EP0719260A1 - Butenol-triazolyl derivate, deren herstellung und deren verwendung als mikrobizide - Google Patents

Butenol-triazolyl derivate, deren herstellung und deren verwendung als mikrobizide

Info

Publication number
EP0719260A1
EP0719260A1 EP94928316A EP94928316A EP0719260A1 EP 0719260 A1 EP0719260 A1 EP 0719260A1 EP 94928316 A EP94928316 A EP 94928316A EP 94928316 A EP94928316 A EP 94928316A EP 0719260 A1 EP0719260 A1 EP 0719260A1
Authority
EP
European Patent Office
Prior art keywords
carbon atoms
halogen
formula
alkyl
alkoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP94928316A
Other languages
English (en)
French (fr)
Inventor
Michael Lindemann
Stefan Dutzmann
Heinz-Wilhelm Dehne
Gerd Hänssler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4419812A external-priority patent/DE4419812A1/de
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0719260A1 publication Critical patent/EP0719260A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/40Halogenated unsaturated alcohols
    • C07C33/50Halogenated unsaturated alcohols containing six-membered aromatic rings and other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/75Reactions with formaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/527Unsaturated compounds containing keto groups bound to rings other than six-membered aromatic rings
    • C07C49/567Unsaturated compounds containing keto groups bound to rings other than six-membered aromatic rings containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals

Definitions

  • the present invention relates to new hydroxyethyl azolyl derivatives, a process for their preparation and their use as microbicides in crop protection and in protecting material.
  • X represents hydrogen, halogen, alkyl having 1 to 4 carbon atoms or
  • Z represents halogen, alkyl having 1 to 4 carbon atoms, haloalkyl having 1 to
  • n 0, 1, 2 or 3
  • the substances according to the invention contain an asymmetrically substituted carbon atom. They can therefore occur in optical isomer forms.
  • the present invention relates both to the individual isomers and to their mixtures.
  • the fungicidal properties of the substances according to the invention exceed 2- (2-chlorophenyl) -3- (2,4-dichlorophenyl) -3-hydroxy-4- (l, 2,4-t-riazole-l) -yl) -but-l-ene and the 2- (2-fluorophenyl) -3- (4-chlorophenyl) -3-hydroxy-4- (l, 2,4-triazol-l-yl) -but-l -en.
  • Formula (I) provides a general definition of the hydroxyethyl azolyl derivatives according to the invention.
  • X preferably represents hydrogen, fluorine, chlorine, methyl, ethyl, n-propyl, isopropyl, methoxy and ethoxy.
  • Z preferably represents fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, trichloromethyl, trifluoromethyl, difluoromethyl, methoxy, Ethoxy, trifluoromethoxy, difluoromethoxy, nitro or for phenyl which is optionally mono- or disubstituted, identical or different, by fluorine and / or chlorine.
  • n preferably represents the numbers 0, 1, 2 or 3. If m represents 2 or 3, Z can represent the same or different radicals.
  • Preferred substances according to the invention are also addition products of acids and those hydroxyethyl azolyl derivatives of the formula (I) in which X, Z and m have the meanings given as preferred.
  • the acids that can be added preferably include hydrohalic acids, e.g. hydrochloric acid and hydrobromic acid, especially hydrochloric acid, also phosphoric acid, nitric acid, sulfuric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, e.g. Acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid, citric acid, salicylic acid, sorbic acid and lactic acid as well as sulfonic acids, e.g. p-toluenesulfonic acid, 1,5-naphthalenedisulfonic acid or camphorsulfonic acid,
  • hydrohalic acids e.g. hydrochloric acid and hydrobromic acid, especially hydrochloric acid, also phosphoric acid, nitric acid, sulfuric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, e.g. Acetic acid, maleic acid, succinic acid, fumaric acid, tartaric
  • preferred compounds according to the invention are addition products from salts of metals of the II. To IV. Main and of the I. and II. And IV. To VIII. Subgroup of the Periodic Table of the Elements and those hydroxyethyl azolyl derivatives of the formula (I) in which X, Z and m have the meanings indicated as preferred.
  • Salts of copper, zinc, manganese, magnesium, tin, iron and nickel are particularly preferred.
  • Anions of these salts are those which are derived from acids which lead to physiologically tolerable addition products.
  • Particularly preferred acids in this context are the hydrohalic acids, such as, for example, hydrochloric acid and bromine, and also phosphoric acid, nitric acid and sulfuric acid.
  • Formula (II) provides a general definition of the butenol derivatives required as starting materials in variant (a) of the process according to the invention.
  • X, Z and m preferably have those meanings which have already been mentioned preferably in connection with the description of the substances of the formula (I) according to the invention for these radicals or this index.
  • Shark stands for chlorine or bromine.
  • butenol derivatives of the formula (II) have hitherto not been known. They can be prepared by using cyclopropyl ketones of the formula
  • organometallic compounds required in the above process for the preparation of butenol derivatives of the formula (II) as reaction components Formula (VI) are known or can be prepared by methods known in principle (cf. J. Org. Chem. 41 (1976), 3725). So you get these substances by using styrene derivatives of the formula
  • bromine in the presence of a diluent, such as carbon tetrachloride, chloroform or dichloromethane, at temperatures between 0 ° C. and 30 ° C., the resulting bromides of the formula
  • a diluent e.g. Toluene, tetrahydrofuran or
  • Dioxane and in the presence of a base, e.g. Diazabicyclonones (DBN), Diazabicycloundecen (DBU) or potassium hydroxide in the presence of a base, e.g. Diazabicyclonones (DBN), Diazabicycloundecen (DBU) or potassium hydroxide in the presence of a base, e.g. Diazabicyclonones (DBN), Diazabicycloundecen (DBU) or potassium hydroxide in the presence of a base, e.g. Diazabicyclonones (DBN), Diazabicycloundecen (DBU) or potassium hydroxide in the presence of a base, e.g. Diazabicyclonones (DBN), Diazabicycloundecen (DBU) or potassium hydroxide in the presence of a base, e.g. Diazabicyclonones (DBN), Diazabicycloundecen (DBU) or
  • Phase transfer catalyst at temperatures between 0 ° C and 130 ° C and the resulting bromostyrene derivatives of the formula
  • magnesium shavings in the presence of a diluent such as diethyl ether or tetrahydrofuran, at temperatures between 0 ° C and 70 ° C.
  • a diluent such as diethyl ether or tetrahydrofuran
  • Suitable diluents in the above process for the preparation of butenol derivatives of the formula (II) are all inert organic solvents which are customary for such reactions.
  • Ethers such as diethyl ether, tetrahydrofuran and dioxane can preferably be used.
  • reaction temperatures can be varied within a certain range. Generally one works at temperatures between -80 ° C and + 60 ° C.
  • the processing takes place according to usual methods. In general, the procedure is first to acidify and add water, then to separate the organic phase, to wash and to concentrate after drying.
  • Formula (III) provides a general definition of the oxiranes required as starting materials in variant (b) of the process according to the invention.
  • X, Z and m preferably have those meanings which are already in connection with the description of the substances of the formula according to the invention
  • the oxiranes of the formula (III) have hitherto not been known. They can be made by c) butenol derivatives of the formula
  • the bases used in the preparation of oxiranes of the formula (III) by process (c) above are all those which are customarily suitable for such reactions inorganic and organic bases.
  • Alkali metal carbonates such as sodium and potassium carbonate, furthermore alkali metal hydroxides, such as sodium and potassium hydroxide, furthermore alkali metal alcoholates, such as sodium and potassium methylate and ethylate, and potassium tert-butoxide, and furthermore lower tertiary alkyl amines, cycloalkyl amines and aralkyl amines, are preferably usable , such as triethylamine in particular.
  • Suitable diluents for the preparation of oxiranes of the formula (DI) according to process (c) above are all customary inert, organic solvents.
  • Nitriles such as acetonitrile, furthermore aromatic hydrocarbons such as benzene, toluene and dichlorobenzene, preferably also formamides such as dimethylformamide and strongly polar solvents such as dimethyl sulfoxide and hexamethylphosphoric acid triamide can be used.
  • reaction temperatures can be varied within a certain range in the preparation of oxiranes of the formula (III) according to process (c) above. In general, temperatures between 0 ° C and 100 ° C, preferably between 20 ° C and 60 ° C.
  • reaction When carrying out process (c) above for the preparation of oxiranes of the formula (III), the reaction is generally carried out under atmospheric pressure. However, it is also possible to work under increased or reduced pressure.
  • Formula (X) provides a general definition of the ketones required as starting materials in carrying out process (d) above for the preparation of oxiranes of the formula (III).
  • X, Z and m preferably have those
  • ketones of formula (X) are not yet known. They can be prepared by using benzyl ketones of the formula
  • Formula (XII) provides a general definition of the benzyl ketones required as starting materials in the preparation of the ketones of the formula (X) by the above process.
  • X, Z and m preferably have those meanings which have already been mentioned preferably in connection with the description of the substances of the formula (I) according to the invention for these radicals or for this index.
  • the benzyl ketones of the formula (XII) are known or can be prepared by methods known in principle (cf. EP-OS 0 461 483 and EP-OS 0 461 502).
  • the substances required as reaction components in carrying out the above process (d), namely bis (dimethylamino) methane of the formula (XIII) or paraformaldehyde or formalin (aqueous formaldehyde solution with a formaldehyde content of 37%) are known.
  • reaction temperatures can be varied within a substantial range. In general, temperatures between 20 ° C and 120 ° C, preferably between 30 ° C and 110 ° C.
  • the processing takes place according to usual methods.
  • Suitable catalysts for carrying out variant ( ⁇ ) of the above process for the preparation of ketones of the formula (X) are all reaction accelerators customary for such reactions.
  • Alkali metal hydroxides such as sodium hydroxide or potassium hydroxide, can preferably be used.
  • Suitable diluents for carrying out variant ( ⁇ ) of the above process for the preparation of ketones of the formula (X) are all inert organic solvents which are customary for such reactions.
  • Alcohols such as methanol or ethanol, can preferably be used.
  • the reaction temperatures can be varied within a certain range. In general, temperatures between 10 ° C and 40 ° C, preferably at room temperature.
  • variant ( ⁇ ) of the above process for the preparation of ketones of the formula (X) is carried out, 1.5 to 2.5 equivalents of paraformaldehyde or formalin and one equivalent are generally employed per mole of benzyl ketone of the formula (XII) Amount of catalyst. - The processing takes place according to usual methods.
  • the dimethylsulfonium methylide of the formula (XI) required as reaction component when carrying out the above process (d) for the preparation of oxiranes of the formula (III) is known (cf. Heterocycles 8, 397 (1977)). It is used in the above implementation in a freshly prepared state, e.g. in situ. from trimethylsulfonium halide or trimethylsulfonium methylsulfate, in the presence of a strong base, e.g. Sodium hydride, sodium amide, sodium methylate, potassium tert-butoxide or potassium hydroxide, in the presence of a diluent, such as tert-butanol or dimethyl sulfoxide.
  • a strong base e.g. Sodium hydride, sodium amide, sodium methylate, potassium tert-butoxide or potassium hydroxide, in the presence of a diluent, such as tert-butanol or dimethyl sul
  • Alcohols such as tert-butanol, ethers, such as tetrahydrofuran or dioxane, and also aliphatic and aromatic hydrocarbons, such as benzene, toluene or xylene, and strongly polar solvents, such as dimethyl sulfoxide, can preferably be used.
