EP1749895A1 - Herstellungsprozess von Stahlblechen mit hoher Festigkeit und exzellenter Dehnung und hergestellte Produkte - Google Patents

Herstellungsprozess von Stahlblechen mit hoher Festigkeit und exzellenter Dehnung und hergestellte Produkte Download PDF

Info

Publication number
EP1749895A1
EP1749895A1 EP05291675A EP05291675A EP1749895A1 EP 1749895 A1 EP1749895 A1 EP 1749895A1 EP 05291675 A EP05291675 A EP 05291675A EP 05291675 A EP05291675 A EP 05291675A EP 1749895 A1 EP1749895 A1 EP 1749895A1
Authority
EP
European Patent Office
Prior art keywords
temperature
steel
content
sheet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05291675A
Other languages
English (en)
French (fr)
Inventor
Patrick Barges
Colin Scott
Gérard Petitgand
Fabien Perrard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
Arcelor France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arcelor France SA filed Critical Arcelor France SA
Priority to EP05291675A priority Critical patent/EP1749895A1/de
Priority to UAA200805640A priority patent/UA92039C2/ru
Priority to BRPI0614391A priority patent/BRPI0614391B8/pt
Priority to CN2006800333766A priority patent/CN101263239B/zh
Priority to RU2008117135/02A priority patent/RU2403311C2/ru
Priority to JP2008524537A priority patent/JP5283504B2/ja
Priority to KR1020127025650A priority patent/KR101232972B1/ko
Priority to EP06778838.0A priority patent/EP1913169B1/de
Priority to MX2008001653A priority patent/MX2008001653A/es
Priority to PCT/FR2006/001668 priority patent/WO2007017565A1/fr
Priority to KR1020087005304A priority patent/KR101222724B1/ko
Priority to CA2617879A priority patent/CA2617879C/fr
Priority to ES06778838.0T priority patent/ES2515116T3/es
Priority to US11/997,609 priority patent/US9732404B2/en
Publication of EP1749895A1 publication Critical patent/EP1749895A1/de
Priority to MA30616A priority patent/MA29691B1/fr
Priority to ZA200801068A priority patent/ZA200801068B/xx
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the invention relates to the manufacture of steel sheets, more particularly "TRIP” ("Transformation Induced Plasticity”) steels, ie having a plasticity induced by an allotropic transformation.
  • TRIP Transformation Induced Plasticity
  • TRIP steel cold-rolled sheet is produced by reheating during annealing in a field where austenitization occurs partially, followed by rapid cooling to avoid the formation of perlite and subsequent maintenance. isothermal in the bainitic domain: a part of the austenite is transformed into bainite, another part is stabilized by the increase of the carbon content of the islands of residual austenite. Thus, the initial presence of ductile residual austenite is associated with high deformability. Under the effect of a subsequent deformation, for example during stamping, the residual austenite of a TRIP steel part gradually changes to martensite, which results in a significant hardening. A steel exhibiting a TRIP behavior thus makes it possible to guarantee an important ability to deform and a high mechanical resistance, these two properties being usually antagonistic. This combination provides a high energy absorption potential, a quality typically sought in the automotive industry for shock-resistant parts.
  • the present invention aims to solve the problems mentioned above.
  • the subject of the invention is a composition for the manufacture of steel having a TRIP behavior, comprising, the contents being expressed by weight: 0.08% ⁇ C ⁇ 0.23%, 1% ⁇ Mn ⁇ 2 %, 1 ⁇ If ⁇ 2%, Al ⁇ 0.030%, 0.1% ⁇ V ⁇ 0.25%, Ti ⁇ 0.010%, S ⁇ 0.015%, P ⁇ 0.1%, 0.004% ⁇ N ⁇ 0.012% , and optionally one or more elements selected from: Nb ⁇ 0.1%, Mo ⁇ 0.5%, Cr ⁇ 0.3%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the development.
  • the carbon content is such that: 0.08% ⁇ C ⁇ 0.13%.
  • the carbon content is such that: 0.13% ⁇ C ⁇ 0.18%.
  • the carbon content is such that: 0.18% ⁇ C ⁇ 0.23%.
  • the manganese content is such that: 1.4% ⁇ Mn ⁇ 1.8%.
  • the manganese content satisfies: 1.5% ⁇ Mn ⁇ 1.7%.
  • the silicon content is such that: 1.4% ⁇ Si ⁇ 1.7%.
  • the aluminum content satisfies: Al ⁇ 0.015%.
  • the vanadium content is such that: 0.12% ⁇ V ⁇ 0.15%.
  • the titanium content is such that: Ti ⁇ 0.005%.
  • the invention also relates to a steel sheet of the above composition, the microstructure of which consists of ferrite, bainite, residual austenite, and possibly martensite.
  • the microstructure of the steel comprises a residual austenite content of between 8 and 20%.
  • the microstructure of the steel preferably comprises a martensite content of less than 2%.
  • the average size of the residual austenite islands is less than or equal to 2 microns.
  • the average size of the residual austenite islands is preferably less than or equal to 1 micrometer.
  • the temperature T fl at the end of the hot rolling, the speed V r of the cooling, the temperature T bob of the winding are chosen such that the microstructure of the steel comprises a residual austenite content of between 8 and 20%. .
  • the temperature T fl of the hot rolling end, the cooling speed V r , the winding temperature T bob are chosen such that the microstructure of the steel comprises a martensite content of less than 2%.
  • the temperature T fl of the hot rolling end, the cooling speed V r , the winding temperature T bob are chosen such that the average size of the residual austenite islands is less than or equal to 2 microns. and very preferably less than 1 micrometer.
  • the winding temperature T bob is less than 400 ° C.
