EP0725156B1 - Stahl mit hoher Dehnbarkeit, Verfahren zur Herstellung und Verwendung - Google Patents

Stahl mit hoher Dehnbarkeit, Verfahren zur Herstellung und Verwendung Download PDF

Info

Publication number
EP0725156B1
EP0725156B1 EP96400061A EP96400061A EP0725156B1 EP 0725156 B1 EP0725156 B1 EP 0725156B1 EP 96400061 A EP96400061 A EP 96400061A EP 96400061 A EP96400061 A EP 96400061A EP 0725156 B1 EP0725156 B1 EP 0725156B1
Authority
EP
European Patent Office
Prior art keywords
steel
component
temperature
minutes
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96400061A
Other languages
English (en)
French (fr)
Other versions
EP0725156A1 (de
Inventor
Jean Beguinot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industeel France SAS
Original Assignee
Industeel France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industeel France SAS filed Critical Industeel France SAS
Publication of EP0725156A1 publication Critical patent/EP0725156A1/de
Application granted granted Critical
Publication of EP0725156B1 publication Critical patent/EP0725156B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the present invention relates to a weldable steel having a high tensile strength and good ductility.
  • Staged quenching heat treatment comprising a cooling at a cooling rate greater than or equal to 50 ° C / s up to a holding temperature, then an isothermal holding at this temperature, and finally, cooling down to the temperature ambient, is well suited for thin sheets or small parts of mechanical, but it is completely unsuitable for thick sheets, especially when they are large. Cool a sheet metal to a cooling speed greater than 50 ° C / s is all the more difficult that the sheet is thick, and, by the mere fact of the laws that govern transfers heat, it even becomes impossible when the thickness of the sheet exceeds 15 mm.
  • Inter-critical treatments are also unsuitable for manufacture of sheets with very high yield strength. Indeed, these treatments consist in bringing the steel to an intermediate temperature between the austenitization start temperature and the temperature complete austenitization, so that such treatment followed by quenching leads to mixed structures made up of a mixture of structures hardened and very softened ferrite. The presence of very softened ferrite significantly reduces the level of breaking strength it is possible to get.
  • the object of the present invention is to remedy these disadvantages by proposing a weldable steel which makes it possible to manufacture industrially welded sheets greater than 8 mm thick, having a tensile strength greater than 1200 MPa, and having a very good ductility, i.e. a uniform elongation rate greater than 5%.
  • the chemical analysis is adjusted so that: 0.005% ⁇ Ti ⁇ 0.1% 0.01% ⁇ Al ⁇ 0.5% 0.003 ⁇ N ⁇ 0.02% and, when the steel is in the solid state, the number of precipitates of titanium nitrides of size greater than 0.1 ⁇ m counted over an area of 1 mm 2 of a micrographic section, is preferably less than 4 times the total content of titanium precipitated in the form of nitrides, expressed in thousandths of% by weight.
  • the steel contains from 0.5% to 3% of chromium, less than 2% manganese, and the molydene content plus half the tungsten content is between 0.1% and 2%.
  • the sum of the silicon contents and aluminum is between 1.5% and 2.5%, and it is preferable that the carbon content is between 0.2% and 0.3%.
  • the room can be allowed to cool in air.
  • the invention finally relates to a steel part, and in particular a sheet of thickness greater than 8 mm, obtained by the process according to the invention, the tensile strength of which is greater than 1200 MPa and the ductility measured by uniform elongation is greater than 5%.
  • the structure of the part comprises from 5% to 30% and preferably from 10% to 20% residual austenite.
  • steel contains titanium, its structure preferably comprises more than 30% bainite.
  • This part is particularly suitable for manufacturing equipment for mines or quarries which must resist abrasion or manufacture of metal construction parts or parts boilermaking.
  • the steel according to the invention is a structural steel weakly or moderately alloyed which makes it possible to obtain, by a treatment suitable thermal, a mixed structure consisting of bainite and / or martensite, and from 5% to 30%, and preferably from 10% to 20%, of strongly austenite loaded with carbon.
  • the inventors found that such a structure had the advantage of combining a very high tensile strength and a very good ductility, even for low carbon contents, which allows good weldability, but only if the steel contains sufficient alloying elements increasing the hardenability.
  • the increase in ductility results from the instability of the austenite which transforms into martensite when the steel undergoes plastic deformation.
  • austenite content of the structure must be greater than 5% and preferably greater than 10%; however this content must remain below 30% and preferably 20% to avoid reducing the elastic limit too much.
  • the steel must contain more than 0.15% carbon, and preferably more than 0.2%.
  • the content carbon should remain less than or equal to 0.303%, and preferably, less than 0.3%.
  • the optimal content of carbon is between 0.2% and 0.24%.
  • steel To promote carbon enrichment of austenite during heat treatment, steel must contain at least one element taken from silicon and aluminum.
  • the sum of the silicon contents and aluminum should be greater than 1%, and preferably, greater than 1.5%. However, in order to avoid development difficulties, this sum must remain below 3%, and preferably below 2.5%. So the aluminum and silicon contents are each between 0% and 3%.