  • reaction temperatures can be carried out when carrying out the above process
  • Alkali metal carbonates such as sodium and potassium carbonate
  • alkali metal hydroxides such as sodium and potassium hydroxide
  • alkali metal alcoholates such as sodium and potassium methylate and ethylate, and potassium tert-butoxide
  • alkali metal alcoholates such as sodium and potassium methylate and ethylate, and potassium tert-butoxide
  • furthermore lower tertiary alkylamines, cycloalkylamines and aralkylamines such as, in particular, triethylamine.
  • Nitriles such as acetonitrile, aromatic hydrocarbons such as benzene, toluene and dichlorobenzene, formamides such as dimethylformamide and strongly polar solvents such as dimethyl sulfoxide and hexamethylphosphoric triamide are preferably used.
  • reaction temperatures can be varied within a substantial range when carrying out the process according to the invention. In general, temperatures between 0 ° C and 130 ° C, preferably between 40 ° C and 120 ° C.
  • the process according to the invention is also generally carried out under normal pressure. However, it is also possible to work under increased or reduced pressure.
  • 1,2,4-triazole of the formula (IV) and 0 are generally employed per mol of butenol derivative of the formula (II) or of oxirane of the formula (III) , 3 to 3 moles of acid binder.
  • the processing takes place according to usual methods.
  • the procedure is such that the reaction mixture is concentrated, the remaining residue is taken up in an organic solvent which is not very miscible with water, washed with water and concentrated after drying.
  • the remaining product can optionally be subjected to further cleaning processes.
  • hydroxyethyl azolyl derivatives of the formula (I) according to the invention can be converted into acid addition salts or metal salt complexes.
  • the acid addition salts of the compounds of formula (I) can be easily prepared by conventional salt formation methods, e.g. by dissolving a compound of formula (I) in a suitable inert solvent and adding the
  • Acid e.g. Hydrochloric acid can be obtained and in a known manner, e.g. by filtration, isolated and, if necessary, cleaned by washing with an inert organic solvent.
  • metal salt complexes according to the invention were mentioned as preferred metal salts.
  • the metal salt complexes of the compounds of formula (I) can be obtained in a simple manner by conventional methods, e.g. by dissolving the metal salt in alcohol, e.g. Ethanol and adding to compounds of
  • Metal salt complexes can be prepared in a known manner, e.g. by filtering, isolating and, if necessary, cleaning by recrystallization.
  • the active compounds according to the invention have a strong microbicidal action and can be used to protect against undesirable microorganisms, such as fungi and bacteria, in crop protection and in the material.
  • Fungicides are used in crop protection to combat Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.
  • Xanthomonas species such as Xanthomonas oryzae
  • Pseudomonas species such as Pseudomonas lachrymans
  • Erwinia species such as Erwinia amylovora
  • Pythium species such as Pythium ultimum
  • Phytophthora species such as Phytophthora infestans
  • Pseudoperonospora species such as Pseudoperonospora humuli or Pseudoperonospora cubensis;
  • P 1 asm opara species such as Plasmopara viticola
  • Peronospora species such as Peronospora pisi or P. brassicae;
  • Erysiphe species such as Erysiphe graminis
  • Sphaerotheca species such as Sphaerotheca fuliginea
  • Podosphaera species such as Podosphaera leucotricha
  • Venturia species such as Venturia inaequalis
  • Pyrenophora species such as Pyrenophora teres or P. graminea;
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • Cochliobolus species such as Cochliobplus sativus; (Conidial form: Drechslera, Syn: Helminthosporium);
  • Uromyces species such as Uromyces appendiculatus
  • Puccinia species such as Puccinia recondita
  • Tilletia species such as Tilletia caries
  • Ustilago species such as Ustilago nuda or Ustilago avenae
  • Pellicularia species such as Pellicularia sasakii
  • Pyricularia species such as Pyricularia oryzae
  • Fusarium species such as Fusarium culmorum
  • Botrytis species such as Botrytis cinerea
  • Septoria species such as Septoria nodorum
  • Leptosphaeria species such as Leptosphaeria nodorum
  • Cercospora species such as Cercospora canescens
  • Alternaria species such as Alternaria brassicae
  • Pseudocercosporella species such as Pseudocercosporella he otrichoides.
  • the active compounds according to the invention are particularly suitable for combating Pyricularia oryzae and Pellicularia sasakii on rice and for combating Cereal diseases such as Leptosphaeria nodorum, Cochliobolus sativus, Pyrenophora teres, Pseudocercosporella herpotrichoides, Erysiphe and Fusarium species.
  • Cereal diseases such as Leptosphaeria nodorum, Cochliobolus sativus, Pyrenophora teres, Pseudocercosporella herpotrichoides, Erysiphe and Fusarium species.
  • the substances according to the invention have a very good and broad in vitro effect.
  • the substances according to the invention can be used to protect technical materials against attack and destruction by undesired microorganisms.
  • technical materials are to be understood as non-living materials that have been prepared for use in technology.
  • technical materials which are to be protected against microbial change or destruction by active substances according to the invention can be adhesives, glues, paper and cardboard, textiles, leather, wood, paints and plastic articles, cooling lubricants and other materials which are attacked by microorganisms or can be decomposed.
  • parts of production systems for example cooling water circuits, which may be impaired by the multiplication of microorganisms, may also be mentioned.
  • technical materials are preferably adhesives, glues, papers and cartons, leather, wood, paints, cooling lubricants and heat transfer fluids, particularly preferably wood.
  • Bacteria, fungi, yeasts, algae and mucilaginous organisms may be mentioned as microorganisms which can cause degradation or a change in the technical materials.
  • the active compounds according to the invention preferably act against fungi, in particular mold, wood-discoloring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.
  • microorganisms of the following genera may be mentioned:
  • Alternaria such as Alternaria tenuis, Aspergillus, such as Aspergillus niger, Chaetomium, such as Chaetomium globosum, Coni ⁇ phora, such as Coniophora puetana, Lentinus, such as Lentinus tigrinus, Penicillium, such as Penicillium glaucum, Polyporus, such as Polyporus versicolor, Aureobasidium, such as Aureobasidium pullulans, Sclerophoma, such as Sclerophoma pityophila,
  • Trichoderma such as Trichoderma viride, Escherichia, such as Escherichia coli, Pseudomonas, such as Pseudomonas aeruginosa, Staphylococcus, such as Staphylococcus aureus.
  • the substances according to the invention can be converted into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV formulations.
  • customary formulations such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV formulations.
  • formulations are made in a known manner, e.g. by mixing the active ingredients with extenders, i.e. liquid solvents, under
  • liquefied gases and / or solid carriers optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • water e.g. organic solvents can also be used as auxiliary solvents.
  • aromatics such as xylene, toluene, or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, e.g. Petroleum fractions, alcohols, such as butanol or glycol, and their ethers and esters, ketones, such as acetone,
  • liquefied gaseous extenders or carriers mean liquids which are gaseous at normal temperature and under normal pressure, e.g. Aerosol propellants such as butane, propane, nitrogen and carbon dioxide; as fixed
  • Carrier materials are possible: for example natural rock powder, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock meals, such as highly disperse silica, aluminum oxide and silicates;
  • Possible solid carriers for granules are: for example broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules from inorganic and organic flours and granules from organic material such as sawdust, coconut shells, corn cobs and tobacco stalks ;
  • suitable emulsifiers and / or foam-generating agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and
  • Adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-shaped polymers can be used in the formulations, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc are used.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc are used.
  • the formulations generally contain between 0.1 and 95 percent by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can also be used in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, for example to to broaden the spectrum of activity or to prevent the development of resistance.
  • synergistic effects also occur, which means that the mixture has a higher effect than the sum of the effects of the individual components.
  • copper preparations such as: copper hydroxide, copper naphthenate,
  • Mancopper Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metsulfovax, Myclobutanil,
  • Probenazole prochloraz, procymidone, propamocarb, propiconazole, propineb, pyrazophos, pyrifenox, pyrimethanil, pyroquilone, Quintozen (PCNB), sulfur and sulfur preparations,
  • Tebuconazole Tecloftalam, Tecnazen, Tetraconazole, Thiabendazole, Thicyofen, Thiophanat-methyl, Thiram, Tolclophos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Trifluminol, Trifluminol
  • Imidacloprid Iprobefos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivemectin, Lamda-cyHalothrin, Lufenuron,
  • Parathion A Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamdon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenofos, Promecarb, Propaphos, Propoxur, Prothiofos, Prothoat, Pymetrozin, Pyrachlophhion, Pyrachlophhion, Pyrachlophhion, Pyrachlophion, Pyrachlophion, Pyrachlophin, Pyrachlophion, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Py
  • Tebufenozid Tebufenpyrad, Tebupirimphos, Tefiubenzuron, Tefluthrin, Temephos, Terbam, Terbufos, Tetrachlorvinphos, Thiafenox, Thiodicarb, Thiofanox, Thio-methon, Thionazin, Thuringiensin, Tralomenhria, triomononium, triomonethonium, triomonhronium, triomoshronium, triomoshronium, tri XMC, xylylcarb, zetamethrin.
  • the active compounds can be used as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the customary manner, for example by watering, spraying, atomizing, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredients using the ultra-low-volume process or to prepare the active ingredient or the active ingredient itself in the Inject soil. The seeds of the plants can also be treated. - 23
  • the active compound concentrations in the use forms can be varied within a substantial range: they are generally between 1 and 0.0001% by weight, preferably between 0.5 and 0.001% by weight.
  • amounts of active ingredient are generally from 0.001 to
  • active ingredient concentrations of 0.00001 to 0.1% by weight, preferably 0.0001 to 0.02% by weight, are required at the site of action.
  • the means used to protect technical materials contain the
  • Active ingredients in general in an amount of 1 to 95%, preferably from 10 to 75%.
  • the application concentrations of the active compounds according to the invention depend on the type and the occurrence of the microorganisms to be controlled and on the composition of the material to be protected.
  • the amount used can be determined by test series.
  • the application concentrations are in the range from 0.001 to 5% by weight, preferably from 0.05 to 1.0% by weight, based on the material to be protected.
  • Concentrates or very general formulations can be increased if additional antimicrobial compounds, fungicides, bactericides, herbicides, insecticides or other active substances are used to increase the spectrum of activity or to achieve special effects such as e.g. added protection against insects.
  • additional antimicrobial compounds, fungicides, bactericides, herbicides, insecticides or other active substances are used to increase the spectrum of activity or to achieve special effects such as e.g. added protection against insects.
  • These blends can be a broader
  • Sulfenamides such as dichlorfluanid (Euparen), tolyfluanid (Methyleuparen), Folpet, Fluorfolpet;
  • Benzimidazoles such as Carbendazim (MBC), Benomyl, Fuberidazole, Thiabendazole or their salts;
  • Thiocyanates such as thiocyanatomethylthiobenzothiazole (TCMTB), methylene bisthiocyanate (MBT);
  • quaternary ammonium compounds such as benzyldimethyltetradecylammonium chloride, benzyldimethyldodecylammonium chloride, dodecyldimethylammonium chloride;
  • Morpholine derivatives such as C n -C 14 -4-alkyl-2,6-dimethyl-morpholine homologs (tridemorph), (+) - cis-4- [tert-butylphenyl) -2-methylpropyl] -2,6-dimethylmorpholine (Fen ⁇ propimorph), Falimorph;
  • Phenols such as o-phenylphenol, tribromophenol, tetrachlorophenol, pentachlorophenol, 3-methyl-4-chlorophenol, dichlorophen, chlorophen or their salts;
  • A-zoles such as triadimefon, triadimenol, bitertanol, tebuconazole, propiconazole, azaconazole, hexaconazole, prochloraz, cyproconazole, l- (2-chlorophenyl) -2- (l-chlorocyclopropyl) -3- (l, 2,4-triazol-l -yl) -propan-2-ol or l- (2-chlorophenyl) -2- (l, 2,4-triazol-l-yl-methyl) -3,3-dimethyl-butan-2-ol.