  • the subject of the invention is also a process for manufacturing a cold-rolled sheet exhibiting a TRIP behavior, according to which a hot-rolled steel sheet manufactured according to any of the processes described above is supplied, the sheet, the sheet is cold-rolled, the sheet is subjected to a thermal annealing treatment, the heat treatment comprising a heating phase at a heating rate V cm , a holding phase at a holding temperature T m during a holding time t m , followed by a cooling phase at a cooling rate V rm when the temperature is lower than Ar3, followed by a holding phase at a holding temperature T ' m during a holding time t m , the parameters V cm , T m , t m , V rm , T ' m , t' m being chosen such that the microstructure of said steel is made of ferrite, bainite, residual austenite, and possibly martensite.
  • the parameters V cm , T m , t m , V rm , T ' m , t' m are chosen such that the microstructure of the steel comprises a residual austenite content of between 8 and 20%. .
  • the parameters V cm , T m , t m , V rm , T ' m , t' m are chosen such that the microstructure of the steel comprises less than 2% of martensite.
  • the parameters V cm , T m , t m , V rm , T ' m , t' m are chosen such that the average size of the residual austenite islands is less than 2 micrometers, very preferably less than at 1 micrometer.
  • the subject of the invention is also a process for manufacturing a cold-rolled sheet exhibiting a TRIP behavior, according to which the sheet is subjected to an annealing heat treatment, the heat treatment comprising a heating phase at a speed V cm. greater than or equal to 2 ° C / s, a holding phase at a holding temperature T m between Ac1 and
  • the holding temperature T m is preferably between 770 and 815 ° C.
  • the invention also relates to the use of a steel sheet having a TRIP behavior, according to one of the variants described above, or manufactured by one of the processes described above, for the manufacture of parts of structure or reinforcement elements in the automotive field.
  • a bainitic transformation takes place from an austenitic structure formed at high temperature , and slats of bainitic ferrite are formed. Given the much lower solubility of carbon in ferrite compared to austenite, the carbon of the austenite is rejected between the slats. Thanks to certain alloying elements of the steel composition according to the invention, in particular silicon and manganese, the precipitation of carbides, in particular of cementite, intervenes very little. Thus, the austenite interlatte is progressively enriched in carbon without the precipitation of carbides intervening.
  • the carbon content is between 0.08 and 0.23% by weight.
  • the carbon content is in a first range of 0.08 to 0.13% by weight.
  • the carbon content is greater than 0.13% and is less than or equal to 0.18% by weight.
  • the carbon content is in a third preferred range, where it is greater than 0.18 and less than or equal to 0.23% by weight.
  • the minimum carbon content of each of the three preferred ranges makes it possible to obtain a minimum strength of 600 MPa, 800 MPa and 950 MPa on cold-rolled and annealed sheets, respectively at each of the three preferred ranges. beaches above.
  • the maximum carbon content of each of three ranges makes it possible to guarantee satisfactory weldability, particularly in spot welding, if the level of resistance obtained in these three preferred ranges is taken into account.
  • an addition of manganese contributes to reducing the martensitic transformation start temperature Ms and stabilizing the austenite.
  • This addition of manganese also contributes to an effective hardening in solid solution and thus to obtaining increased strength.
  • the manganese is preferably between 1.4 and 1.8% by weight: a satisfactory curing and an increase in the stability of the austenite are combined in this way without, however, excessively increasing the quenchability in the welded joints.
  • the manganese content is between 1.5 and 1.7% by weight. In this way, the effects sought above are obtained without risk of formation of a harmful band structure that would come from a possible segregation of manganese during solidification.
  • silicon inhibits the precipitation of cementite during cooling from austenite by considerably retarding the growth of carbides: this is due to the fact that the solubility of silicon in cementite is very low. low and that this element increases the carbon activity in the austenite. In this way, a possible cementite seed forming will be surrounded by a silicon-rich austenitic zone which has been rejected at the precipitate-matrix interface.
  • This silicon-enriched austenite is also richer in carbon and the growth of cementite is slowed down because of the small diffusion resulting from the reduced carbon gradient between the cementite and the surrounding austenitic zone.
  • This addition of silicon thus contributes to stabilizing a sufficient amount of residual austenite to obtain a TRIP effect.
  • this addition of silicon makes it possible to increase the resistance thanks to hardening in solid solution.
  • an excessive addition of silicon causes the formation of strongly adherent oxides, which are difficult to eliminate during a stripping operation, and the possible appearance of surface defects due in particular to a lack of wettability in dip galvanizing operations.
  • the silicon content is preferably between 1.4 and 1.7% by weight.
  • Aluminum is a very effective element for the deoxidation of steel. Like silicon, it is very slightly soluble in cementite and could be used as such to prevent the precipitation of cementite during maintenance at a bainitic transformation temperature and stabilize the residual austenite.
  • the aluminum content is less than or equal to 0.030% by weight: in fact, as will be seen below, a very effective hardening is obtained by means of a precipitation of vanadium carbonitrides: when the aluminum content is greater than 0.030%, there is a risk of precipitation of aluminum nitride which reduces the amount of nitrogen likely to precipitate with vanadium.