  • Manganese which greatly increases the hardenability, is also necessary in contents higher than 0.1% to obtain a good hot ductility, but its content must remain below 4.5%, and preferably less than 2%, so as not to stabilize the austenite too much. Of preferably, the manganese content must be between 1.2% and 1.7%.
  • Nickel which is not essential, increases the hardenability and has a favorable effect on the weldability and on the toughness at low temperature. But this item is expensive. In addition, too strong contents, it stabilizes the austenite too much. Also its content must remain below 9%. Preferably, the nickel content must be between 1.5% and 2.5%.
  • Chromium, molybdenum and tungsten are also not essential, but these elements increase the hardenability and above all can form very hardening carbides.
  • chromium content must be greater than 0.5%, and, from preferably also less than 3%, and more preferably less than 1.5%.
  • Tungsten in Any Content Has Effects equivalent to that of molybdenum in half content. Also for these two elements we consider the sum of the molybdenum content and the half the tungsten content. Beyond 3% the effect is no longer significant for the steels concerned, and this value is a maximum. Well that these two elements are not essential, it is desirable that the sum of the molybdenum content and half the content of tungsten is greater than 0.1%. Preferably, the sum of the content molybdenum and half the tungsten content should be less at 2%, and preferably less than 0.5%.
  • steel contains less than 0.02% nitrogen, however it may be desirable to increase the content of this element up to 0.3% to provide additional hardening without harming weldability.
  • the structure of the steel contains more than 30% of bainite, its toughness can be increased by adding between 0.005% and 0.1% of titanium.
  • the steel must then contain between 0.01% and 0.5% aluminum and between 0.003% and 0.02% nitrogen, in addition, the titanium must be added to the steel in a very gradual way to limit the precipitation of large titanium nitrides in liquid steel.
  • a steel is thus obtained which, in the solid state, is such that the number of precipitates of titanium nitrides of size greater than 0.1 ⁇ m counted over an area of 1 mm 2 of a micrographic section, is less than 4 times the total content of precipitated titanium in the form of titanium nitrides, expressed in thousandths of% by weight.
  • titanium is in this form in steel, it considerably refines the structure and the bainitic sub-structure. This has the effect of lowering the resilience transition temperature by at least 30 ° C and significantly increasing the resilience at room temperature, when the steel structure comprises at least 30% bainite.
  • the rest of the chemical composition of steel is made up by iron and by impurities resulting from the production.
  • the steel contains 0.2% 0.24% carbon, 1.5% to 2.5% silicon plus aluminum, 1.2% 1.7% manganese, 1.5% 2.5% nickel, 0.5% 1.5% chromium, from 0.1% to 0.5% molybdenum, possibly from 0.0005% to 0.005% boron, possibly from 0.005% to 0.1% of titanium introduced as shown above.
  • This heat treatment makes it possible to obtain a structure consisting of martensite and / or lower bainite which are not very softened and from 5% to 30% of residual austenite highly enriched in carbon.
  • the slow passage in the vicinity of M s allows the carbon enrichment of the austenite. It must therefore be long enough, but not too long so as not to soften the structure too much.
  • Heat treatment can be done either in the warm of shaped by hot plastic deformation, either after this surgery.
  • the semi-finished product When the heat treatment is done in the hot forming by hot plastic deformation, the semi-finished product must be reheated before plastic deformation to a temperature higher than Ac 3 and lower than 1300 ° C to avoid an excessive magnification of the austenitic grain and the plastic deformation (rolling for example) must preferably end above Ab 3 to prevent the ferrito-pearlitic transformation from starting.
  • the cooling to a temperature close to M s carried out at a cooling rate greater than 0.3 ° C / s, can be carried out, for example, by controlled watering with water.
  • the slow passage in the vicinity of M s can then be obtained by air cooling which can also serve as cooling to room temperature.
  • cooling to room temperature which follows the slow passage in the vicinity of M s , can advantageously be achieved by cooling with water in order to limit as much as possible the self-income of the structure obtained.
  • cooling to the vicinity of M s , the slow passage in the vicinity of M s and cooling to the ambient can be carried out directly by air cooling. This is particularly the case, when the product is a sheet of thickness at least equal to 30 mm. It is also possible to treat, by air cooling, sheets of thickness less than 30 mm, by stacking several sheets so as to form a packet of thickness greater than 30 mm.
  • the product When the heat treatment is carried out after shaping by hot plastic deformation and return to ambient temperature of the product, the product must be austenitized by reheating above Ac 3 in order to obtain a complete austenitization, then it can be cooled either in the same way as when the heat treatment is carried out in the hot forming, or by any suitable means to carry out the recommended thermal cycle.
  • the titanium of steel C was introduced in accordance with the invention.
  • the steels according to the invention have elongations uniforms at least 2.5 times higher than those of steels according to the art prior.
  • These parts are in particular sheets of thickness greater than 8 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Claims (13)

