stream 22 is withdrawn, and a sufficient flow is recirculated through conduit 24 by ebullating pump 25 back to the reactor 16 to expand the catalyst bed 18 by the desired 2575 percent above its normal settied bed height.
  • particulate catalyst material is added at connection 17 at the desired replacement rate, and can be used catalyst withdrawn from second stage reactor 30 at connection 36, and usually treated at unit 38 as desired to remove undesired particulate fines, etc. at 37.
  • Fresh make-up catalyst can be added to catalyst bed 18 as needed at connection 17a, and an ange amount of spent catalyst is withdrawn from catalyst bed 18 at connection 17b.
  • Figure 2 The typical general relationship between reactor catalyst space velocity and reactor performance results is illustrated in Figure 2 , which shows the effect of lower catalyst space velocities on hydrodesulfurization performance for ebullated-bed reactors having equal total volumes, hydrocarbon feedrates, reaction merges and catalyst replacement rates.
  • Figure 2 clearly shows the improvement in first stage reactor desuifurization performance provided by lower catalyst space velocities, resuiting mainly from use of an external gas/liquid conservationation device instead of the usuai internallivingation device and for nominal residue conversion levels between about 65 and 90 vol.%.
  • the hydrocarbon liquid feedstock and hydrogen both react in contact with the catalyst in the reactor ebuliated bed to form lower boiling components which have lower contaminant levels than the feedstock.
  • the hydrogen gas provided at 12 to the first stage reactor 16 is mainly recycled unreacted hydrogen having purity in the range of 85-95 vol. percent and some essentially pure make-up hydrogen as needed.
  • the hydrogen feed rate to the first stage reactor and to the subséquent staged reactors is established at a minimum required level, which provides at each reactor outlet a required hydrogen partial pressure which is determined based on charac teristics for a particular feedstock, the catalyst characteristics, the desired level of reaction severity, and the product quality objectives.
  • the required hydrogen feed rate to a catalytic reactor is expressed as a multiple of the quantity of hydrogen chemically consumed in the reactor, and such hydrogen rate is usually in the range of 2.0 to 5.0 times the chemical hydrogen consomption therein.
  • the volume percent of hydrogen gas hold-up in the catalytic ebullated-bed reactor including hydrocarbon vapors generated therein is primarily related to the reactor superficiel gas velocity, with increased upward superficiel gas velocity resulting in an increased gas hold-up volume percentage in the reactor.
  • Experimental data showing this relationship between the upward superficiel gas velocity and gas hold-up volume percent in catalytic ebullated-bed reactors is shown in Figure 3.
  • the measured gas hold-up volume percent in the reactor is shown as a function of the reactor superficiel gas velocity at three different levels of reactor liquid upward superficiel velocity.
  • the superficiel gas velocity for upflowing hydrogen gas clearly has the primary effect on gas hold-up'volume in the reactor, with a secondary effect being due to different superficiel liquid upward velocities for the feed liquid in the reactor
  • the first stage reactor effluent stream 19 is passed to the interstage separator 20, which has two maincriticals: (a) to provide an ebullating recycle liquid stream back to the first stage reactor with minimal gas entrainment, and (b) to provide a liquid feed stream to the second stage reactor 30 having a minimal vapor content.
  • the effect of the function (b) is reduced gas hold-up in the second stage reactor and the same reaction benefits as described for the first stage reactor.
  • the liquid feed to the second stage reactor 30 contains the unconverted residue from the original feedstock, and hydroconversion fractions which normally boil above about 6000F (3160C).
  • Recycled hydrogen, together with fresh make-up hydrogen at 45 is added as stream 32 to the second stage reactor 30, the hydrogen gas rate being selected so as to result in a minimal hydrogen partial pressure at the reactor 30 outlet as needed to meet processing and product objectives as described above.