  • Iodopropargyl derivatives such as iodopropargyl butyl carbamate (? BC), chlorophenyl formal, phenyl carbamate, hexyl carbamate, cyclohexyl carbamate, iodopropargyloxyethylphenyl carbamate;
  • Iodine derivatives such as diiodomethyl-p-arylsulfones e.g. Diiodomethyl p-tolyl sulfone;
  • Bromine derivatives such as bromopol
  • Isothiazolines such as N-methylisothiazolin-3-one, 5-chloro-N-methylisothiazolin-3-one, 4,5-dichloro-N-octylisothiazolin-3-one, N-octylisothiazolin-3-one (octilinone); Benzisothiazolinones, cyclopentene isothazolines;
  • Pyridines such as l-hydroxy-2-pyridinthione (and their Na, Fe, Mn, Zn salts), tetrachloro-4-methylsulfonylpyridine;
  • Metal soaps such as tin, copper, zinc naphthenate, octoate, 2-ethylhexanoate, oleate, phosphate, benzoate, oxides such as TBTO, Cu 2 O, CuO, ZnO;
  • Organic tin compounds such as tributyltin naphtenate and tributyltin oxide;
  • Dialkyldithiocarbamates such as Na and Zn salts of dialkyldithiocarbamates, tetram ethyltiuramidisulfid (TMTD);
  • Nitriles such as 2,4,5,6-tetrachloroisophthalonitrile (chlorothalonil) etc.
  • Halogenated microbicides such as Cl-Ac, MCA, tectamer, bromopol, bromidox;
  • Benzothiazoles such as 2-mercaptobenzothiazoles; so. Dazomet;
  • Formaldehyde-releasing compounds such as benzyl alcohol mono (poly) hemiformal, oxazolidines, hexahydro-s-triazines, N-methylolchloroacetamide;
  • Tributyltin or K salts bis (N-cyclohexyl) diazinium - (dioxy copper or aluminum).
  • Phosphoric acid esters such as azinphos-ethyl, azinphos-m ethyl, l- (4-chlorophenyl) -4- (O-ethyl, S-propyl) phosphoryloxypyrazole (TIA-230), chlorpyrifos, Coumaphos, Demetomon, Demeton-S-methyl , Diazinon, Dichlorfos, Dimethoate, Ethoprophos, Etrim- fos, Fenitrothion, Fention, Heptenophos, Parathion, Parathion-methyl, Phosalone, Phoxim, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Prothiofos, Sulprofos, Triazophos and Trichlor. - 28 -
  • Carbamates such as aldicarb, bendiocarb, BPMC (2- (l-methylpropyl) phenylmethyl carbamate), butocarboxime, butoxycarboxim, carbaryl, carbofuran, carbosulfan, cloethocarb, isoprocarb, methomyl, oxamyl, pirimicarb, promecarb, propoxur and thiodine.
  • Pyrethroids such as allethrin, alphamethrin, bioresmethrin, byfenthrin (FMC 54800),
  • Organosilicon compounds preferably dimethyl (phenyl) silylmethyl-3-phenoxybenzyl ether such as e.g. Dimethyl (4-ethoxyphenyl) silylmethyl-3-phenoxybenzyl ether or dimethyl (phenyl) silylmethyl-2-phenoxy-6-pyridylmethyl ether such as e.g. Dimethyl (9-ethoxyphenyl) silylmethyl-2-phenoxy-6-pyridylmethyl ether or (phenyl) [3- (3-phenoxyphenyl) propyl] (dimethyl) silanes such as e.g. (4-ethoxyphenyl) - [3 (4-fluoro-3-phenoxyphenyl) propyl] dimethylsilane.
  • dimethyl (phenyl) silylmethyl-3-phenoxybenzyl ether such as e.g. Dimethyl (4-ethoxyphenyl) silylmethyl-3-phenoxybenzyl ether or dimethyl (phenyl) si
  • Algicides Algicides, molluscicides, active substances against "sea animals", which relate to e.g. Place ship floor paints.
  • a solution of 66 g (0.33 mol) of trimethylsulfonium iodide in 400 ml of dimethylsulfoxide is added dropwise to 400 ml of tetrahydrofuran at 0 ° C. while stirring.
  • the mixture is left to stir at 0 ° C. for 5 minutes and then 70 g (0.25 mol) of 2- (2-fluorophenyl) -3- (l-chloro-cycloprop-l-yl) -prop-l-en are added
  • Add -3-one in 100 ml of dimethyl sulfoxide is first stirred at 0 ° C. for 15 minutes and then at room temperature for a further 6 hours.
  • Solvent 10 parts by weight of N-methyl-pyrrolidone emulsifier: 0.6 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants remain in an incubation cabin at 20 ° C. and 100% relative atmospheric humidity for 48 hours.
  • the plants are placed in a greenhouse at a temperature of approx. 15 ° C and a relative humidity of approx. 80%.
  • Evaluation is carried out 10 days after the inoculation.
  • Solvent 10 parts by weight of N-methyl-pyrrolidone emulsifier: 0.6 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are placed in a greenhouse under translucent incubation hoods at a temperature of about 20 ° C. and a relative humidity of about 100%.
  • Evaluation is carried out 4 days after the inoculation.
  • Emulsifier 0.3 part by weight alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are then placed in a greenhouse at 23 ° C. and a relative atmospheric humidity of approx. 70%.
  • Evaluation is carried out 10 days after the inoculation.
  • Emulsifier 0.3 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the disease infestation is evaluated 4 days after the inoculation.
  • Solvent 12.5 parts by weight of acetone emulsifier: 0.3 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amount of solvent and the concentrate is diluted to the desired concentration with water and the stated amount of emulsifier.
  • the disease infestation is evaluated 5 to 8 days after the inoculation.
  • X represents hydrogen, halogen, alkyl having 1 to 4 carbon atoms or
  • Z for halogen, alkyl with 1 to 4 carbon atoms, haloalkyl with 1 to 4 carbon atoms and 1 to 5 halogen atoms, alkoxy with 1 to 4 carbon atoms, haloalkoxy with 1 to 4 carbon atoms and 1 to 5 halogen atoms, nitro or optionally single to triple , is identical or different phenyl substituted by halogen and
  • n 0, 1, 2 or 3
  • X represents hydrogen, fluorine, chlorine, methyl, ethyl, n-propyl, isopropyl, methoxy or ethoxy,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Neue Butenol-triazolyl-Derivate der Formel (I), in welcher X für Wasserstoff, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen steht, Z für Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Nitro oder gegebenenfalls einfach bis dreifach, gleicharting oder verschieden durch Halogen substituiertes Phenyl steht und m für die Zahlen 0, 1, 2 oder 3 steht, sowie deren Säureadditions-Salze und Metallsalz-Komplexe, ein Verfahren zur Herstellung der neuen Stoffe und deren Verwendung als Mikrobizide im Pflanzenschutz und im Materialschutz. Neue Butenol-Derivate der Formel (II), neue Oxirane der Formel (III) und neue Ketone der Formel (X), Verfahren zur Herstellung dieser Stoffe und deren Verwendung als Zwischenprodukte zur Synthese von Verbindungen der Formel (I).

Description

BUTENOL-TRIAZOLYL DERIVATE, DEREN HERSTELLUNG UND DEREN VERWENDUNG ALS MI ROBIZIDE
Die vorliegende Erfindung betrifft neue Hydroxyethyl-azolyl-Derivate, ein Ver¬ fahren zu deren Herstellung und deren Verwendung als Mikrobizide im Pflanzen¬ schutz und im Material schütz.
Es ist bereits bekannt geworden, daß zahlreiche Hydroxyethyl-azolyl-Derivate fungizide Eigenschaften besitzen (vgl. EP-OS 0 251 086, WO 89-05581 und
WO 91-12000). So lassen sich z.B. 2-(2-Chlorphenyl)-3-(2,4-dichlorphenyl)-3- hydroxy-4-(l,2,4-triazol-l-yl)-but-l-en und 2-(2-Fluorphenyl)-3-(4-chlorphenyl)-3- hydroxy-4-(l,2,4-triazol-l-yl)-but-l-en zur Bekämpfung von Pilzen verwenden. Die Wirkung dieser Stoffe läßt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.
Es wurden nun neue Hydroxyethyl-azolyl-Derivate der Formel
in welcher . i
X für Wasserstoff, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen oder
Alkoxy mit 1 bis 4 Kohlenstoffatomen steht,
Z für Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis
4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Nitro oder gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen substituiertes Phenyl steht und
m für die Zahlen 0, 1, 2 oder 3 steht,
sowie deren Säureadditions-Salze und Metallsalz-Komplexe gefunden.
Die erfindungsgemäßen Stoffe enthalten ein asymmetrisch substituiertes Kohlen¬ stoffatom. Sie können daher in optischen Isomerenformen anfallen. Die vorlie¬ gende Erfindung betrifft sowohl die einzelnen Isomeren als auch deren Gemische.
Weiterhin wurde gefunden, daß man Hydroxyethyl-azolyl-Derivate der Formel (I) sowie deren Säureadditions-Salze und Metall salz-Kompl exe erhält, wenn man
a): Butenol -Derivate der Formel
in welcher
X, Z und m die oben angegebenen Bedeutungen haben und
Hai für Chlor oder Brom steht, oder
b) Oxirane der Formel
in welcher
X, Z und m die oben angegebenen Bedeutungen haben,
mit 1,2,4-Triazol der Formel
H
in Gegenwart eines Säurebindemittels und in Gegenwart eines Verdünnungsmittels umsetzt und gegebenenfalls anschließend an die so erhaltenen Verbindungen der Formel (I) eine Säure oder ein Metallsalz addiert.
Schließlich wurde gefunden, daß die neuen Hydroxyethyl-azolyl-Derivate der Formel (I) sowie deren Säureadditions-Salze und Metallsalz-Komplexe sehr gute mikrobizide Eigenschaften aufweisen und sowohl im Pflanzenschutz als auch im Materialschutz eingesetzt werden können.
Überraschenderweiswe besitzen die erfindungsgemäßen Stoffe sowohl im
Pflanzenschutz als auch im Material schütz eine bessere mikrobizide Wirksamkeit als die konstitutionell ähnlichsten, vorbekannten Verbindungen gleicher Wirkungsrichtung. So übertreffen die erfindungsgemäßen Stoffe in ihren fungiziden Eigenschaften zum Beispiel das 2-(2-Chlorphenyl)-3-(2,4-dichlor- phenyl)-3-hydroxy-4-(l,2,4-t-riazol-l-yl)-but-l-en und das 2-(2-Fluorphenyl)-3-(4- chlorphenyl)-3-hydroxy-4-(l,2,4-triazol-l-yl)-but-l-en.