  • this amount is less than or equal to 0.015% by weight, any risk of precipitation of aluminum nitride is discarded and the full effect of hardening by the precipitation of vanadium carbonitrides is obtained.
  • the titanium content is less than or equal to 0.010% by weight in order not to precipitate a significant amount of nitrogen in the form of titanium nitrides or carbonitrides.
  • the titanium content is preferably less than or equal to 0.005% by weight. Such a titanium content then makes it possible to avoid the precipitation of (Ti, V) N on hot-rolled sheets.
  • Vanadium and nitrogen are important elements of the invention: The inventors have demonstrated that, when these elements are present in defined amounts according to the invention, they precipitate in the form of very fine vanadium carbonitrides associated with hardening. important. When the vanadium content is less than 0.1% by weight or when the nitrogen content is less than 0.004% by weight, the precipitation of vanadium carbonitrides is limited and curing is insufficient. When the vanadium content is greater than 0.25% by weight or when the nitrogen content is greater than 0.012% by weight, the precipitation occurs at an early stage after hot rolling in the form of coarser precipitates.
  • the uniform or breaking elongation is particularly increased.
  • sulfur tends to precipitate excessively in the form of manganese sulfides which greatly reduce the formability.
  • Phosphorus is a known element to segregate at grain boundaries. Its content shall be limited to 0.1% by weight so as to maintain sufficient hot ductility and to promote breakage by peeling during tensile-shear tests carried out on spot-welded joints.
  • elements such as chromium and molybdenum that delay bainitic transformation and promote hardening by solid solution, can be added in amounts of less than or equal to 0.3 or 0.5% by weight, respectively.
  • Niobium may also optionally be added in an amount of less than or equal to 0.1% by weight so as to increase the resistance by additional precipitation of carbonitrides.
  • the cast semifinished products are first brought to a temperature above 1200 ° C. in order to attain at all points a temperature favorable to the high deformations which the steel will undergo during rolling as well as to avoid at this stage of manufacture the presence of vanadium carbonitrides.
  • the hot rolling step of these semi-finished products starting at more than 1200 ° C. can be done directly after casting. that an intermediate reheating step is not then necessary.
  • this minimum temperature of 1200 ° C. also makes it possible to carry out hot rolling in a fully austenitic phase under satisfactory conditions on a continuous train of hot rolling.
  • the semi-finished product is hot-rolled up to a rolling end temperature T f equal to or greater than 900 ° C.
  • T f rolling end temperature
  • the rolling is entirely carried out in the austenitic phase where the solubility of the vanadium carbonitrides is greater and where the probability of precipitation of V (CN) is the lowest.
  • the sheet thus obtained is then cooled with a cooling rate V r greater than or equal to 20 ° C./s in order to avoid a precipitation of the vanadium carbonitrides in the ferrite.
  • This cooling can be carried out for example by means of spraying water on the sheet.
  • the sheet obtained is then reeled at a temperature of less than or equal to 450 ° C.
  • the quasi-isothermal maintenance associated with this winding leads to the formation of a microstructure consisting of bainite, ferrite, residual austenite, possibly a small amount of martensite, as well as a hardening precipitation of vanadium carbonitrides.
  • the winding temperature is less than or equal to 400 ° C, the total elongation and the distributed elongation are increased.
  • T fl end temperature of hot rolling, the cooling rate V r and the winding bob temperature T such that the microstructure comprises a residual austenite content of between 8 and 20%:
  • the amount residual austenite is less than 8%, a sufficient TRIP effect can not be demonstrated during mechanical tests: in particular, it is demonstrated during tensile tests that the coefficient of hardening n is less than 0 , 2 and decreases rapidly with the deformation ⁇ .
  • the residual austenite is progressively transformed into martensite during the deformation, n is greater than 0.2 and the necking appears for larger deformations.
  • the residual austenite content is greater than 20%, the residual austenite formed under these conditions has a carbon content relatively weak and destabilizes too easily during a subsequent phase of deformation or cooling.
  • the parameters T f , V r , T bob will preferably be chosen so that the microstructure of the hot-rolled steel sheet contains less than 2% of martensite.
  • the elongation is reduced as well as the absorption energy related to the area under the traction curve ( ⁇ - ⁇ ).
  • ⁇ - ⁇ absorption energy related to the area under the traction curve
  • the excessive presence of martensite leads to a mechanical behavior approaching that of a Dual-Phase steel with an initial value of the coefficient of hardening n high decreasing when the rate of deformation increases.
  • the microstructure does not contain martensite.
  • the parameters T f , V r , T bob will also preferably be chosen so that the average size of the residual austenite islands of the microstructure is less than or equal to 2 micrometers. Indeed, when the austenite is transformed into martensite under the influence of the lowering of the temperature or of a deformation, the islands of martensite of average size superior to 2 micrometers play a preferential role for the damage as a result of decohesion with the matrix.