  • the gas rate provided at 32 to the second stage reactor 30 for this invention is substantially lower. This resuits in lower gas hold-up volume percentages in the reactor, greater liquidsky time, and a more efficient reactor system. In this situation, the gas hold-up is reduced from about 27 to 12 vol. percent, which results in an improvement in second stage desulfurization results from 65 to 70 wt.% based on the fresh feedstock.
  • a liquid portion 26 from the liquid stream 22 provides liquid feed material upwardly through flow distributor 27 into ebullated bed 28 of the second stage catalytic ebullated bed reactor 30.
  • the catalyst bed 28 is expanded by 25-75% above its settled height by the upflowing gas and liquid therein.
  • Reactor liquid is withdrawn from an internal phase separator 33 through conduit 34 to recycle pump 35, and is reintroduced upwardly through the flow distributor 27 into the ebullated bed 28 to maintain the desired catalyst bed expansion therein.
  • the second stage catalytic reactor 30 with ebullated catalyst bed 28 is operated within the broad and preferred conditions as shown in Table 1 above, and maximises resid hydrogénation reactions which occur therein.
  • Recycle and fresh hydrogen is provided at 32 to the second stage reactor 30, so that a minimal but adequate level of hydrogen partial pressure of 6.89-17.24 MPa (1,000-2,500 psi)is maintained at the reactor 30 outlet.
  • the catalyst particles in ebuliated beds 18 and 28 have a relatively narrow size range for uniform bed expansion under controlled upward liquid and gas flow conditions. While the usefui catalyst size range is between 0.025 and 0.083 inch effective diameter, including beads, extrudâtes, or spheres, the catalyst size is preferably particles having sizes of 0.030-0.065 inch effective diameter. In the reactor, the density of the catalyst particles, and the lifting effect of the upflowing liquid and hydrogen gas are important factors in providing the desired 25-75 percent expansion and operation of the catalyst beds. If desired, used particulate catalyst may be withdrawn from the second stage reactor bed 28 at connection 36 and fresh catalyst is added at connection 36a as needed to maintain the desired catalyst volume and catalytic activity therein.
  • This used catalyst withdrawri at 36 which has relatively low metal contaminant concentration, can be passed to a treatment unit 38 where it is washed and screened to remove undesired fines at 37, and the recovered catalyst at 39 can provide used catalyst addition at 17 to the first stage reactor bed 18, together with any fresh make-up catalyst added at connection 17a as needed.
  • an effluent stream is removed ai 31 and passed to a phase separator 40.
  • a hydrogen-containing gas stream 41 is passed to the gas purification section 42 for removai of contaminants such as CO2, H2S, and NH3 ai vent 43.
  • Purifie d hydrogen ai 44 is recycied back to each catalytic reactor 16 and 30 as desired as the hydrogen streams 12 and 32 respectively, while fresh hydrogen is added ai 45 as needed.
  • a liquid fraction 46 is withdrawn, pressurereduced at 47 to 0-0,7 MPa (0-100 psig), and is introduced into fractionation tower unit 48.
  • a gaseous product stream is removed ai 49 and a light hydrocarbon liquid product normally boiling between 204-343°C (400-650°F) is withdrawn at 50.
  • a bottoms nominal 343°C (650°F+) fraction is withdrawn at 52, reheated at heater 53, and passed to vacuum distillation step at 54.
  • a vacuum gas oil liquid product is removed overhead at 55.
  • Vacuum bottoms stream 56 which has been hydrogenated in the second stage catalyst reactor 30, can be recycled back as stream 13 to the first stage catalytic reactor 16.
  • the recycle volume ratio for vacuum bottoms stream 56 to fresh feed ai 10 can be 0-1.0/1, and preferably should be 0.2-0.7/1 for achieving hydroconversion of the feedstock exceeding about 70 vol. percent. It is pointed out that by utilizing this two stage catalytie hydroconversion process, the thermal strigs and catalytic activity in each stage reactor can be effectively matched and enhanced. The remaining unconverted vacuum bottoms material not being recycled ai 13 is withdrawn at 57 as a net product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (19)