  1. Stahl, dadurch gekennzeichnet, dass er die folgende chemische Zusammensetzung in Gewichtsprozent hat: 0,15 % ≤ C ≤ 0,303 % 0 % ≤ Si ≤ 3 % 0 % ≤ Al ≤ 3 % 0,1 % ≤ Mn ≤ 4,5 % 0 % ≤ Ni ≤ 9 % 0 % ≤ Cr ≤ 6 % 0 % ≤ Mo + W/2 ≤ 3 % 0 % ≤ V ≤ 0,5 % 0 % ≤ Nb ≤ 0,5 % 0 % ≤ Zr ≤ 0,5 % N ≤ 0,3 %
    gegebenenfalls 0,0005 % bis 0,005 % Bor,
    gegebenenfalls 0,005 % bis 0,1 % Titan,
    gegebenenfalls mindestens eines der Elemente Ca, Se, Te, Bi und Pb
       mit Gehalten kleiner als 0,2 %,
    der Rest besteht aus Eisen und Verunreinigungen aus der Verarbeitung,
    wobei die chemische Zusammensetzung außerdem den folgenden Beziehungen genügt: 1 % ≤ Si + Al ≤ 3 % und 4,6x(% C) + 1,05x(% Mn) + 0,54x(% Ni) +0,66x(% Mo + % W/2) + 0,5x(% Cr) + K ≥ 3,8 mit
    K = 0,5, wenn der Stahl Bor enthält,
    K = 0, wenn der Stahl kein Bor enthält.
  2. Stahl nach Anspruch 1, dadurch gekennzeichnet, dass 0,005 % ≤ Ti ≤ 0,1 % 0,01 % ≤ Al ≤ 0,5 % 0,003 % ≤ N < 0,02 % und dadurch, dass im festen Zustand die Anzahl der Aushärtungen an Titannitriden mit einer Teilchengröße über 0,1 µm auf einer Fläche von 1 mm2 eines Mikroschliffes kleiner als das Vierfache des Gesamtgehalts an in Form von Nitriden ausgeschiedenem Titan ist, ausgedrückt in Tausendstel Gewichtsprozent.
  3. Stahl nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass 0,5 % ≤ Cr ≤ 3 % 0,1 % ≤ Mo + W/2 ≤ 2 % Mn ≤ 2 %
  4. Stahl nach Anspruch 1, Anspruch 2 oder Anspruch 3, dadurch gekennzeichnet, dass 1,5 % ≤ Si + Al ≤ 2,5 %
  5. Stahl nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass 0,2 % ≤ C ≤ 0,3 %
  6. Stahl nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er die folgende chemische Zusammensetzung in Gewichtsprozent hat: 0,20 % ≤ C ≤ 0,24 % 0 % ≤ Si ≤ 2,5 % 0 % ≤ Al ≤ 2,5 % 1,2 % ≤ Mn ≤ 1,7 % 1,5 % ≤ Ni ≤ 2,5 % 0,5 % ≤ Cr ≤ 1,5 % 0,1 % ≤ Mo + W/2 ≤ 0,5 % wobei die chemische Zusammensetzung außerdem den folgenden Beziehungen genügt: 1,5 % ≤ Si + Al ≤ 2,5 % und 4,6x(% C) + 1,05x(% Mn) + 0,54x(% Ni) +0,66x(% Mo + % W/2) + 0,5x(% Cr) + K ≥ 3,8 mit
    K = 0,5, wenn der Stahl Bor enthält,
    K = 0, wenn der Stahl kein Bor enthält.
  7. Verfahren zur Herstellung eines Teils aus Stahl mit hoher Festigkeit und hoher Duktilität, dadurch gekennzeichnet, dass:
    man einen Stahl nach einem der Ansprüche 1 bis 6 erschmilzt,
    man den Stahl gießt und ihn in Form eines Halbfabrikats verfestigen lässt,
    man das Halbfabrikat durch plastische Warmverformung in seine Form bringt, um ein Teil aus Stahl zu erhalten,
    man das Teil durch Erhitzen über Ac3 °C austenitisiert, es dann bis auf die Umgebungstemperatur in der Weise abkühlt, dass die Abkühlungsgeschwindigkeit zwischen der Austenitiserungstemperatur und Ms + 150 °C größer als 0,3 °C/s ist, dass die Verweilzeit zwischen Ms + 150 °C und Ms - 50 °C zwischen 5 und 90 Minuten liegt und dass die Abkühlgeschwindigkeit bis zur Umgebungstemperatur größer als 0,02 °C/s ist.
  8. Verfahren zur Herstellung eines Teils aus Stahl hoher Festigkeit und hoher Duktilität, dadurch gekennzeichnet, dass:
    man einen Stahl nach einem der Ansprüche 1 bis 6 erschmilzt,
    man den Stahl gießt und ihn in Form eines Halbfabrikats verfestigen lässt,
    man das Halbfabrikat durch plastische Warmverformung in seine Form bringt, um ein Teil aus Stahl zu erhalten,
    man das Stück durch Erhitzen über Ac3 °C austenitisiert, es dann bis auf die Umgebungstemperatur in der Weise abkühlt, dass die Abkühlungsgeschwindigkeit zwischen der Austenitiserungstemperatur und Ms + 150 °C größer als 0,3 °C/s ist, dass die Verweilzeit zwischen Ms + 150 °C und Ms - 50 °C zwischen 5 und 90 Minuten liegt und dass die Abkühlgeschwindigkeit bis zur Umgebungstemperatur größer als 0,02 °C/s ist.
  9. Verfahren nach Anspruch 7 oder Anspruch 8, dadurch gekennzeichnet, dass man zum Abkühlen des Teils von der Austenitisierungstemperatur auf die Umgebungstemperatur das Teil an der Luft abkühlen lässt.
  10. Teil aus Stahl nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sein Mikrogefüge aus Bainit und/oder Martensit und 5 % bis 10 % Austenit besteht, seine Zugfestigkeit über 1200 MPa liegt und seine durch gleichförmige Dehnung gemessene Duktilität größer als 5 % ist.
  11. Teil aus Stahl nach Anspruch 10, dadurch gekennzeichnet, dass sein Gefüge mindestens 30 % Bainit enthält.
  12. Teil nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass es sich um ein Blech mit einer Stärke größer als 8 mm handelt.
  13. Benutzung eines Stahls nach einem der Ansprüche 1 bis 6 für die Herstellung von Ausrüstungen hoher Verschleißfestigkeit für den Bergbau oder für Tiefbauarbeiten oder für die Herstellung von Teilen des Stahlbaus oder Kesselbaus.
EP96400061A 1995-01-31 1996-01-11 Stahl mit hoher Dehnbarkeit, Verfahren zur Herstellung und Verwendung Expired - Lifetime EP0725156B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9501079A FR2729974B1 (fr) 1995-01-31 1995-01-31 Acier a haute ductilite, procede de fabrication et utilisation
FR9501079 1995-01-31