  • the parameters T f , V r , T bob will be chosen even more particularly, so that the average size of the residual austenite islands of the microstructure is less than or equal to 1 micrometer in order to increase their stability. to limit the damage to the matrix-island interface and to push the necking towards higher deformation values.
  • a hot-rolled sheet is first produced according to one of the variants which have been explained above. Indeed, the inventors have found that the microstructures and the mechanical properties obtained by the cold rolling and annealing manufacturing process which will be exposed, depend relatively little on the manufacturing conditions within the limits of the process variants set out above. , in particular variations of the winding temperature T bob . In this way, the method for manufacturing cold-rolled sheets has the advantage of being insensitive to accidental variations in the conditions for producing hot-rolled sheets.
  • a winding temperature of less than or equal to 400 ° C. will be chosen so as to keep more vanadium in solid solution available for precipitation during the subsequent annealing of the cold-rolled sheet.
  • the hot-rolled sheet is scraped by a method known per se so as to give it a surface state suitable for cold rolling.
  • the latter is carried out under customary conditions, for example by reducing the thickness of the hot-rolled sheet by 30 to 75%.
  • a rapid cooling is carried out at a speed V rm greater than 15 ° C / s when the temperature is lower than Ar3. Rapid cooling when the temperature is lower than Ar3 is important in order to limit the formation of ferrite before the bainitic transformation.
  • This rapid cooling phase when the temperature is lower than Ar 3 may be preceded, if necessary, by a slower cooling phase from the temperature T m .
  • the holding temperature T m is between 770 and 815 ° C: below 770 ° C, the recrystallization may be insufficient. Beyond 815 ° C, the fraction of intercritical austenite formed is too large and the hardening of ferrite by the precipitation of vanadium carbonitrides is less effective: in fact, the intercritical ferrite content is less and the total amount of vanadium precipitates, vanadium being rather soluble in the austenite. On the other hand, vanadium carbonitride precipitates that form are more likely to grow and coalesce at high temperatures.
  • the sheet is subjected to an annealing heat treatment whose parameters V cm , T m , t m , V rm , T ' m , t' m are chosen so that the microstructure of the steel obtained consists of ferrite, bainite and residual austenite, possibly martensite.
  • parameters will be chosen such that the residual austenite content is between 8 and 20%. These parameters will preferably be chosen such that the average size of the residual austenite islands is less than or equal to 2 micrometers, optimally less than or equal to 1 micrometer. These parameters will also be chosen so that the martensite content is less than 2%. Optimally, the microstructure does not include martensite.
  • the sheets manufactured according to the invention have a very high strength, significantly higher than 800 MPa for a carbon content of about 0.22%.
  • Their microstructure is composed of ferrite, bainite and residual austenite, as well as martensite in an amount of less than 2%.
  • residual austenite content 10.8%
  • the carbon concentration of the residual austenite islets is 1.36% by weight. This indicates that the austenite is sufficiently stable to obtain a TRIP effect as shown by the behavior observed during the tensile tests performed on these steel sheets.
  • the reference steel sheet R1 of bainito-pearlitic structure with a very low residual austenite content, does not exhibit TRIP behavior. Its resistance is less than 800 MPa, a level significantly lower than that of the steels of the invention.
  • I2 steel according to the invention also has excellent toughness since its ductile-brittle transition temperature is significantly lower (-35 ° C) than that of a reference steel (0 ° C).
  • the resulting microstructure was observed after Klemm reagent attack highlighting residual austenite islands and the average size of these islets was measured using image analysis software.
  • the average size of the islands is 1.1 microns.
  • the general microstructure is thinner with an average island size of 0.7 micrometer.
  • these islets have a more even character.
  • these characteristics particularly reduce the stress concentrations at the matrix-island interface.
  • the mechanical properties after cold rolling and annealing are as follows: Table 3: Mechanical tensile characteristics of cold-rolled and annealed sheets. Steel Holding temperature T m Re (MPa) Rm (MPa) At (%) I2 775 630 1000 25 795 658 980 28 815 650 938 26 R1 775 480 830 nd 795 480 820 30 815 470 820 30 na: Not determined.
  • the steel I2 manufactured according to the invention has a resistance greater than 900 MPa. At a maintenance temperature T m comparable, its resistance is significantly increased compared to the reference steel.
  • the cold-rolled and annealed steels according to the invention have mechanical properties which are not very sensitive to small variations in certain manufacturing parameters such as the winding temperature or the annealing temperature T m .
  • the invention allows the manufacture of steels with a TRIP behavior with increased mechanical strength.
  • Parts made from steel sheets according to the invention are used with advantage for the manufacture of structural parts or reinforcement elements in the automotive field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
EP05291675A 2005-08-04 2005-08-04 Herstellungsprozess von Stahlblechen mit hoher Festigkeit und exzellenter Dehnung und hergestellte Produkte Withdrawn EP1749895A1 (de)