  1. Verfahren zur katalytischen mehrstufigen Siede- bzw. Strahlschichthydrierung schwerer kohlenwasserstoffhaltiger Einsätze bzw. Chargen zur Erzeugung niedriger siedender Kohlenwasserstoffflüssigkeiten und -gasen, wobei das Verfahren umfasst:
    a. Einführen eines schweren kohlenwasserstoffhaltigen flüssigen Einsatzmaterials bzw. einer solchen Charge zusammen mit Wasserstoffgas in einen katalytischen Erststufenstrahlschichtreaktor bei einer Flüssigkeitsraumgeschwindigkeit von 0,2 - 2,0 Volumen Charge pro Stunde pro Reaktorvolumen (Vf/hr/Vr) und Katalysatorraumgeschwindigkeit von 0,43-4,78 l/h/kg (0,03 - 0,33 bbl/Tag/lb) Katalysator, Einstellen einer aufwärts gerichteten Oberflächengasgeschwindigkeit von 0,006-0,09 m/s (0,02-0,30 ft/sec) während Reaktionstemperaturen von 379-455°C (700-850°F) und 5,5-20,7 MPa (800-3000 psi) und ein Wasserstoffpartialdruck am Reaktorauslass aufrecht erhalten werden und ein Abstrommaterial des Erststufenreaktors erzeugt wird;
    b. Phasentrennung des Erststufen-Abstrommaterials in einen gasförmigen Teil und einen flüssigen Teil und Leiten des ersten flüssigen Teils an einen katalytischen Zweitstufenstrahlschicht- bzw. Siedebettreaktor, der bei den Reaktionsbedingungen der Stufe (a) gehalten wird, und Erzeugen eines Zweitstufenreaktor-Abstrommaterials;
    c. Phasentrennung des Zweitstufen-Abstrommaterials in einen gasförmigen und einen zweiten flüssigen Teil;
    d. Fraktionieren des zweiten flüssigen Teils zur Erzeugung eines flüssigen Kohlenwasserstofffraktionsproduktes mit mittlerem Siedebereich, das über einen normalen Siedebereich von 204-343°C (400-650°F) verfügt und eines Vakuumbodenfraktionsmaterials mit einem normalen Siedepunkt oberhalb etwa 343°C (650°F); und
    e. Rückführen bzw. Recyceln dieses Bodenfraktionsmaterials direkt in diesen katalytischen Erststufen-SiedebettrTaktor zur Erzeugung eines Recycelvolumenverhältnisses des Vakuumbodenmaterials zu frischem Einsatz von 0-1,0/l derart, dass zwischen 50 und 100 Vol.-% Umwandlung der 524°C+-(975°F+)-Fraktion in dem Einsatz in niedriger siedende Kohlenwasserstoffflüssigkeit und Erzeugung gesteigerter Ausbeuten dieses flüssigen mittelsiedenden Kohlenwasserstoffproduktes.
  2. Hydrierverfahren nach Anspruch 1, wobei diese Erststufenreaktionsbedingungen 399-449°C (750-840°F) Temperatur, 6,89-17,24 MPa (1000-2500 psig) Sauerstoffpartialdruck am Reaktorauslass, 0,40-1,2 Vf/Hr/Vr Flüssigkeitsraumgeschwindigkeit und 0,58-2,90 l/h/kg (0,04-0,20 BBI/Tag/lb) Katalysatorraumgeschwindigkeit betragen.
  3. Hydrierverfahren nach Anspruch 1, wobei diese Zweitstufenreaktionsbedingungen 399-449°C (750-840°F) Temperatur, 6,89-17,24 MPa (1000-2500 psig) Wasserstoffpartialdruck am Reaktorauslass, 0,40-1,2 Vf/Hr/Vr Flüssigkeitsraumgeschwindigkeit und 0,58-2,90 l/h/kg (0,04-0,20 Bbl/Tag/lb) Katalysatorraumgeschwindigkeit betragen.
  4. Hydrierverfahren nach Anspruch 2, wobei die Reaktoroberflächengeschwindigkeit 0,0076-0,061 m/s (0,025-0,20 ft/sec) beträgt und das Gasverweilvolumen in Prozent minimiert wird.
  5. Hydrierverfahren nach Anspruch 3, wobei die Reaktoroberflächengeschwindigkeit 0,0076-0,061 m/s (0,025-0,20 ft/sec) beträgt und das Gasverweilvolumen in Prozent im Reaktor minimiert wird.
  6. Hydrierverfahren nach Anspruch 1, wobei ein Höhenabstand von 1,5-3,0 m (5-10 ft) im katalytischen Erststufenreaktor zwischen dem oberen Niveau der Strahlschicht oder des Siedebettes und der Reaktorauslassverbindung aufrecht erhalten wird.