Die erfindungsgemäßen Hydroxyethyl-azolyl-Derivate sind durch die Formel (I) allgemein definiert.
X steht vorzugsweise für Wasserstoff, Fluor, Chlor, Methyl, Ethyl, n-Propyl, Isopropyl, Methoxy und Ethoxy.
Z steht vorzugsweise für Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, Iso- propyl, n-Butyl, sek.-Butyl, iso-Butyl, tert.-Butyl, Trichlormethyl, Trifluor- methyl, Difluormethyl, Methoxy, Ethoxy, Trifluormethoxy, Difluor- methoxy, Nitro oder für gegebenenfalls einfach oder zweifach, gleichartig oder verschieden durch Fluor und/oder Chlor substituiertes Phenyl.
m steht vorzugsweise für die Zahlen 0, 1, 2 oder 3. Wenn m für 2 oder 3 steht, kann Z für gleiche oder verschiedene Reste stehen.
Bevorzugte erfindungsgemäße Stoffe sind auch Additionsprodukte aus Säuren und denjenigen Hyroxyethyl-azolyl-Derivaten der Formel (I), in denen X, Z und m die als bevorzugt angegebenen Bedeutungen haben.
Zu den Säuren, die addiert werden können, gehören vorzugsweise Halogenwasser- stoffsäuren, wie z.B. die Chlorwasserstoffsäure und die Bromwasserstoffsäure, insbesondere die Chlorwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, Schwefelsäure, mono- und bifunktionelle Carbonsäuren und Hydroxycarbonsäuren, wie z.B. Essigsäure, Maleinsäure, Bernsteinsäure, Fumarsäure, Weinsäure, Zitronensäure, Salizylsäure, Sorbinsäure und Milchsäure sowie Sulfonsäuren, wie z.B. p-Toluolsulfonsäure, 1,5-Naphthalindisulfonsäure oder Camphersulfonsäure,
Saccharin und Thiosaccharin.
Außerdem bevorzugte erfindungsgemäße Verbindungen sind Additionsprodukte aus Salzen von Metallen der II. bis IV. Haupt- und der I. und II. sowie IV. bis VIII. Nebengruppe des Periodensystems der Elemente und denjenigen Hydroxy- ethyl-azolyl-Derivaten der Formel (I), in denen X, Z und m die als bevorzugt angegebenen Bedeutungen haben.
Hierbei sind Salze des Kupfers, Zinks, Mangans, Magnesiums, Zinns, Eisens und des Nickels besonders bevorzugt. Als Anionen dieser Salze kommen solche in Be¬ tracht, die sich von solchen Säuren ableiten, die zu physiologisch verträglichen Additionsprodukten fuhren. Besonders bevorzugte derartige Säuren sind in diesem Zusammenhang die Halogenwasserstoffsäuren, wie z.B. die Chlorwasserstoffsäure und die Brom Wasserstoff säure, ferner Phosphorsäure, Salpetersäure und Schwe- fei säure.
Als Beispiele für Hydroxyethyl-azolyl-Derivate der Formel (I) seien die in der folgenden Tabelle aufgeführten Stoffe genannt.
Tabelle 1
Verwendet man l-Chlor-2-(l-chlorcyclopropyl)-3-(2-fluorphenyl)-but-3-en-2-ol und 1,2,4-Triazol als Ausgangsstoffe, so kann der Verlauf der Variante (a) des erfindungsgemäßen Verfahrens durch das folgende Formelschema veranschaulicht werden:
Verwendet man 2-(α-Styryl)-2-(l-chlor-cyclopropyl)-oxiran und 1,2,4-Triazol als Ausgangsstoffe, so kann der Verlauf der Variante (b) des erfindungsgemäßen Verfahrens durch das folgende Formelschema veranschaulicht werden:
Die bei der Variante (a) des erfindungsgemäßen Verfahrens als Ausgangsstoffe benötigten Butenol-Derivate sind durch die Formel (II) allgemein definiert. In dieser Formel haben X, Z und m vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) vorzugsweise für diese Reste bzw. diesen Index genannt wurden. Hai steht für Chlor oder Brom.
Die Butenol-Derivate der Formel (II) sind bisher noch nicht bekannt. Sie lassen sich herstellen, indem man Cyclopropylketone der Formel
0
» V (V),
Hai — CH— C— ^-X
in welcher
X und Hai die oben angegebenen Bedeutungen haben,
mit metallorganischen Verbindungen der Formel
in welcher
Z und m die oben angegebenen Bedeutungen haben,
in Gegenwart eines Verdünnungsmittels umsetzt.
Die bei der Herstellung der Butenol-Derivate der Formel (II) nach dem obigen Verfahren als Ausgangsstoffe benötigten Cyclopropylketone der Formel (V) sind bekannt (vgl. EP-OS 0 297 345).
Die bei dem obigen Verfahren zur Herstellung von Butenol-Derivaten der Formel (II) als Reaktionskomponenten benötigten metallorganischen Verbindungen der Formel (VI) sind bekannt oder lassen sich nach prinzipiell bekannten Methoden herstellen (vgl. J. Org. Chem. 41 (1976), 3725). So erhält man diese Stoffe, indem man Styrol-Derivate der Formel
in welcher
Z und m die oben angegebenen Bedeutungen haben,
mit Brom in Gegenwart eines Verdünnungsmittels, wie Tetrachlorkohlenstoff, Chloroform oder Dichlormethan, bei Temperaturen zwischen 0°C und 30°C umsetzt, die dabei entstehenden Bromide der Formel
in welcher
Z und m die oben angegebenen Bedeutungen haben,
in Gegenwart eines Verdünnungsmittels, wie z.B. Toluol, Tetrahydrofuran oder
Dioxan, und in Gegenwart einer Base, wie z.B. Diazabicyclononen (DBN), Diazabicycloundecen (DBU) oder Kaliumhydroxid in Gegenwart eines
Phasentransferkatalysators, bei Temperaturen zwischen 0°C und 130°C umsetzt und die entstehenden Brom-styrol-Derivate der Formel
in welcher Z und m die oben angegebenen Bedeutungen haben,
mit Magnesium-Spänen in Gegenwart eines Verdünnungsmittels, wie Diethylether oder Tetrahydrofuran, bei Temperaturen zwischen 0°C und 70°C umsetzt.
Als Verdünnungsmittel kommen bei dem obigen Verfahren zur Herstellung von Butenol-Derivaten der Formel (II) alle für derartige Umsetzungen üblichen inerten organischen Solventien in Betracht. Vorzugsweise verwendbar sind Ether, wie Diethylether, Tetrahydrofuran und Dioxan.
Die Reaktionstemperaturen können bei der Durchfuhrung des obigen Verfahrens zur Herstellung von Butenol-Derivaten der Formel (II) innerhalb eines bestimmten Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -80°C und +60°C.
Bei der Durchführung des obigen Verfahrens zur Herstellung von Butenol- Derivaten der Formel (II) arbeitet man im allgemeinen unter Normaldruck. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck zu arbeiten.
Bei der Durchführung des obigen Verfahrens zur Herstellung von Butenol-
Derivaten der Formel (II) setzt man auf 1 Mol an Cyclopropylketon der Formel
(V) im allgemeinen 1 bis 1,2 Mol an metallorganischer Verbindung der Formel
(VI) ein, die zweckmäßigerweise unmittelbar zuvor hergestellt und in situ weiterverarbeitet wird. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen geht man so vor, daß man zunächst ansäuert und mit Wasser versetzt, dann die organische Phase abtrennt, wäscht und nach dem Trocknen einengt.
Die bei der Variante (b) des erfindungsgemäßen Verfahrens als Ausgangsstoffe benötigten Oxirane sind durch die Formel (III) allgemein definiert. In dieser Formel haben X, Z und m vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel
(I) vorzugsweise für diese Reste bzw. diesen Index genannt wurden.
Die Oxirane der Formel (III) sind bisher noch nicht bekannt. Sie lassen sich herstellen, indem man c) Butenol-Derivate der Formel
in welcher
X, Z, m und Hai die oben angegebenen Bedeutungen haben,
mit Basen in Gegenwart eines Verdünnungsmittels umsetzt,
oder
d) Ketone der Formel
in welcher
X, Z und m die oben angegebenen Bedeutungen haben,
mit Dimethylsulfonium-methylid der Formel
δ δθ f χι
(CH3)2 S CH2 I )
in Gegenwart eines Verdünnungsmittels umsetzt.
Als Basen kommen bei der Herstellung von Oxiranen der Formel (III) nach dem obigen Verfahren (c) alle üblicherweise für derartige Umsetzungen geeigneten anorganischen und organischen Basen in Betracht. Vorzugsweise verwendbar sind Alkalimetallcarbonate, wie Natrium- und Kaliumcarbonat, ferner Alkalimetall- hydroxide, wie Natrium- und Kaliumhydroxid, außerdem Alkalimetallalkoholate, wie Natrium- und Kaliummethylat und -ethylat sowie Kalium-tert.-butylat, und weiterhin niedere tertiäre Alkylamine, Cycloalkylamine und Aralkylamine, wie insbesondere Triethylamin.
Als Verdünnungsmittel kommen bei der Herstellung von Oxiranen der Formel (DI) nach dem obigen Verfahren (c) alle üblichen inerten, organischen Solventien in Betracht. Vorzugsweise verwendbar sind Nitrile, wie Acetonitril, femer aroma- tische Kohlenwasserstoffe, wie Benzol, Toluol und Dichlorbenzol, außerdem Formamide, wie Dimethylformamid, sowie stark polare Lösungsmittel, wie Dimethylsulfoxid und Hexamethylphosphorsäuretriamid.
Die Reaktionstemperaturen können bei der Herstellung von Oxiranen der Formel (III) nach dem obigen Verfahren (c) innerhalb eines bestimmten Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 100°C, vorzugsweise zwischen 20°C und 60°C.
Bei der Durchfuhrung des obigen Verfahrens (c) zur Herstellung von Oxiranen der Formel (III) arbeitet man im allgemeinen unter Normaldruck. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck zu arbeiten.
Bei der Durchführung des obigen Verfahrens (c) zur Herstellung von Oxiranen der Formel (III) setzt man im allgemeinen auf 1 Mol an Butenol-Derivat der Formel (II) 1 bis 3 Mol an Base ein. Die Aufarbeitung erfolgt nach üblichen Methoden.
Die bei der Durchführung des obigen Verfahrnes (d) zur Herstellung von Oxiranen der Formel (III) als Ausgangsstoffe benötigten Ketone sind durch die Formel (X) allgemein definiert. In dieser Formel haben X, Z und m vorzugsweise diejenigen
Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungs¬ gemäßen Stoffe der Formel (I) vorzugsweise für diese Reste bzw. für diesen Index genannt wurden. Die Ketone der Formel (X) sind bisher noch nicht bekannt. Sie lassen sich herstellen, indem man Benzylketone der Formel
in welcher
X, Z und m die oben angegebenen Bedeutungen haben,
entweder
α) mit Bis-(dimethylamino)-methan der Formel
(CH3)2N - CH2 - N(CH3)2 (Xm)
in Gegenwart von Essigsäureanhydrid oder Eisessig umsetzt,
oder
ß) mit Paraformal dehyd oder Formalin in Gegenwart eines Katalysators und in Gegenwart eines Verdünnungsmittels umsetzt.