Priority Applications (16)

Application Number Priority Date Filing Date Title
EP05291675A EP1749895A1 (de) 2005-08-04 2005-08-04 Herstellungsprozess von Stahlblechen mit hoher Festigkeit und exzellenter Dehnung und hergestellte Produkte
EP06778838.0A EP1913169B1 (de) 2005-08-04 2006-07-07 Herstellungsprozess von stahlblechen mit hoher festigkeit und exzellenter dehnung und hergestellte produkte
KR1020087005304A KR101222724B1 (ko) 2005-08-04 2006-07-07 연성이 우수한 고강도 강 시트의 제조 방법 및 그 제조방법에 의해 제조된 시트
CN2006800333766A CN101263239B (zh) 2005-08-04 2006-07-07 生产具有优异延展性的高强度钢板的方法和由此生产的板材
RU2008117135/02A RU2403311C2 (ru) 2005-08-04 2006-07-07 Способ производства высокопрочных стальных плит с великолепной пластичностью и производимые этим способом плиты
JP2008524537A JP5283504B2 (ja) 2005-08-04 2006-07-07 優れた延性を有する高強度鋼板を製造する方法およびこれにより製造された鋼板
KR1020127025650A KR101232972B1 (ko) 2005-08-04 2006-07-07 연성이 우수한 고강도 강 시트의 제조 방법 및 그 제조 방법에 의해 제조된 시트
UAA200805640A UA92039C2 (ru) 2005-08-04 2006-07-07 Композиция высокопрочной пластичной стали, лист стали и его применение, способ получения горячекатанного и холоднокатанного листа из стали
MX2008001653A MX2008001653A (es) 2005-08-04 2006-07-07 Procedimiento de fabricacion de chapas de acero que presentan una alta resistencia y una excelente ductilidad y chapas asi producidas.
PCT/FR2006/001668 WO2007017565A1 (fr) 2005-08-04 2006-07-07 Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites
BRPI0614391A BRPI0614391B8 (pt) 2005-08-04 2006-07-07 composição para a produção de aço, chapa de aço, processos para produção de uma chapa laminada à quente e à frio e uso de uma chapa de aço.
CA2617879A CA2617879C (fr) 2005-08-04 2006-07-07 Procede de fabrication de toles d'acier presentant une haute resistance et une excellente ductilite, et toles ainsi produites
ES06778838.0T ES2515116T3 (es) 2005-08-04 2006-07-07 Procedimiento de fabricación de chapas de acero que presentan una elevada resistencia y una excelente ductilidad, y chapas así producidas
US11/997,609 US9732404B2 (en) 2005-08-04 2006-07-07 Method of producing high-strength steel plates with excellent ductility and plates thus produced
MA30616A MA29691B1 (fr) 2005-08-04 2008-02-01 Procede de fabrication de toles d'acier presentant une haute resistance et une excellente ductilite, et toles ainsi produites
ZA200801068A ZA200801068B (en) 2005-08-04 2008-02-04 Method of producing high-strength steel plates with excellent ductility and plates thus produced

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05291675A EP1749895A1 (de) 2005-08-04 2005-08-04 Herstellungsprozess von Stahlblechen mit hoher Festigkeit und exzellenter Dehnung und hergestellte Produkte

Publications (1)

Publication Number Publication Date
EP1749895A1 true EP1749895A1 (de) 2007-02-07

Family

ID=35149545

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05291675A Withdrawn EP1749895A1 (de) 2005-08-04 2005-08-04 Herstellungsprozess von Stahlblechen mit hoher Festigkeit und exzellenter Dehnung und hergestellte Produkte
EP06778838.0A Active EP1913169B1 (de) 2005-08-04 2006-07-07 Herstellungsprozess von stahlblechen mit hoher festigkeit und exzellenter dehnung und hergestellte produkte

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06778838.0A Active EP1913169B1 (de) 2005-08-04 2006-07-07 Herstellungsprozess von stahlblechen mit hoher festigkeit und exzellenter dehnung und hergestellte produkte

Country Status (14)