  7. Hydrierverfahren nach Anspruch 1, wobei dieses recycelte Vakuumbodenmaterial einen normalen Siedepunkt oberhalb etwa 482°C (900°F) hat und zum Erststufenreaktor bei einem Volumenverhältnis des Vakuumbodenmaterials zum frischen Einsatz von 0-1,0:1 um eine Volumenumwandlung in Prozent von 65-90 des Einsatzmaterials, bezogen auf die niedriger siedenden flüssigen Kohlenwasserstoffprodukte zu erreichen, recycelt wird.
  8. Hydrierverfahren nach Anspruch 1, wobei das Volumenverhältnis des zum Erststufenreaktor rückgeführten Vakuumbodenmaterials zum frischen Einsatz, der diesem Erststufenreaktor zugeführt wird, etwa 0,2/l-0,7/l beträgt.
  9. Hydrierverfahren nach Anspruch 1, wobei der in den Erststufen- und Zweitstufenreaktoren verwendete Katalysator 2-25 Gew.-% aktiver Metalle gesamt enthält und über ein Porengesamtvolumen von 0,30-1,50 cc/gm, eine Gesamtoberfläche von 100-400 m2/gm und einen mittleren Porendurchmesser von wenigstens 50 Ångströmeinheiten verfügt.
  10. Hydrierverfahren nach Anspruch 1, wobei der in den Erststufen- und Zweitstufenreaktoren verwendete Katalysator über ein Porengesamtvolumen von 0,40-1,20 cc/gm, einen Gesamtobefflächenbereich von 150-350 m2/gm und einen mittleren Porendurchmesser von 80-250 Ängströmeinheiten verfügt.
  11. Hydrierverfahren nach Anspruch 1, wobei der im katalytischen Zweitstufenreaktor verwendete Katalysator 5-20 Gew.-% Kobaltmolybdän auf Aluminiumoxidträgermaterial enthält.
  12. Hydrierverfahren nach Anspruch 1, wobei der im katalytischen Zweitstufenreaktor verwendete Katalysator 5-20 Gew.-% Nickelmolybdän auf Aluminiumoxidträgermaterial enthält.
  13. Hydrierverfahren nach Anspruch 1, wobei verbrauchter Katalysator aus diesem katalytischen Zweitstufenreaktor abgezogen und zu diesem katalytischen Erststufenreaktor als Katalysatorzusatz hierin gegeben und eine frische Katalysatotersatzrate von 0,05-0,50 englische Pfund Katalysator pro Barrel (Fass) frischen Einsatzes in den Zweitstufenreaktor geliefert wird.
  14. Hydrierverfahren nach Anspruch 1, wobei das Einsatzmaterial Erdöl- bzw. Petroleumrückstandsmaterial ist, von dem 30-100 Vol.-% normalerweise oberhalb 524°C (975°F) sieden und das 5-50 Gew.-% Conradson-Kohlenstoffrückstand (CCR) und bis zu 1000 Gew.-ppm Metalle insgesamt enthält.
  15. Hydrierverfahren nach Anspruch 1, wobei das Einsatzmaterial aus Teersänden stammendes Bitumen ist.
  16. Verfahren für die katalytische mehrstufige Strahl- oder Wirbelschichthydrierung schwerer kohlenwasserstoffhaltiger Einsatzmaterialien und zur Erzeugung niedriger siedender kohlenwasserstoffhaltiger Flüssigkeiten und Gase gemäß einem der vorhergehenden Ansprüche, wobei das Verfahren umfasst:
    a. Einführen eines schweren kohlenwasserstoffhaltigen flüssigen Einsatzmaterials, das 50-90 Vol.-% Rückstände von 524°C (975°F) enthält, zusammen mit Wasserstoffgas in einen katalytischen Erststufenstrahlschicht- oder Wirbelbettreaktor bei einer Flüssigkeitsraumgeschwindigkeit von 0,4-1,2 Volumen Einsatz pro Stunde pro Volumen Reaktor (Vf/hr/Vr) und bei einer Katalysatorraumgeschwindigkeit von 0,58-2,90 l/h/kg (0,04-0,20 bbl/Tag/lb) Katalysator, Schaffung einer aufwärts gerichteten Oberflächengasgeschwindigkeit von 0,0076-0,061 m/s (0,025-0,20 ft/sec), während die Reaktionstemperatur von 399-449°C (750-840°F) und 6,89-17,24 MPa (1000-2500 psi) Wasserstoffpartialdruck am Reaktorauslass aufrecht erhalten wird, und ein Erststufenreaktor-Abstrommaterial erzeugt wird, das gasförmige und flüssige Anteile enthält;