Publications (2)

Publication Number Publication Date
EP0725156A1 EP0725156A1 (de) 1996-08-07
EP0725156B1 true EP0725156B1 (de) 2001-07-18

Family

ID=9475663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96400061A Expired - Lifetime EP0725156B1 (de) 1995-01-31 1996-01-11 Stahl mit hoher Dehnbarkeit, Verfahren zur Herstellung und Verwendung

Country Status (5)

Country Link
US (1) US5695576A (de)
EP (1) EP0725156B1 (de)
JP (1) JPH08239738A (de)
DE (1) DE69613868T2 (de)
FR (1) FR2729974B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905857A2 (de) 2006-09-29 2008-04-02 EZM Edelstahlzieherei Mark GmbH Hochfester Stahl und Verwendungen eines solchen Stahls

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245289B1 (en) 1996-04-24 2001-06-12 J & L Fiber Services, Inc. Stainless steel alloy for pulp refiner plate
US5939019A (en) * 1998-03-25 1999-08-17 Stein; Gerald Steel for foundry roll shells
US6149862A (en) * 1999-05-18 2000-11-21 The Atri Group Ltd. Iron-silicon alloy and alloy product, exhibiting improved resistance to hydrogen embrittlement and method of making the same
DE19942641A1 (de) * 1999-08-30 2001-03-22 Mannesmann Ag Verwendung einer Stahllegierung zur Herstellung hochfester nahtloser Stahlrohre
US7005016B2 (en) * 2000-01-07 2006-02-28 Dofasco Inc. Hot rolled steel having improved formability
US6572713B2 (en) 2000-10-19 2003-06-03 The Frog Switch And Manufacturing Company Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing
WO2002044436A1 (en) * 2000-12-01 2002-06-06 Posco Steel plate to be precipitating tin+mns for welded structures, method for manufacturing the same and welding fabric using the same
FR2838138B1 (fr) * 2002-04-03 2005-04-22 Usinor Acier pour la fabrication de moules d'injection de matiere plastique ou pour la fabrication de pieces pour le travail des metaux
FR2838137A1 (fr) * 2002-04-03 2003-10-10 Usinor Acier pour la fabrication de moules pour le moulage par injection de matieres plastiques ou pour la fabrication d'outils pour le travail des metaux
FR2847274B1 (fr) * 2002-11-19 2005-08-19 Usinor Piece d'acier de construction soudable et procede de fabrication
FR2847273B1 (fr) * 2002-11-19 2005-08-19 Usinor Piece d'acier de construction soudable et procede de fabrication
FR2847270B1 (fr) * 2002-11-19 2004-12-24 Usinor Procede pour fabriquer une tole en acier resistant a l'abrasion et tole obtenue
FR2847271B1 (fr) * 2002-11-19 2004-12-24 Usinor Procede pour fabriquer une tole en acier resistant a l'abrasion et tole obtenue
US7074286B2 (en) * 2002-12-18 2006-07-11 Ut-Battelle, Llc Wrought Cr—W—V bainitic/ferritic steel compositions
US7537727B2 (en) * 2003-01-24 2009-05-26 Ellwood National Forge Company Eglin steel—a low alloy high strength composition