Die bei der Herstellung der Ketone der Formel (X) nach dem obigen Verfahren als Ausgangsstoffe benötigten Benzylketone sind durch die Formel (XII) allgemein definiert. In dieser Formel haben X, Z und m vorzugsweise diejenigen Bedeu¬ tungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsge¬ mäßen Stoffe der Formel (I) vorzugsweise für diese Reste bzw. für diesen Index genannt wurden.
Die Benzylketone der Formel (XII) sind bekannt oder lassen sich nach prinzipiell bekannten Methoden herstellen (vgl. EP-OS 0 461 483 und EP-OS 0 461 502). Die bei der Durchführung des obigen Verfahrens (d) als Reaktionskomponenten benötigten Stoffe, nähmlich Bis-(dimethylamino)-methan der Formel (XIII) beziehungsweise Paraformaldehyd oder Formalin (wäßrige Formaldehyd-Lösung mit einem Formaldehyd-Gehalt von 37 %), sind bekannt.
Die Reaktionstemperaturen können bei der Durchführung der Variante (α) des obigen Verfahrens zur Herstellung von Ketonen der Formel (X) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 20°C und 120°C, vorzugsweise zwischen 30°C und 110°C.
Sowohl bei der Durchführung der Variante (α) als auch der Variante (ß) des obigen Verfahrens zur Herstellung von Ketonen der Formel (X) arbeitet man im allgemeinen unter Normaldruck. Es ist aber auch möglich, unter erhöhtem oder vermindertem Druck zu arbeiten.
Bei der Durchführung der Variante (α) des obigen Verfahrens zur Herstellung von Ketonen der Formel (X) setzt man auf 1 Mol an Benzylketon der Formel (XII) im allgemeinen 3 bis 4 Mol an Bis-(dimethylamino)-methan der Formel (XIII) ein.
Die Aufarbeitung erfolgt nach üblichen Methoden.
Als Katalysatoren kommen bei der Durchführung der Variante (ß) des obigen Verfahrens zur Herstellung von Ketonen der Formel (X) alle für derartige Umsetzungen üblichen Reaktionsbeschleuniger in Betracht. Vorzugsweise ver- wendbar sind Alkalimetallhydroxide, wie Natriumhydroxid oder Kaliumhydroxid.
Als Verdünnungsmittel kommen bei der Durchführung der Variante (ß) des obigen Verfahrens zur Herstellung von Ketonen der Formel (X) alle für derartige Umsetzungen üblichen inerten, organischen Solventien in Frage. Vorzugsweise verwendbar sind Alkohole, wie Methanol oder Ethanol.
Die Reaktionstemperaturen können bei der Durchführung der Variante (ß) des obigen Verfahrens zur Herstellung von Ketonen der Formel (X) innerhalb eines bestimmten Bereiches variiert werden. Im allgemeinen arbeitet man bei Remperaturen zwischen 10°C und 40°C, vorzugsweise bei Raumtemperatur. Bei der Durchführung der Variante (ß) des obigen Verfahrens zur Herstellung von Ketonen der Formel (X) setzt man auf 1 Mol an Benzylketon der Formel (XII) im allgemeinen 1,5 bis 2,5 Äquivalente an Paraformaldehyd bzw. Formalin sowie eine äquivalente Menge an Katalysator ein. - Die Aufarbeitung erfolgt nach üblichen Methoden.
Das bei der Durchführung des obigen Verfahrens (d) zur Herstellung von Oxiranen der Formel (III) als Reaktionskomponente benötigte Dimethylsulfonium-methylid der Formel (XI) ist bekannt (vgl. Heterocycles 8, 397 (1977)). Es wird bei der obigten Umsetzung in frisch hergestelltem Zustand eingesetzt, indem man es in Situ z.B. aus Trimethylsulfonium-halogenid oder Trimethylsulfonium-methylsulfat, in Gegenwart einer starken Base, wie z.B. Natriumhydrid, Natriumamid, Natriummethylat, Kalium-tert.-butylat oder Kaliumhydroxid, in Gegenwart eines Verdünnungsmittels, wie tert.-Butanol oder Dimethylsulfoxid erzeugt.
Als Verdünnungsmittel kommen bei der Durchführung des obigen Verfahrens (d) zur Herstellung von Oxiranen der Formel (III) inerte organische Solventien in
Frage. Vorzugsweise verwendbar sind Alkohole, wie tert.-Butanol, Ether, wie Tetrahydrofuran oder Dioxan, ferner aliphatische und aromatische Kohlenwasserstoffe, wie Benzol, Toluol oder Xylol, sowie stark polare Lösungsmittel, wie Dimethylsulfoxid.
Die Reaktionstemperaturen können bei der Durchführung des obigen Verfahrens
(d) zur Herstellung von Oxiranen der Formel (III) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 100°C, vorzugsweise zwischen 10°C und 60°C.
Bei der Durchfuhrung des obigen Verfahrens (d) zur Herstellung von Oxiranen der Formel (III) setzt man auf 1 Mol an Keton der Formel (X) im allgemeinen 1 bis 3
Mol an Dimethylsulfonium-methylid der Formel (XI) ein. - Die Aufarbeitung erfolgt nach üblichen Methoden.
Als Säurebindemittel kommen bei der Durchfuhrung des erfindungsgemäßen
Verfahrens alle üblichen anorganischen und organischen Basen in Frage. Vor- zugsweise verwendbar sind Alkalimetallcarbonate, wie Natrium- und Kalium- carbonat, ferner Alkalimetallhydroxide, wie Natrium- und Kaliumhydroxid, außer¬ dem Alkalimetallalkoholate, wie Natrium- und Kaliummethylat und -ethylat sowie Kalium-tert.-butylat, und weiterhin niedere tertiäre Alkylamine, Cycloalkylamine und Aralkylamine, wie insbesondere Triethylamin.
Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen
Verfahrens alle üblichen inerten organischen Solventien in Betracht. Vorzugsweise verwendbar sind Nitrile, wie Acetonitril, ferner aromatische Kohlenwasserstoffe, wie Benzol, Toluol und Dichlorbenzol, außerdem Formamide, wie Dimethylfoπn- amid, sowie stark polare Lösungsmittel, wie Dimethylsulfoxid und Hexamethyl- phosphorsäuretriamid.
Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 130°C, vorzugsweise zwischen 40°C und 120°C.
Auch bei der Durchführung des erfindungsgemäßen Verfahrens arbeitet man im allgemeinen unter Normaldruck. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck zu arbeiten.
Bei der Durchfuhrung des erfindungsgemäßen Verfahrens setzt man auf 1 Mol an Butenol-Derivat der Formel (II) bzw. an Oxiran der Formel (III) im allgemeinen 1 bis 4 Mol an 1,2,4-Triazol der Formel (IV) und 0,3 bis 3 Mol Säurebindemittel ein.
Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen geht man so vor, daß man das Reaktionsgemisch einengt, den verbleibenden Rückstand in einem mit Wasser wenig mischbaren organischen Lösungsmittel aufnimmt, mit Wasser wäscht und nach dem Trocknen einengt. Das verbleibende Produkt kann gegebenenfalls weiteren Reinigungsverfahren unterzogen werden.
Die erfindungsgemäßen Hydroxyethyl-azolyl-Derivate der Formel (I) können in Säureadditions-Salze oder Metallsalz-Komplexe überführt werden.
Zur Herstellung von Säureadditions-Salzen der Verbindungen der Formel (I) kommen vorzugsweise diejenigen Säuren in Frage, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Säureadditions-Salze als bevorzugte Säuren - g_>e^nannt wurden.
Die Säureadditions-Salze der Verbindungen der Formel (I) können in einfacher Weise nach üblichen Salzbildungsmethoden, z.B. durch Lösen einer Verbindung der Formel (I) in einem geeigneten inerten Lösungsmittel und Hinzufügen der
Säure, z.B. Chlorwasserstoffsäure, erhalten werden und in bekannter Weise, z.B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösungsmittel gereinigt werden.
Zur Herstellung von Metallsalz-Komplexen der Verbindungen der Formel (I) kommen vorzugsweise diejenigen Salze von Metallen in Frage, die bereits im
Zusammenhang mit der Beschreibung der erfindungsgemäßen Metallsalz-Kom¬ plexe als bevorzugte Metallsalze genannt wurden.
Die Metallsalz-Komplexe der Verbindungen der Formel (I) können in einfacher Weise nach üblichen Verfahren erhalten werden, so z.B. durch Lösen des Metallsalzes in Alkohol, z.B. Ethanol und Hinzufügen zu Verbindungen der
Formel (I). Man kann Metallsalz-Komplexe in bekannter Weise, z.B. durch Abfiltrieren, isolieren und gegebenenfalls durch Umkristallisation reinigen.
Die erfindungsgemäßen Wirkstoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung unerwünschter Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Material schütz eingesetzt werden.
Fungizide werden im Pflanzenschutz eingesetzt zur Bekämpfung von Plasmodio- phoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.
Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Xanthomonas- Arten, wie Xanthomonas oryzae; Pseudomonas-Arten, wie Pseudomonas lachrymans; Erwinia- Arten, wie Erwinia amylovora;
Pythium-Arten, wie Pythium ultimum;
Phytophthora-Arten, wie Phytophthora infestans;
Pseudoperonospora-Arten, wie Pseudoperonospora humuli oder Pseudoperonospora cubensis;
P 1 asm opara- Arten, wie Plasmopara viticola;
Peronospora-Arten, wie Peronospora pisi oder P. brassicae;
Erysiphe-Arten, wie Erysiphe graminis;
Sphaerotheca-Arten, wie Sphaerotheca fuliginea; Podosphaera- Arten, wie Podosphaera leucotricha;
Venturia- Arten, wie Venturia inaequalis;
Pyrenophora-Arten, wie Pyrenophora teres oder P. graminea;
(Konidienform: Drechslera, Syn: Helminthosporium);
Cochliobolus-Arten, wie Cochliobplus sativus; (Konidienform: Drechslera, Syn: Helminthosporium);
Uromyces- Arten, wie Uromyces appendiculatus;
Puccinia-Arten, wie Puccinia recondita;
Tilletia-Arten, wie Tilletia caries;
Ustilago- Arten, wie Ustilago nuda oder Ustilago avenae; Pellicularia-Arten, wie Pellicularia sasakii;
Pyricularia-Arten, wie Pyricularia oryzae;
Fusarium-Arten, wie Fusarium culmorum;
Botrytis- Arten, wie Botrytis cinerea;
Septoria- Arten, wie Septoria nodorum; Leptosphaeria-Arten, wie Leptosphaeria nodorum;
Cercospora-Arten, wie Cercospora canescens;
Alternaria-Arten, wie Alternaria brassicae;
Pseudocercosporella-Arten, wie Pseudocercosporella he otrichoides.
Die gute Pflanzehverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut und des Bodens.
Die erfindungsgemäßen Wirkstoffe eignen sich insbesondere zur Bekämpfung von Pyricularia oryzae und Pellicularia sasakii an Reis sowie zur Bekämpfung von Getreidekrankheiten, wie Leptosphaeria nodorum, Cochliobolus sativus, Pyreno- phora teres, Pseudocercosporella herpotrichoides, Erysiphe und Fusarium-Arten. Außerdem zeigen die erfindungsgemäßen Stoffe eine sehr gute und breite in-vitro- Wirkung.
Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.
Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung ge¬ schützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühl Schmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktions¬ anlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kϋhlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.
Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holz- zerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.
Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:
Alternaria, wie Alternaria tenuis, Aspergillus, wie Aspergillus niger, Chaetomium, wie Chaetomium globosum, Coniόphora, wie Coniophora puetana, Lentinus, wie Lentinus tigrinus, Penicillium, wie Penicillium glaucum, Polyporus, wie Polyporus versicolor, Aureobasidium, wie Aureobasidium pullulans, Sclerophoma, wie Sclerophoma pityophila,
Trichoderma, wie Trichoderma viride, Escherichia, wie Escherichia coli, Pseudomonas, wie Pseudomonas aeruginosa, Staphylococcus, wie Staphylococcus aureus.
Die erfindungsgemäßen Stoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter
Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlen¬ wasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton,
Methyl ethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungs¬ mittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser; mit ver¬ flüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Butan, Propan, Stickstoff und Kohlendioxid; als feste
Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebro¬ chene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Mais- kolben und Tabakstengel; als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Poly- oxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpoly- glykol-Ether, Alkyl sulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methyl- cellulose.
Es können in den Formulierungen Haftmittel wie Carboxy-methylcellulose, natür¬ liche und synthetische pulverige, kömige oder latexförmige Polymere verwendet λverden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metall- phthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichts¬ prozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
Die erfindungsgemäßen Wirkstoffe können bei Verwendung im Pflanzenschutz als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In manchen Fällen treten dabei auch synergistische Effekte auf, das bedeutet, daß die Mischung eine höhere Wirkung zeigt als die Summe der Wirkungen der einzelnen Komponenten.
Als Mischpartner kommen zum Beispiel die folgenden Stoffe in Betracht: . 10
Fungizide:
2-Aminobutan; 2-Anilino-4-methyl-6-cyclopropyl-pyrimidin; 2',6'-Dibromo-2-me- thyl^'-trifluoromethoxy^'-trifluoro-methyl- S-thiazol-S-carboxanilid; 2,6-Dichlo- ro.N.(4-.tπfluoromethylbenzyl)-benzamid;(E)-2-Methoxyimino-N-methyl-2-(2-phen- oxyphenyl) acetamid; 8-Hydroxychinolinsulfat; Methyl-(E)-2-{2-[6-(2-cyanophen- oxy)-pyrimidin-4-yloxy]phenyl}-3-methoxyacrylat; Methyl-(E)-methoximino
[alpha-(o-tolyloxy)-o-tolyl]-acetat; 2-Phenylphenol (OPP), Aldimorph, Ampro- pylfos, Anilazin, Azaconazol,
Benalaxyl, Benodanil, Benomyl, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazole, Bupirimate, Buthiobate,
Calciumpolysulfid, Captafol, Captan, Carbendazim, Carboxin, Chinomethionat
(Quinomethionat), Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Cufraneb,
Cymoxanil, Cyproconazole, Cyprofuram,
Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimeüiomorph, Diniconazol, Dinocap, Diphenyl- amin, Dipyrithion, Ditalimfos, Dithianon, Dodin, Drazoxolon,
Edifenphos, Epoxyconazole, Ethirimol, Etridiazol,
Fenarimol, Fenbuconazole, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin,
Fenpropimorph, Fentinacetate, Fentinhydroxyd, Ferbam, Ferimzone, Fluazinam, Fludioxonil, Fluoromide, Fluquinconazole, Flusilazole, Flusulfamide, Flutolanil,
Flutriafol, Folpet, Fosetyl-Aluminium, Fthalide, Fuberidazol, Furalaxyl,
Furmecyclox,
Guazatine,
Hexachlorobenzol, Hexaconazol, Hymexazol, Imazalil, Imibenconazol, Iminoctadin, Iprobenfos (IBP), Iprodion, Isoprothiolan,
Kasugamycin, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat,
Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux- Mischung,
Mancopper, Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metsulfovax, Myclobutanil,
Nickel dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,
Ofurace, Oxadixyl, Oxamocarb, Oxycarboxin,
Pefurazoat, Pencona-zol, Pencycuron, Phosdiphen, Pimaricin, Piperalin, Polyoxin,
Probenazol, Prochloraz, Procymidon, Propamocarb, Propiconazole, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Quintozen (PCNB), Schwefel und Schwefel-Zubereitungen,
Tebuconazol, Tecloftalam, Tecnazen, Tetraconazol, Thiabendazol, Thicyofen, Thiophanat-methyl, Thiram, Tolclophos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin,
Triticonazol,
Validamycin A, Vinci ozolin, Zineb, Ziram.
Bakterizide:
Bronopol, Dichlorophen, Nitrapyrin, Nickel Dimethyldithiocarbamat, Kasugamy¬ cin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.
Insektizide / Akarizide / Nematizide:
Abamectin, Abamectin, AC 303 630, Acephat, Acrinathri , Alanycarb, Aldicarb, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azinphos A,
Azinphos M, Azocyclotin,
Bacillus thuringiensis, Bendiocarb, Benfuracarb, Bensultap, Betacyluthrin, Bifenthrin, BPMC, Brofenprox, Bromophos A, Bufencarb, Buprofezin, Buto- carboxin, Butylpyridaben, Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA 157
419, CGA 184699, Chloethocarb, Chlorethoxyfos, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorpyrifos, Chlorpyrifos M, Cis-Resmethrin, Clocythrin, Clofentezin, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin, Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron,
Diazinon, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Diethion, Diflubenzuron, Dimethoat, Dimethylvinphos, Dioxathion, Disulfoton, Edifenphos, Emamectin, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Ethoprophos, Etofenprox, Etrimphos, Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronil, Fluazinam, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox, Fluvalinate, Fonophos, Formothion, Fosthiazat, Fubfenprox, Furathiocarb, HCH, Heptenophos, Hexaflumuron, Hexythiazox,
Imidacloprid, Iprobenfos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivemectin, Lamda-cyHalothrin, Lufenuron,
Malathion, Mecarbam, Mervinphos, Mesulfenphos, Metaldehyd, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemecün, Monocrotophos, Moxidectin, Naled, NC 184, NI 25, Nitenpyram Omethoat, Oxamyl, Oxydemethon M, Oxydeprofos,
Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamdon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenofos, Promecarb, Propaphos, Propoxur, Prothiofos, Prothoat, Pymetrozin, Pyrachlophos, Pyradaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen, Quinalphos,
RH 5992,
Salithion, Sebufos, Silafluofen, Sulfotep, Sulprofos,
Tebufenozid, Tebufenpyrad, Tebupirimphos, Tefiubenzuron, Tefluthrin, Temephos, Terbam, Terbufos, Tetrachlorvinphos, Thiafenox, Thiodicarb, Thiofanox, Thio- methon, Thionazin, Thuringiensin, Tralomethrin, Triarathen, Triazophos, Triazu- ron, Trichlorfon, Triflumuron, Trimethacarb, Vamidothio, XMC, Xylylcarb, Zetamethrin.
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.
Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden. - 23
Bei der Behandlung von Pflanzenteilen können die Wirkstoffkonzentrationen in den Anwendungsformen in einem größeren Bereich variiert werden: Sie liegen im allgemeinen zwischen 1 und 0,0001 Gew.-%, vorzugsweise zwischen 0,5 und 0,001 Gew.-%.
Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis
50 g je Kilogramm Saatgut, vorzugsweise 0,01 bis 10 g benötigt.
Bei der Behandlung des Bodens sind Wirkstoffkonzentrationen von 0,00001 bis 0, 1 Gew.-%, vorzugsweise von 0,0001 bis 0,02 Gew.-% am Wirkungsort erforderlich.
Die zum Schutz technischer Materialien verwendeten Mittel enthalten die
Wirkstoffe im allgemeinen in einer Menge von 1 bis 95%, bevorzugt von 10 bis 75 %.
Die Anwendungskonzentrationen der erfindungsgemäßen Wirkstoffe richten sich nach der Art und dem Vorkommen der zu bekämpfenden Mikroorganismen sowie nach der Zusammensetzung des zu schützenden Materials. Die optimale
Einsatzmenge kann durch Testreihen errmittelt werden. Im allgemeinen liegen die Anwendungskonzentrationen im Bereich von 0,001 bis 5 Gewichts-%, vorzugs¬ weise von 0,05 bis 1,0 Gewichts-% bezogen auf das zu schützende Material.
Die Wirksamkeit und das Wirkungsspektrum der erfindungsgemäß im Material - schütz zu verwendenden Wirkstoffe bzw. der daraus herstellbaren Mittel,
Konzentrate oder ganz allgemein Formulierungen kann erhöht werden, wenn gegebenenfalls weitere antimikrobiell wirksame Verbindungen, Fungizide, Bakterizide, Herbizide, Insektizide oder andere Wirkstoffe zur Vergrößerung des Wirkungsspektrums oder Erzielung besonderer Effekte wie z.B. dem zusätzlichen Schutz vor Insekten zugesetzt werden. Diese Mischungen können ein breiteres
Wirkungsspektrum besitzen als die erfindungsgemäßen Verbindungen.
In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten. Besonders günstige Mischungspartner sind z.B. die folgenden Verbindungen: Sulfenamide wie Dichlorfluanid (Euparen), Tolyfluanid (Methyleuparen), Folpet, Fluorfolpet;
Benzimidazole wie Carbendazim (MBC), Benomyl, Fuberidazole, Thiabendazole oder deren Salze;
Thiocyanate wie Thiocyanatomethylthiobenzothiazol (TCMTB), Methylenbisthio- cyanat (MBT);
quartäre Ammoniumverbindungen wie Benzyldimethyltetradecylammoniumchlorid, Benzyl-dimethyl-dodecyl-ammoniumchlorid, Dodecyl-dimethyl-ammoniumchlorid;
Morpholinderivate wie Cn-C14-4-Alkyl-2,6-dimethyl-morpholinhomologe (Tride- morph), (+)-cis-4-[tert.-Butylphenyl)-2-methylpropyl]-2,6-dimethylmorpholin (Fen¬ propimorph), Falimorph;
Phenole wie o-Phenylphenol, Tribromphenol, Tetrachlorphenol, Pentachlorphenol, 3-Methyl-4-chlorphenol, Dichlorophen, Chlorophen oder deren Salze;
A-zole wie Triadimefon, Triadimenol, Bitertanol, Tebuconazole, Propiconazole, Azaconazole, Hexaconazole, Prochloraz, Cyproconazole, l-(2-Chlorphenyl)-2-(l- chlorcyclopropyl)-3-(l,2,4-triazol-l-yl)-propan-2-ol oder l-(2-Chlorphenyl)-2- (l,2,4-triazol-l-yl-methyl)-3,3-dimethyl-butan-2-ol.