    b. Phasentrennung des Erststufen-Abstrommaterials in einen gasförmigen Teil und einen flüssigen Teil und Leiten des ersten flüssigen Teils an einen katalytischen Zweitstufenstrahlschicht- bzw. Siedebettreaktor, der bei den Reaktionsbedingungen der Stufe (a) gehalten wird, und Erzeugen eines Zweitstufenreaktor-Abstrommaterials;
    c. Phasentrennung des Zweitstufen-Abstrommaterials in einen gasförmigen und einen zweiten flüssigen Teil;
    d. Fraktionieren des zweiten flüssigen Teils zur Erzeugung eines flüssigen Kohlenwasserstofffraktionsproduktes mit mittlerem Siedebereich, das über einen normalen Siedebereich von 204-343°C (400-650°F) verfügt, ein Vakuumgasöl mit einem normalen Siedebereich von 343-524°C (650-950°F), und ein Vakuumbodenmaterial mit einer normalen Siedetemperatur oberhalb von etwa 524°C (950°F); und
    e. Rückführen bzw. Recyceln dieses Bodenfraktionsmaterials direkt zurück an den katalytischen Erststufenstrahlschicht- oder Siedebettreaktor zur Erzeugung eines Kreislaufvolumenverhältnisses des Vakuumbodenmaterials zum frischen Einsatz von 0-0,7/l, so dass 50-100 Vol.-% Umwandlung der 524°C+ (975°F) Fraktion in dem Einsatzmaterial in niedriger siedender Kohlenwasserstoffflüssigkeit erreicht wird und gesteigerte Ausbeuten dieses flüssigen Kohlenwasserstoffprodukts von mittlerem Siedebereich, das Schwefel und Stickstoff in geringen Anteilen enthält, erzeugt werden.
  17. In einem Verfahren gemäß einem der vorhergehenden Ansprüche zur katalytischen Hydrierung eines schweren kohlenwasserstoffhaltigen Einsatzmaterials unter Verwendung katalytischer Mehrstufenstrahlschicht oder Siedebettreaktoren, wobei das Einsatzmaterial und ein partikelförmiger Katalysator sowie Wasserstoff in innigen Kontakt unter Reaktionsbedingungen von 371-455°C (700-850°F) Temperatur, 5,5-20,7 MPa (800-3000 psi) Wasserstoffpartialdruck, 0,2-2,0 Vf/hr/Vr stündlicher Flüssigkeitsraumgeschwindigkeit in jeder Reaktorstufe gebracht werden, und ein resultierendes Abstrommaterial aus dem Letztstufenreaktor phasengetrennt wird, und der resultierende flüssige Anteil fraktioniert wird, um gasförmige und flüssige Kohlenwasserstoffproduke zu erzeugen, umfasst die Verbesserung:
    a. Aufrechterhalten in jeder Reaktorstufe einer Katalysatorraumgeschwindigkeit von 0,43-4,78 l/h/kg (0,03-0,33 Bbl/Tag/lb) Katalysator; und
    b. Aufrechterhalten in jedem dieser Stufenreaktoren eine Oberflächengasgeschwindigkeit von 0,006-0,076 m/s (0,002-0,25 ft/sec), so dass der prozentuale Anteil des flüssigen Reaktorvolumens in diesem Reaktor gesteigert und das Reaktorgasverweilvolumen vermindert wird.
  18. Verfahren nach Anspruch 17, wobei ein aus wenigstens einem katalytischen Erststufenreaktor entferntes Abstrommaterial außerhalb des Reaktors phasengetrennt wird.
  19. Verfahren nach Anspruch 18, wobei in jeder dieser Reaktorstufen die Katalysatorraumgeschwindigkeit bei 0,58-2,9 l/h/kg (0,04-0,2 bbl/Tag/lb) Katalysator und die Oberflächengasgeschwindigkeit bei 0,0076-0,061 m/s (0,025-0,20 ft/sec) gehalten wird.
EP00936894A 2000-06-19 2000-06-19 Katalytisches hydrierverfahren in mehreren reaktoren mit wallendem bett Expired - Lifetime EP1299507B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2000/005628 WO2001098436A1 (en) 2000-06-19 2000-06-19 Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors

Publications (2)

Publication Number Publication Date
EP1299507A1 EP1299507A1 (de) 2003-04-09
EP1299507B1 true EP1299507B1 (de) 2006-01-04

Family

ID=8163992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00936894A Expired - Lifetime EP1299507B1 (de) 2000-06-19 2000-06-19 Katalytisches hydrierverfahren in mehreren reaktoren mit wallendem bett

Country Status (6)

Country Link
EP (1) EP1299507B1 (de)
JP (1) JP4834875B2 (de)
CA (1) CA2412923C (de)
DE (1) DE60025350T2 (de)
MX (1) MXPA02012003A (de)
WO (1) WO2001098436A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073436A2 (en) 2007-11-28 2009-06-11 Saudi Arabian Oil Company Process for catalytic hydrotreating of sour crude oils
US7938953B2 (en) * 2008-05-20 2011-05-10 Institute Francais Du Petrole Selective heavy gas oil recycle for optimal integration of heavy oil conversion and vacuum gas oil treating
US7938952B2 (en) * 2008-05-20 2011-05-10 Institute Francais Du Petrole Process for multistage residue hydroconversion integrated with straight-run and conversion gasoils hydroconversion steps
US8372267B2 (en) 2008-07-14 2013-02-12 Saudi Arabian Oil Company Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil
EP2300566B1 (de) 2008-07-14 2016-09-07 Saudi Arabian Oil Company Verfahren zur behandlung von schwerölen anhand leichter kohlenwasserstoffbestandteile als verdünnungsmittel
WO2011005476A2 (en) 2009-06-22 2011-01-13 Saudi Arabian Oil Company Alternative process for the treatment of heavy crudes in a coking refinery
JP6046136B2 (ja) * 2011-07-29 2016-12-14 サウジ アラビアン オイル カンパニー 溶存水素を含む原料の沸騰床プロセス
ITMI20130131A1 (it) 2013-01-30 2014-07-31 Luigi Patron Processo a migliorata produttività per la conversione di olii pesanti