EP1876255B1 (de) 2005-04-26 2012-06-06 Sidenor Investigacion y Desarrollo, S.A. Carbonitrier- oder einsatzstahl und verfahren zur herstellung von teilen mit dem stahl
CN1328406C (zh) * 2005-06-22 2007-07-25 宁波浙东精密铸造有限公司 一种薄膜奥氏体增韧的马氏体耐磨铸钢及其制造方法
WO2007064172A1 (en) * 2005-12-01 2007-06-07 Posco Steel sheet for hot press forming having excellent heat treatment and impact property, hot press parts made of it and the method for manufacturing thereof
EP1832667A1 (de) * 2006-03-07 2007-09-12 ARCELOR France Herstellungsverfahren von Stahlblechen mit hoher Festigkeit, Duktilität sowie Zähigkeit und so hergestellte Bleche.
DE102006051545A1 (de) * 2006-11-02 2008-05-08 Schaeffler Kg Tiefgezogenes Maschinenbauteil mit wenigstens einer gehärteten Lauf- oder Führungsfläche, insbesondere Motorenelement
EP1990431A1 (de) 2007-05-11 2008-11-12 ArcelorMittal France Verfahren zur Herstellung von kalt gewalzten und geglühten Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
KR101010971B1 (ko) 2008-03-24 2011-01-26 주식회사 포스코 저온 열처리 특성을 가지는 성형용 강판, 그 제조방법,이를 이용한 부품의 제조방법 및 제조된 부품
DE102008052632A1 (de) * 2008-10-22 2010-05-27 Benteler Automobiltechnik Gmbh Sicherungsschrank
EP2789705B1 (de) * 2011-12-08 2018-10-10 NTN Corporation Maschinenteil, wälzlager, kegelrollenlager und verfahren zur herstellung eines maschinenteils
KR101400578B1 (ko) * 2012-09-27 2014-05-28 현대제철 주식회사 형강 및 그 제조 방법
DE202013012601U1 (de) 2013-07-03 2017-11-28 J. D. Theile Gmbh & Co. Kg Kettenglied für Bergbauanwendungen
CN103757552B (zh) * 2013-12-17 2016-01-20 界首市华盛塑料机械有限公司 一种切削工具用合金钢材料及其制备方法
US11384415B2 (en) 2015-11-16 2022-07-12 Benteler Steel/Tube Gmbh Steel alloy with high energy absorption capacity and tubular steel product
DE102016005532A1 (de) * 2016-05-02 2017-11-02 Vladimir Volchkov Stahl
DE102016005531A1 (de) * 2016-05-02 2017-11-02 Vladimir Volchkov Niedriggekohlter Stahl
CN113186465A (zh) * 2016-06-30 2021-07-30 中车戚墅堰机车车辆工艺研究所有限公司 低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件
US10240224B2 (en) 2016-08-12 2019-03-26 GM Global Technology Operations LLC Steel alloy with tailored hardenability
KR20210062726A (ko) 2017-03-01 2021-05-31 에이케이 스틸 프로퍼티즈 인코포레이티드 극도로 높은 강도를 갖는 프레스 경화 강
DE102018207888A1 (de) * 2018-05-18 2019-11-21 Volkswagen Aktiengesellschaft Stahlmaterial und Verfahren zur Herstellung eines Stahlmaterials
CN112359284A (zh) * 2020-11-04 2021-02-12 南阳汉冶特钢有限公司 一种高强度低温韧性耐磨钢板hy550nme及其生产方法
CN113174530A (zh) * 2021-03-24 2021-07-27 邯郸钢铁集团有限责任公司 一种耐磨钢板及其生产方法
CN113073264B (zh) * 2021-03-24 2021-12-14 钢铁研究总院 一种高均匀伸长率2000MPa级超高强度钢及其制备方法
CN114959422A (zh) * 2022-06-06 2022-08-30 山东冀凯装备制造有限公司 一种高强度低合金贝氏体铸钢的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709481A1 (de) * 1994-10-31 1996-05-01 CREUSOT LOIRE INDUSTRIE (Société Anonyme) Niedrig legierter Stahl zur Herstellung von Spritzformen für plastische Werkstoffe oder für Gegenstände aus Gummi