Country Link
US (1) US9732404B2 (de)
EP (2) EP1749895A1 (de)
JP (1) JP5283504B2 (de)
KR (2) KR101232972B1 (de)
CN (1) CN101263239B (de)
BR (1) BRPI0614391B8 (de)
CA (1) CA2617879C (de)
ES (1) ES2515116T3 (de)
MA (1) MA29691B1 (de)
MX (1) MX2008001653A (de)
RU (1) RU2403311C2 (de)
UA (1) UA92039C2 (de)
WO (1) WO2007017565A1 (de)
ZA (1) ZA200801068B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1990430A1 (de) * 2007-04-17 2008-11-12 Nakayama Steel Works, Ltd. Widerstandsfähige heißgewalzte Stahlplatte und Herstellungsverfahren dafür
WO2016016676A1 (fr) * 2014-07-30 2016-02-04 ArcelorMittal Investigación y Desarrollo, S.L. Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé
CN105950970A (zh) * 2016-05-09 2016-09-21 北京科技大学 一种超细晶复合贝氏体高强韧汽车用钢及其制备方法
WO2021078111A1 (zh) * 2019-10-21 2021-04-29 宝山钢铁股份有限公司 一种延展性优异的高强度钢及其制造方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258432B2 (en) * 2009-03-04 2012-09-04 Lincoln Global, Inc. Welding trip steels
JP5779847B2 (ja) * 2009-07-29 2015-09-16 Jfeスチール株式会社 化成処理性に優れた高強度冷延鋼板の製造方法
DE102010012830B4 (de) 2010-03-25 2017-06-08 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung einer Kraftfahrzeugkomponente und Karosseriebauteil
CN101942601B (zh) * 2010-09-15 2012-11-14 北京科技大学 一种含v热轧相变诱发塑性钢的制备方法
US9314880B2 (en) * 2010-10-21 2016-04-19 Stoody Company Chromium free hardfacing welding consumable
CN103249847B (zh) * 2010-11-10 2015-06-10 Posco公司 制造抗拉强度等级为590MPa、可加工性优异且力学性能偏差小的高强度冷轧/热轧TRIP钢的方法
CN102140606A (zh) * 2011-03-17 2011-08-03 北京科技大学 一种热轧高强低合金多相钢及其制备方法
JP5636347B2 (ja) 2011-08-17 2014-12-03 株式会社神戸製鋼所 室温および温間での成形性に優れた高強度鋼板およびその温間成形方法
CZ303949B6 (cs) * 2011-09-30 2013-07-10 Západoceská Univerzita V Plzni Zpusob dosazení TRIP struktury ocelí s vyuzitím deformacního tepla
RU2581333C2 (ru) 2012-01-13 2016-04-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячештампованная сталь и способ ее изготовления
MX357148B (es) 2012-01-13 2018-06-28 Nippon Steel & Sumitomo Metal Corp Lamina de acero laminada en frio y metodo para la produccion de la misma.
EP2690183B1 (de) * 2012-07-27 2017-06-28 ThyssenKrupp Steel Europe AG Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
TR201903460T4 (tr) * 2012-09-14 2019-04-22 Ilsenburger Grobblech Gmbh Düşük alaşımlı, yüksek mukavemetli bir çelik için çelik alaşım.
CN103805838B (zh) 2012-11-15 2017-02-08 宝山钢铁股份有限公司 一种高成形性超高强度冷轧钢板及其制造方法
EP2840159B8 (de) 2013-08-22 2017-07-19 ThyssenKrupp Steel Europe AG Verfahren zum Herstellen eines Stahlbauteils
CN104018069B (zh) * 2014-06-16 2016-01-20 武汉科技大学 一种高性能低碳含Mo贝氏体钢及其制备方法
WO2016020714A1 (en) * 2014-08-07 2016-02-11 Arcelormittal Method for producing a coated steel sheet having improved strength, ductility and formability
JP5935843B2 (ja) * 2014-08-08 2016-06-15 Jfeスチール株式会社 スポット溶接性に優れた冷延鋼板およびその製造方法
CN104233092B (zh) * 2014-09-15 2016-12-07 首钢总公司 一种热轧trip钢及其制备方法
CN105039847B (zh) * 2015-08-17 2017-01-25 攀钢集团攀枝花钢铁研究院有限公司 铌合金化tam钢及其制造方法
WO2017109538A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a steel sheet having improved strength, ductility and formability
WO2017163098A1 (fr) 2016-03-25 2017-09-28 Arcelormittal Procede de fabrication de toles d'aciers laminees a froid et soudees, et toles ainsi produites
CN105714189B (zh) * 2016-04-28 2017-09-15 北京科技大学 一种铌、钒复合添加的具有高强塑积汽车用钢及制造方法
TWI635189B (zh) * 2017-06-21 2018-09-11 中國鋼鐵股份有限公司 鋼材之製造方法及其應用
CN107488814B (zh) * 2017-08-23 2018-12-28 武汉钢铁有限公司 基于CSP流程的800MPa级热轧TRIP钢及制造方法
CN107557692B (zh) * 2017-08-23 2019-01-25 武汉钢铁有限公司 基于CSP流程的1000MPa级热轧TRIP钢及制造方法
CN107475627B (zh) * 2017-08-23 2018-12-21 武汉钢铁有限公司 基于CSP流程的600MPa级热轧TRIP钢及制造方法
WO2019111028A1 (en) * 2017-12-05 2019-06-13 Arcelormittal Cold rolled and annealed steal sheet and method of manufacturing the same
WO2019122963A1 (en) 2017-12-19 2019-06-27 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof
CN109943769B (zh) * 2017-12-20 2021-06-15 宝山钢铁股份有限公司 780MPa级别低碳低合金TRIP钢及其快速热处理方法
CN108486477B (zh) * 2018-05-30 2019-05-10 攀钢集团攀枝花钢铁研究院有限公司 1000MPa级高加工硬化指数冷轧高强钢板及其制备方法
EP3887148A1 (de) * 2018-11-29 2021-10-06 Tata Steel Nederland Technology B.V. Verfahren zur herstellung eines hochfesten stahlstreifens mit guter tiefziehbarkeit und dadurch hergestellter hochfester stahl