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322665A (en) * 1965-05-18 1967-05-30 Hydrocarbon Research Inc High conversion hydrogenation of heavy gas oil
US4457831A (en) * 1982-08-18 1984-07-03 Hri, Inc. Two-stage catalytic hydroconversion of hydrocarbon feedstocks using resid recycle
JPS61287438A (ja) * 1985-06-14 1986-12-17 Mitsubishi Heavy Ind Ltd 三相流動反応器の分散装置
JPS627436A (ja) * 1985-07-03 1987-01-14 Mitsubishi Heavy Ind Ltd 三相流動反応器の分散機構
US4765882A (en) * 1986-04-30 1988-08-23 Exxon Research And Engineering Company Hydroconversion process
ZA961830B (en) * 1995-03-16 1997-10-31 Inst Francais Du Petrole Catalytic hydroconversion process for heavy petroleum feedstocks.

Also Published As

Publication number Publication date
WO2001098436A1 (en) 2001-12-27
JP4834875B2 (ja) 2011-12-14
DE60025350D1 (de) 2006-03-30
EP1299507A1 (de) 2003-04-09
DE60025350T2 (de) 2006-07-13
CA2412923C (en) 2008-10-07
CA2412923A1 (en) 2001-12-27
JP2004515568A (ja) 2004-05-27
MXPA02012003A (es) 2003-05-27

Similar Documents

Publication Publication Date Title
US6270654B1 (en) Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors
US5925238A (en) Catalytic multi-stage hydrodesulfurization of metals-containing petroleum residua with cascading of rejuvenated catalyst
US4457831A (en) Two-stage catalytic hydroconversion of hydrocarbon feedstocks using resid recycle
EP1840190B1 (de) Verfahren und Installation zur Umwandlung schwerer Petroleumfraktionen in einem Fließbett mit integrierter Produktion von Mitteldestillaten mit sehr geringem Sulfuranteil
US8926824B2 (en) Process for the conversion of residue integrating moving-bed technology and ebullating-bed technology
EP0732389B1 (de) Wasserstoffumwandlungsverfahren von schweren Kohlenwasserstoffeinsätzen
US5522983A (en) Hydrocarbon hydroconversion process
US6190542B1 (en) Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds
US6841062B2 (en) Crude oil desulfurization
US5660715A (en) Apparatus and method for quenching in hydroprocessing of a hydrocarbon feed stream
US4576710A (en) Catalyst desulfurization of petroleum residua feedstocks
US4853111A (en) Two-stage co-processing of coal/oil feedstocks
CA1230570A (en) Quenching hydrocarbon effluent from catalytic reactor to avoid precipitation of asphaltene compounds
US4427535A (en) Selective operating conditions for high conversion of special petroleum feedstocks
US6200462B1 (en) Process for reverse gas flow in hydroprocessing reactor systems
US6017443A (en) Hydroprocessing process having staged reaction zones
GB1602639A (en) Process for hydrodesulphurization of heavy hydrocarbon oils
EP1299507B1 (de) Katalytisches hydrierverfahren in mehreren reaktoren mit wallendem bett
US3975259A (en) Hydrodesulfurization of liquid hydrocarbon utilizing a suspended catalyst particle of less than 10 microns
US3207688A (en) Hydrocracking process in two stages employing finely divided catalyst particles
GB2066287A (en) Hydrogenation of high boiling hydrocarbons
CA1238005A (en) Multi-stage catalytic process for high conversion of heavy hydrocarbon liquid feedstocks
EP0102112B1 (de) Verfahren zur Wasserstoffbehandlung von Schweröl
CN114196439A (zh) 一种页岩油加氢处理工艺和处理系统

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030120

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20031229

RBV Designated contracting states (corrected)

Designated state(s): DE IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT NL

REF Corresponds to:

Ref document number: 60025350

Country of ref document: DE

Date of ref document: 20060330

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60025350

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160630

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190626

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190830

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60025350

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200618