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791500A (en) * 1954-03-19 1957-05-07 Int Nickel Co High strength aircraft landing gear steel alloy elements
FR1342845A (fr) * 1962-09-15 1963-11-15 Republic Steel Corp Perfectionnements apportés aux alliages d'acier et à leurs procédés de préparation
US3431101A (en) * 1964-06-26 1969-03-04 Tatsuro Kunitake Steel for hot working die having alloying elements of silicon, chromium and aluminum
JPS5855554A (ja) * 1981-09-29 1983-04-01 Mitsubishi Heavy Ind Ltd 構造用強靭鋼
SU1032039A1 (ru) * 1982-02-04 1983-07-30 Физико-технический институт АН БССР Штампова сталь
JPS5916948A (ja) * 1982-07-16 1984-01-28 Sumitomo Metal Ind Ltd 軟窒化用鋼
US4957702A (en) * 1988-04-30 1990-09-18 Qinghua University Air-cooling duplex bainite-martensite steels
US5094923A (en) * 1990-04-24 1992-03-10 Kennametal Inc. Air hardening steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709481A1 (de) * 1994-10-31 1996-05-01 CREUSOT LOIRE INDUSTRIE (Société Anonyme) Niedrig legierter Stahl zur Herstellung von Spritzformen für plastische Werkstoffe oder für Gegenstände aus Gummi