Iodpropargylderivate wie Iodpropargyl-butylcarbamat ( ?BC), -chlorophenylformal, -phenylcarbamat, -hexylcarbamat, -cyclohexylcarbamat, Iodpropargyloxyethylphe- nylcarbamat;
Iodderivate wie Diiodmethyl-p-arylsulfone z.B. Diiodmethyl-p-tolylsulfon;
Bromderivate wie Bromopol;
Isothiazoline wie N-Methylisothiazolin-3-on, 5-Chloro-N-methylisothiazolin-3-on, 4,5-Dichlor-N-octylisothiazolin-3-on, N-Octylisothiazolin-3-on (Octilinone); Benzisothiazolinone, Cyclopentenisothazoline;
Pyridine wie l-Hydroxy-2-pyridinthion (und ihre Na-, Fe-, Mn, Zn-Salze), Tetra- chlor-4-methylsulfonylpyridin;
Metallseifen wie Zinn-, Kupfer-, Zink-napthenat, -octoat, -2-ethylhexanoat, -oleat, -phosphat, -benzoat, Oxide wie TBTO, Cu2O, CuO, ZnO;
Organische Zinnverbindungen wie Tributylzinnnaphtenat und Tributylzinnoxid;
Dialkyldithiocarbamate wie Na- und Zn-Salze von Dialkyldithiocarbamaten, Tetram ethyltiuramidisulfid (TMTD);
Nitrile wie 2,4,5,6-Tetrachlorisophthalonitril (Chlorthalonil) u.a. Mikrobizide mit aktivierter Halogengruppe wie Cl-Ac, MCA, Tectamer, Bromopol, Bromidox;
Benzthiazole wie 2-Mercaptobenzothiazole; s.o. Dazomet;
Chinoline wie 8-Hydroxychinolin;
Formaldehydabspaltende Verbindungen wie Benzylalkoholmono(poly)hemiformal, Oxazolidine, Hexahydro-s-triazine, N-Methylolchloracetamid;
Tris-N-(Cyclohexyldiazeniumdioxy)-Aluminium, N-(Cyclohexyldiazeniumdioxy)-
Tributylzinn bzw. K-Salze, Bis-(N-cyclohexyl)diazinium -(dioxy-Kupfer oder Alu¬ minium).
Als Insektizide werden bevorzugt zugesetzt:
Phosphorsäureester wie Azinphos-ethyl, Azinphos-m ethyl, l-(4-Chlorphenyl)-4-(O- ethyl, S-propyl)phosphoryloxypyrazol (TIA-230), Chlorpyrifos, Coumaphos, De¬ meton, Demeton-S-methyl, Diazinon, Dichlorfos, Dimethoate, Ethoprophos, Etrim- fos, Fenitrothion, Fention, Heptenophos, Parathion, Parathion-methyl, Phosalone, Phoxim, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Prothiofos, Sulprofos, Triazophos und Trichlorphon. - 28 -
Carbamate wie Aldicarb, Bendiocarb, BPMC (2-(l-Methylpropyl)phenylmethyl- carbamat), Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Cloethocarb, Isoprocarb, Methomyl, Oxamyl, Pirimicarb, Promecarb, Propoxur und Thiodicarb.
Pyrethroide wie Allethrin, Alphamethrin, Bioresmethrin, Byfenthrin (FMC 54800),
Cycloprothrin, Cyfluthrin, Decamethrion, Cyhalothrin, Cypermethrin, Deltamethrin, Alpha-cyano-3-phenyl-2-methylbenzyl-2,2-dimethyl-3-(2-chlor-2-trifluormethylvi- nyl)cyclopropancarboxylat, Fenpropathrin, Fenfluthrin, Fenvalerate, Flucythrinate, Flumethrin, Fluvalinate, Permethrin und Resmethrin; Nitroimino- und Nitromethylen- Verbindungen wie l-[(6-Chlor-3-pyridinyl)-methyl]-4,5-dihydro-N- nitro-lH-imidazol-2-amin (Imidachloprid).
Organosiliciumverbindungen, vorzugsweise Dimethyl(phenyl)silylmethyl-3-phen- oxybenzylether wie z.B. Dimethyl-(4-ethoxyphenyl)-silylmethyl-3-phenoxybenzyl- ether oder Dimethyl(phenyl)-silylmethyl-2-phenoxy-6-pyridylmethylether wie z.B. Dimethyl(9-ethoxyphenyl)-silylmethyl-2-phenoxy-6-pyridylmethylether oder (Phe- nyl)[3-(3-phenoxyphenyl)propyl](dimethyl)-silane wie z.B. (4-Ethoxyphenyl)-[3(4- fluoro-3-phenoxyphenyl)-propyl]dimethylsilan.
Als andere Wirkstoffe kommen in Betracht Algizide, Molluskizide, Wirkstoffe gegen "sea animals", die sich auf z.B. Schiffsbodenanstrichen ansiedeln.
Die Herstellung und die Verwendung von erfindungsgemäßen Stoffen werden durch die folgenden Beispiele veranschaulicht.
Herstellungsbeispiele
Beis piel 1
Eine Lösung von 5,2 g (20 mmol) l-Chlor-2-(l-chlorcyclopropyl)-3-phenyl-but-3- en-2-ol, 5,2 g (75 mmol) 1,2,4-Triazol und 3,4 g (30 mmol) Kalium-tert.-butylat in
50 ml Dimethylformamid wird 8 Stunden bei 80°C gerührt. Danach wird das Reaktionsgemisch durch Abziehen des Lösungsmittels unter vermindertem Druck eingeengt. Man nimmt den verbleibenden Rückstand in Essigsäureethylester auf, wäscht mit Wasser, trocknet die organische Phase über Natriumsulfat und engt durch Abziehen des Lösungsmittels unter vermindertem Druck ein. Der verblei¬ bende Rückstand wird mit Essigester: Cyclohexan = 2:1 als Laufmittel an Kieselgel Chromatographien Durch Einengen des Eluates erhält man 1,7 g (30 % der Theo¬ rie) an 2-Phenyl-3-(l-chlorcyclopropyl)-3-hydroxy-4-(l,2,4-triazol-l-yl)-but-l-en. 1H-NMR-Spektrum (200 MHz, CDC13, TMS)
δ = 0,2-0,5 (m, 2H); 0,75-0,95 (m, 2H), 4,43 (d, J = 14 Hz, 1H); 4,9 (d, J =
14 Hz, 1H); 5,36 (d, J = 2Hz, 1H); 5,65 (d, J = 2 Hz, 1H), 7,3-7,5 (m, 5H), 8,0 (s, 1H), 8,22 (s, 1H) ppm
Herstellung der Ausgangssubstanz:
Eine Lösung von 5 g (25 mmol) α-Bromstyrol in 10 ml absolutem Diethylether wird unter Argonatmosphäre und unter Rühren bei Raumtemperatur in ein Gemisch aus 0,7 g (30 mmol) Magnesiumspänen und 10 ml Diethylether einge¬ tropft. Nach beendeter Zugabe wird das Reaktionsgemisch 1 Stunde unter Rück- fluß erhitzt. Die so erhaltene Grignard-Lösung wird bei Raumtemperatur unter
Rühren in eine Lösung von 3 g (20 mmol) 1-Chlorcyclopropyl-chlormethyl-keton in 10 ml Diethylether getropft. Nach beendeter Zugabe wird das Gemisch noch 4 Stunden unter Rückfluß erhitzt. Anschließend versetzt man das Reaktionsgemisch mit gesättigter, wäßriger Ammoniumchlorid-Lösung, gießt das entstehende Ge- misch auf Wasser und extrahiert mehrfach mit Diethylether. Die vereinigten orga¬ nischen Phase werden mit gesättigter, wäßriger Natriumchlorid-Lösung gewaschen und nach dem Trocknen über Natriumsulfat durch Abziehen des Lösungsmittels unter vermindertem Druck eingeengt. Man erhält 5,0 g (97 % der Theorie) an 1- Chlor-2-(l-chlorcyclopropyl)-3-phenyl-but-3-en-2-ol.
Beispiel 2
In eine Lösung von 52 g (0,75 Mol) 1,2,4-Triazol und 8,4 g (0,075 Mol) Kalium- tert.-butylat in 500 ml Dimethylformamid wird bei 80°C unter Rühren eine Lösung von 59 g (0,25 Mol) l-(l-Chlor-cycloprop-l-yl)-l-[3-(2-fluor-phenyl)-prop-l-en-2- yl]-oxiran in 100 ml Dimethylfomamid eingetropft. Nach beendeter Zugabe wird noch 18 Stunden bei 80°C gerührt. Anschließend wird das Reaktionsgemisch unter vermindertem Druck eingeengt und mit Wasser versetzt. Das entstehende Gemisch wird mehrfach mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden nach dem Trocknen über Natriumsulfat unter vermindertem Druck eingeengt. Der verbleibende Rückstand wird mit Essigsäureethylester : Cyclohexan = 2 : 1 als Laufmittel an Kieselgel Chromatographien. Durch Einengen des Eluates unter vermindertem Druck erhält man 40 g (52 % der Theorie) an 2-(2-Fluor- phenyl)-3-(l-chlor-cycloρropyl)-3-hydroxy-4-(l,2,4-triazol-l-yl)-but-l-en.
'H-NMR-Spektrum (200 MHZ, CDC13, TMS):
δ = 0,3-0,5 (m, 2H); 0,8-1,0 (m, 2H); 4,46 (d, J = 14 Hz, 1H); 5,0 (d, J = - 14 Hz, 1H); 5,39 (d, J = 1Hz, 1H); 5,84 (d, J = 1 Hz, 1H), 7,0-7,4 (m, 4H), 8,0 (s, 1H), 8,29 (s, 1H) ppm
Herstellung von Ausgangssubstanzen:
In ein Gemisch aus 9,8 g (0,33 Mol) Natriumhydrid, 400 ml Dimethylsulfoxid und
400 ml Tetrahydrofuran wird bei 0°C unter Rühren eine Lösung von 66 g (0,33 Mol) Trimethylsulfoniumiodid in 400 ml Dimethylsulfoxid eingetropft. Nach beendeter Zugabe läßt man 5 Minuten bei 0°C nachrühren und gibt dann 70 g (0,25 Mol) 2-(2-Fluorphenyl)-3-(l-Chlor-cycloprop-l-yl)-prop-l-en-3-on in 100 ml Dimethylsulfoxid hinzu. Das Reaktionsgemisch wird zunächst 15 Minuten bei 0°C und dann noch 6 Stunden bei Raumtemperatur gerührt. Anschließend gießt man das Reaktionsgemisch auf Eiswasser, extrahiert mehrfach mit Essigsäureethylester, wäscht die vereinigten organischen Phasen mit Wasser, trocknet über Natriumsulfat und engt unter vermindertem Druck ein. Man erhält auf diese Weise 53 g (90 % der Theorie) an l-(l-Chlor-cycloprop-l-yl)-l-[3-(2-fluor-phenyl)-ρrop- l-en-2-yl]-oxiran in Form eines öligen Produktes, das ohne zusätzliche Reinigung für die weitere Synthese verwendet wird.
> 2 -
In ein Gemisch aus 106 g (0,5 Mol) (l-Chlor-cyclopropyl)-(2'-fluor-benzyl)-keton und 250 ml (1,8 Mol) Bis-(dimethylamino)-methan werden unter Rühren bei Raumtemperatur 250 ml (2,65 Mol) Essigsäureanhydrid eingetropft. Nach beendeter Zugabe wird das Reaktionsgemisch zunächst 1 Stunde bei 90°C nachgerührt, dann auf Raumtemperatur abgekühlt und auf Eiswasser gegossen. Das entstehende Gemisch wird mehrfach mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden nacheinander mit verdünnter, wäßriger Natriumhydrogencarbonat-Lösung gewaschen, dann über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Man erhält auf diese Weise 107 g (95 % der Theorie) an 2-(2-Fluorphenyl)-3-(l-chlor-cycloprop-l-yl)pro-l-en-3-on in Form eines öligen Produktes, das ohne zusätzliche Reinigung für die weitere Synthese verwendet wird.
Nach den in den Beispielen 1 und 2 angegebenen Methoden werden auch die in der folgenden Tabelle 2 aufgeführten Stoffe der Formel (I) hergestellt.