CN116356125A (zh) * 2020-04-16 2023-06-30 江苏沙钢集团有限公司 一种高强度座椅滑轨用钢及其基于薄带铸轧生产的方法
RU2751072C1 (ru) * 2020-09-02 2021-07-07 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства высокопрочной холоднокатаной стали
CN112080703B (zh) * 2020-09-23 2021-08-17 辽宁衡业高科新材股份有限公司 一种960MPa级微残余应力高强钢板及其热处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974677A1 (de) * 1997-01-29 2000-01-26 Nippon Steel Corporation Hochfestes Stahlblech hoch widerstandsfähig gegen dynamische Umformung mit exzellenter Verarbeitbarkeit sowie Verfahren zu seiner Herstellung
EP1099769A1 (de) * 1999-11-12 2001-05-16 Usinor Consultants Verfahren zur Herstellung von warmgewalztem, hochfestem Stahlblech zur Umformung und insbesondere zum Tiefziehen
JP2001152254A (ja) * 1999-11-30 2001-06-05 Kawasaki Steel Corp 材質均一性に優れた高加工性熱延高張力鋼板の製造方法
EP1375820A1 (de) * 2001-03-09 2004-01-02 Sumitomo Metal Industries, Ltd. Stahlrohr zur verwendung als eingebettetes, aufgeweitetes rohr und verfahren zum einbetten eines ölfeldstahlrohrs
WO2004063410A1 (en) * 2003-01-15 2004-07-29 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
EP1559798A1 (de) * 2004-01-28 2005-08-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hochfestes kaltgewalztes Stahlblech mit niedrigem Strechgrenzenverhältnis und Verfahren zu seiner Herstellung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230715A (ja) 1987-06-26 1989-09-14 Nippon Steel Corp プレス成形性の優れた高強度冷延鋼板の製造方法
JPH0733551B2 (ja) 1989-02-18 1995-04-12 新日本製鐵株式会社 優れた成形性を有する高強度鋼板の製造方法
CN1076223A (zh) * 1992-03-11 1993-09-15 中国科学院金属研究所 热轧低合金高强度钢板及其制备工艺
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
JP3958921B2 (ja) * 2000-08-04 2007-08-15 新日本製鐵株式会社 塗装焼付硬化性能と耐常温時効性に優れた冷延鋼板及びその製造方法
JP4445161B2 (ja) 2001-06-19 2010-04-07 新日本製鐵株式会社 疲労強度に優れた厚鋼板の製造方法
JP4304421B2 (ja) * 2002-10-23 2009-07-29 住友金属工業株式会社 熱延鋼板
US7981224B2 (en) * 2003-12-18 2011-07-19 Nippon Steel Corporation Multi-phase steel sheet excellent in hole expandability and method of producing the same
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
US20050247378A1 (en) * 2004-04-22 2005-11-10 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) High-strength cold rolled steel sheet having excellent formability, and plated steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974677A1 (de) * 1997-01-29 2000-01-26 Nippon Steel Corporation Hochfestes Stahlblech hoch widerstandsfähig gegen dynamische Umformung mit exzellenter Verarbeitbarkeit sowie Verfahren zu seiner Herstellung
EP1099769A1 (de) * 1999-11-12 2001-05-16 Usinor Consultants Verfahren zur Herstellung von warmgewalztem, hochfestem Stahlblech zur Umformung und insbesondere zum Tiefziehen
JP2001152254A (ja) * 1999-11-30 2001-06-05 Kawasaki Steel Corp 材質均一性に優れた高加工性熱延高張力鋼板の製造方法
EP1375820A1 (de) * 2001-03-09 2004-01-02 Sumitomo Metal Industries, Ltd. Stahlrohr zur verwendung als eingebettetes, aufgeweitetes rohr und verfahren zum einbetten eines ölfeldstahlrohrs
WO2004063410A1 (en) * 2003-01-15 2004-07-29 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
EP1559798A1 (de) * 2004-01-28 2005-08-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hochfestes kaltgewalztes Stahlblech mit niedrigem Strechgrenzenverhältnis und Verfahren zu seiner Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 23 10 February 2001 (2001-02-10) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1990430A1 (de) * 2007-04-17 2008-11-12 Nakayama Steel Works, Ltd. Widerstandsfähige heißgewalzte Stahlplatte und Herstellungsverfahren dafür
WO2016016676A1 (fr) * 2014-07-30 2016-02-04 ArcelorMittal Investigación y Desarrollo, S.L. Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé
WO2016016707A1 (fr) * 2014-07-30 2016-02-04 Arcelormittal Procédé de fabrication de tôles d'acier pour durcissement sous presse, et pièces obtenues par ce procédé
US9845518B2 (en) 2014-07-30 2017-12-19 Arcelormittal Method for fabricating steel sheet for press hardening, and parts obtained by this method
CN105950970A (zh) * 2016-05-09 2016-09-21 北京科技大学 一种超细晶复合贝氏体高强韧汽车用钢及其制备方法
CN105950970B (zh) * 2016-05-09 2018-01-02 北京科技大学 一种超细晶复合贝氏体高强韧汽车用钢及其制备方法
WO2021078111A1 (zh) * 2019-10-21 2021-04-29 宝山钢铁股份有限公司 一种延展性优异的高强度钢及其制造方法