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905857A2 (de) 2006-09-29 2008-04-02 EZM Edelstahlzieherei Mark GmbH Hochfester Stahl und Verwendungen eines solchen Stahls

Also Published As

Publication number Publication date
US5695576A (en) 1997-12-09
FR2729974A1 (fr) 1996-08-02
DE69613868D1 (de) 2001-08-23
EP0725156A1 (de) 1996-08-07
DE69613868T2 (de) 2001-11-29
FR2729974B1 (fr) 1997-02-28
JPH08239738A (ja) 1996-09-17

Similar Documents

Publication Publication Date Title
EP0725156B1 (de) Stahl mit hoher Dehnbarkeit, Verfahren zur Herstellung und Verwendung
CN109072366B (zh) 耐磨损钢板及耐磨损钢板的制造方法
EP1649069B1 (de) Verfahren zur herstellung von blechen aus austenitischem eisen/kohlenstoff/mangan-stahl mit hoher festigkeit und hervorragender zähigkeit und kaltumformbarkeit, und so hergestellte bleche
CN109072367B (zh) 耐磨损钢板及耐磨损钢板的制造方法
EP0709481B1 (de) Niedrig legierter Stahl zur Herstellung von Spritzformen für plastische Werkstoffe oder für Gegenstände aus Gummi
KR102263332B1 (ko) 고경도 열간압연된 강 제품 및 이를 제조하는 방법
EP0851038B1 (de) Stahl und Verfahren zur Formung eines Stahlwerkstückes durch kalte plastische Verarbeitung
EP2279276B1 (de) Edelstahlprodukt, verwendung des produkts und herstellungsverfahren
CN108884531B (zh) 耐磨损钢板及耐磨损钢板的制造方法
KR101388334B1 (ko) 내지연 파괴 특성이 우수한 고장력 강재 그리고 그 제조 방법
FR2958943A1 (fr) Rail d&#39;acier traite thermiquement a haute teneur en carbone et a haute resistance et procede de fabrication associe
JPH08507107A (ja) 優れた熱間加工性を有する高マンガン鋼、および亀裂を生じないで高マンガン熱間圧延鋼板を製造する方法
EP1749895A1 (de) Herstellungsprozess von Stahlblechen mit hoher Festigkeit und exzellenter Dehnung und hergestellte Produkte
WO2012153009A1 (fr) Procede de fabrication d&#39;acier martensitique a tres haute resistance et tole ainsi obtenue
CH635248A5 (fr) Corps broyants forges, notamment boulets de broyage, et procede pour leur fabrication.
FR2774098A1 (fr) Acier et procede pour la fabrication de pieces de mecanique secables
EP3274483B1 (de) Teile mit bainitischer struktur mit hohen festigkeitseigenschaften und herstellungsverfahren
EP2257652B1 (de) Herstellungsverfahren von rostfreien austenitischen stahlblechen mit hohen mechanischen eigenschaften
EP1379706B1 (de) Werkzeugstahl von hoher zähigkeit, verfahren zum herstellen von teilen aus diesem stahl und so hergestellte teile
CN116254480A (zh) 一种硬度在HB550~600的含V-Ti耐磨钢及生产方法
JP5747398B2 (ja) 高強度鋼
JP2000178675A (ja) 複合ロール
JPH0615686B2 (ja) 耐摩毛構造用鋼材の製造法
JP3155398B2 (ja) 複合ロール
EP4347903A1 (de) Warmgeformtes stahlteil und herstellungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19960823

17Q First examination report despatched

Effective date: 19990225

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: USINOR INDUSTEEL (FRANCE)

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69613868

Country of ref document: DE

Date of ref document: 20010823

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010925

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Inventor name: TANIGUCHI, MAKOTO

Inventor name: SAKAGAMI, MASAHIRO

Inventor name: IKEDA, MASAHIRO

Inventor name: SUZUKI, KOKICHI

Inventor name: YAMAMOTO, KEIJI

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150121

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69613868

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160110