Also Published As

Publication number Publication date
RU2008117135A (ru) 2009-11-10
RU2403311C2 (ru) 2010-11-10
WO2007017565A1 (fr) 2007-02-15
US20080199347A1 (en) 2008-08-21
EP1913169A1 (de) 2008-04-23
CN101263239A (zh) 2008-09-10
US9732404B2 (en) 2017-08-15
KR101232972B1 (ko) 2013-02-13
JP5283504B2 (ja) 2013-09-04
BRPI0614391B8 (pt) 2017-03-21
JP2009503267A (ja) 2009-01-29
BRPI0614391B1 (pt) 2016-10-18
KR20120114411A (ko) 2012-10-16
UA92039C2 (ru) 2010-09-27
BRPI0614391A2 (pt) 2011-03-22
ZA200801068B (en) 2008-12-31
MA29691B1 (fr) 2008-08-01
MX2008001653A (es) 2008-04-22
CA2617879C (fr) 2011-11-15
CN101263239B (zh) 2012-06-27
ES2515116T3 (es) 2014-10-29
EP1913169B1 (de) 2014-09-03
KR20080038202A (ko) 2008-05-02
KR101222724B1 (ko) 2013-01-16
CA2617879A1 (fr) 2007-02-15

Similar Documents

Publication Publication Date Title
EP1913169B1 (de) Herstellungsprozess von stahlblechen mit hoher festigkeit und exzellenter dehnung und hergestellte produkte
EP2155915B1 (de) Verfahren zur herstellung kaltgewalzter und geglühter stahlbleche von sehr hoher festigkeit und in diesem verfahren hergestellte bleche
EP2718469B1 (de) Kaltgewalztes stahlblech mit zink oder zinklegierungsbeschichtung, herstellungsverfahren dafür und verwendung eines solchen stahlblechs
EP2291547B1 (de) Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche
EP3084014B1 (de) Hochfester stahl und herstellungsverfahren dafür
EP2689045B1 (de) Warmgewalztblech und verfahrung zur herstellung dieses blech
CA2587858C (fr) Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite
EP2630269B1 (de) Warm- oder kaltgewaltes stahlblech, dessen hestellungsvefahren und dessen verwendung in der automobilindustrie
EP2155916B2 (de) Stahl von geringer dichte mit guten prägeeigenschaften
EP3146083B1 (de) Doppelgeglühtes stahlblech mit hoher mechanischer festigkeit und duktilität, verfahren zur herstellung und verwendung solcher bleche
EP2855725B1 (de) Warm- oder kaltgewalzter stahl mit niedriger dichte, verfahren zur realisierung davon und verwendung davon
EP3307921A2 (de) Hochfester stahl und herstellungsverfahren
EP2020451A1 (de) Verfahren zur Herstellung von Stahlblechen mit hoher Widerstandsfähigkeit und Duktilität und damit hergestellte Bleche
WO2012153009A1 (fr) Procede de fabrication d'acier martensitique a tres haute resistance et tole ainsi obtenue
FR2833617A1 (fr) Procede de fabrication de toles laminees a froid a tres haute resistance d'aciers dual phase micro-allies
EP1099769B1 (de) Verfahren zur Herstellung von warmgewalztem, hochfestem Stahlblech zur Umformung und insbesondere zum Tiefziehen
EP2257652B1 (de) Herstellungsverfahren von rostfreien austenitischen stahlblechen mit hohen mechanischen eigenschaften
FR2864108A1 (fr) Tole en acier inoxydable presentant une grande resistance et un bon allongement, et procede de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070807

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: YU

Payment date: 20070222

Extension state: MK

Payment date: 20070222

Extension state: HR

Payment date: 20070222

Extension state: BA

Payment date: 20070222

Extension state: AL

Payment date: 20070222

17Q First examination report despatched

Effective date: 20070914

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080326