- JJ -
Tabelle 2
*) Die Verbindungen wurden durch die nachfolgend aufgeführten Signale im -NMR-Spektrum (200 MHz, CDC13, TMS) charakterisiert.
Beispiel 3
δ = 0,3-0,6 (m, 2 H); 0,8-1,1 (m, 2 H), 4,40 (d, J = 15 Hz, 1 H); 5,02 (d, J =
15 Hz, 1 H); 5,37 (d, J = 1 Hz, 1 H); 5,90 (d, J = 1 Hz, 1 H); 7,0-7,5 (m, 4 H), 7,97 (s, 1 H), 8,29 (s, 1 H) ppm
Beispiel 4
δ = 0,2-0,5 (m, 2 H), 0,7-0,9 (m, 2 H), 4,41 (d, J = 15 Hz, 1 H); 4,92 (d, J = 15 Hz, 1 H), 5,32 (d, J = 1 Hz, 1 H); 5,62 (d, J = 1 Hz, 1 H), 7,2-7,5 (m, 4 H); 8,01 (s, 1 H); 8,24 (s, 1 H) ppm 54 -
Beispiel 5
δ = 0,3-1,3 (m, 4 H); 3,6 (d, J = 15 Hz, 1 H); 4,1 (d, J = 15 Hz, 1 H); 5,25 (s, 1 H); 5,39 (s, 1 H); 7,0-7,5 (m, 4 H); 7,85 (s, 1 H); 8,27 (s, 1 H) ppm
Beispiel 6
δ = 0,2-1,3 (m, 4 H); 4,4 (d, J = 14 Hz, 1 H); 4,92 (d, J = 14 Hz, 1 H); 5,34 (d, J
= 1 Hz, 1 H); 5,66 (d, J = 1 Hz, 1 H); 7,1-7,5 (m, 4 H); 8,0 (s, 1 H); 8,25 (s, 1 H) ppm
Beispiel 7
δ = 0,3-0,6 (m, 2 H); 0,75-1,1 (m, 2 H); 4,43 (dd, J = 13 und 2 Hz, 1 H); 4,63 (dd, J = 13 und 2 Hz 1 H); 5,32 (d, J = 1 Hz, 1 H); 5,75 (d, J = 1Hz, 1 H); 7,2-
7,4 (m, 5 H); 7,95 (s, 1 H); 8,0 (s, 1 H) ppm
Beispiel 8
δ = 0,2-0,6 (m, 2 H); 0,75-1,05 (m, 2 H); 4,49 (dd, J = 13 und 2 Hz, 1 H); 4,86 (dd, J = 13 und 2 Hz, 1 H); 5,35 (d, J = 1 Hz, 1 H); 5,92 (d, J = 1 Hz, 1 H); 7,2- 7,5 (m, 4 H); 7,89 (s, 1 H); 8,13 (s, 1 H) ppm
Beispiel 9
δ = 0,3-0,6 (m, 2 H); 0,75-1,05 (m, 2 H); 4,4 (dd, J = 13 und 2 Hz, 1 H); 4,59 (dd, J = 13 und 2 Hz, 1 H); 5,31 (d, J = 1 Hz, 1 H); 5,73 (d, J = 1 Hz, 1 H); 7,2- 7,4 (m, 4 H); 7,97 (s, 1 H); 8,02 (s, 1 H) ppm
Beispiel 10
δ = o,4-0,6 (m, 2H); 0,75-0,95 (m, 2H); 4,5 (d, J=15 Hz, IH); 4,52 (s, IH); 5,02 (d, J=15 Hz, IH); 5,32 (s, IH); 5,71 (s, IH); 6,44 (t, J=75 Hz, IH); 7,1-7,4 (m, 4H); 8,05 (s, IH); 8,3 (s, IH) ppm Beispiel A
Leptosphaeria nodorum-Test (Weizen) / protektiv
Lösungsmittel: 10 Gewichtsteile N-Methyl-pyrrolidon Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge¬ wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirkstoff Zubereitung in der angegebenen Aufwandmenge. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Sporensuspension von Leptosphaeria nodorum besprüht.
Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.
Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 15°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt.
10 Tage nach der Inokulation erfolgt die Auswertung.
Wirkstoffe, Wirkstoffkonzentrationen und Versuchsergebnisse gehen aus der fol¬ genden Tabelle hervor.
Tabelle A
Leptosphaeria nodorum-Test (Weizen) / protektiv
M -
Tabelle A - Fortsetzung
Leptosphaeria nodorum-Test (Weizen)/protektiv
Beispiel B
Gibberella zeae-Test (Gerste) / protektiv
Lösungsmittel: 10 Gewichtsteile N-Methyl-pyrrolidon Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge¬ wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Konidiensuspension von Gibberella zeae besprüht.
Die Pflanzen werden in einem Gewächshaus unter lichtdurchlässigen Inkubations¬ hauben bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 100 % aufgestellt.
4 Tage nach der Inokulation erfolgt die Auswertung.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
- 39 -
Tabelle B
Gibberella zeae-Test (Gerste) / protektiv
(syn. Fusarium graminearum)
Beispiel C
Podosphaera-Test (Apfel) / protektiv
Lösungsmittel: 4,7 Gewichtsteile Aceton
Emulgator: 0,3 Gewicht-steile Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge¬ wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Pflanzen mit der Wirkstoffzubereitung bis zur Tropfnässe. Nach Antrocknen des Spritzbelages werden die Pflanzen durch Bestäuben mit Konidien des Apfelmehltauerregers (Podosphaera leucotricha) inokuliert.
Die Pflanzen werden dann im Gewächshaus bei 23°C und einer relativen Luft¬ feuchtigkeit von ca. 70 % aufgestellt.
10 Tage nach der Inokulation erfolgt die Auswertung.
Wirkstoffe, Wirkstoffkonzentrationen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle C
Podosphaera-Test / protektiv
Beispiel D
Pyricularia-Test (Reis) / protektiv
Lösungsmittel: 12,5 Gewichtsteile Aceton
Emulgator: 0,3 Gewichtsteile Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge¬ wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Reispflanzen mit der Wirkstoffzubereitung bis zur Tropfnässe. Nach Antrocknen des Spritzbelages werden die Pflanzen durch Besprühen mit einer wäßrigen Sporensuspension von Pyricularia oryzae inokuliert. Anschließend werden die Pflanzen in einem Ge¬ wächshaus bei 100 % relativer Luftfeuchtigkeit und 25°C aufgestellt.
4 Tage nach der Inokulation erfolgt die Auswertung des Krankheitsbefalls.
Wirkstoffe, Wirkstoffkonzentrationen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle D
Pyricularia-Test (Reis) / protektiv
Beispiel E
Pellicularia-Test (Reis) / protektiv
Lösungsmittel: 12,5 Gewichtsteile Aceton Emulgator: 0,3 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge¬ wichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und verdünnt das Konzentrat mit Wasser und der angegebenen Menge Emulgator auf die gewünsch¬ te Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Reispflanzen im 3- bis 4- Blattstadium tropfnaß gespritzt. Die Pflanzen verbleiben bis zum Antrocknen des
Spritzbelages im Gewächshaus. Anschließend werden die Pflanzen mit Pellicularia sasakii inokuliert und bei 25°C und 100 % relativer Luftfeuchtigkeit aufgestellt.
5 bis 8 Tage nach der Inokulation erfolgt die Auswertung des Krankheitsbefalles.
Wirkstoffe, Wirkstoffkonzentrationen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle E
Pellicularia-Test (Reis) / protektiv
Patentansprüche
1. Hydroxyethyl-azolyl-Derivate der Formel
in welcher
X für Wasserstoff, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen oder
Alkoxy mit 1 bis 4 Kohlenstoffatomen steht,
Z für Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 4 Kohlen- Stoffatomen und 1 bis 5 Halogenatomen, Nitro oder gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen substituiertes Phenyl steht und
m für die Zahlen 0, 1, 2 oder 3 steht,
sowie deren Säureadditions-Salze und Metallsalz-Komplexe.
2. Hydroxyethyl-azolyl-Derivate der Formel (I) gemäß Anspruch 1, in denen
X für Wasserstoff, Fluor, Chlor, Methyl, Ethyl, n-Propyl, Isopropyl, Methoxy oder Ethoxy steht,
Z für Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.-Butyl, iso-Butyl, tert.-Butyl, Trichlormethyl, Trifluormethyl, Difluormethyl, Methoxy, Ethoxy, Trifluormethoxy, Difluormethoxy,
Nitro oder für gegebenenfalls einfach oder zweifach, gleichartig

Claims

oder verschieden durch Fluor und/oder Chlor substituiertes Phenyl steht und
m für die Zahlen 0, 1, 2 oder 3 steht, wobei Z für gleiche oder verschiedene Reste stehen kann, wenn m für 2 oder 3 steht.
Verfahren zur Herstellung von Hydroxyethyl-azolyl-Derivaten der Formel
in welcher
X für Wasserstoff, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen steht,
Z für Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 4 Kohlen¬ stoffatomen und 1 bis 5 Halogenatomen, Nitro oder gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen substituiertes Phenyl steht und
m für die Zahlen 0, 1, 2 oder 3 steht,
sowie von deren Säureadditions-Salzen und Metallsalz-Komplexen, dadurch gekennzeichnet, daß man
a) Butenol-Derivate der Formel
in welcher
X, Z und m die oben angegebenen Bedeutungen haben und
Hai für Chlor oder Brom steht,
oder
b) Oxirane der Formel
in welcher
X, Z und m die oben angegebenen Bedeutungen haben,
mit 1,2,4-Triazol der Formel
H ι
< % σv)
N — *
in Gegenwart eines Säurebindemittels und in Gegenwart eines Ver¬ dünnungsmittels umsetzt und gegebenenfalls anschließend an die so erhaltenen Verbindungen der Formel (I) eine Säure oder ein Metallsalz addiert. 4. Mikrobizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem Hydroxyethyl-azolyl-Derivat der Formel (I) gemäß Anspruch 1 bzw. an ei nem S äureadditi ons-S alz oder Metall salz-Komplex eines Hydroxyethyl-azolyl-Derivates der Formel (I).
5. Verwendung von Hydroxyethyl-azolyl-Derivaten der Formel (I) gemäß
Anspruch 1 bzw. von deren Säureadditions-Salzen und Metallsalz- Komplexen als Mikrobizide im Pflanzenschutz und im Materialschutz.
6. Verfahren zur Bekämpfung von unerwünschten Mikroorganismen im Pflanzenschutz und im Materialschutz, dadurch gekennzeichnet, daß man Hydroxyethyl-azolyl-Derivate der Formel (I) gemäß Anspruch 1 bzw. deren
Säureadditions-Salze oder Metallsalz-Komplexe auf die Mikroorganismen und/oder deren Lebensraum ausbringt.
7. Verfahren zur Herstellung von mikrobiziden Mitteln, dadurch gekennzeich¬ net, daß man Hydroxyethyl-azolyl-Derivate der Formel (I) gemäß Anspruch 1 bzw. deren Metallsalz-Komplexe oder Säureadditions-Salze mit Streck¬ mitteln und/oder oberflächenaktiven Stoffen vermischt.
8. Butenol-Derivate der Formel
in welcher
X für Wasserstoff, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen oder
Alkoxy mit 1 bis 4 Kohlenstoffatomen steht,
Z für Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkoxy - 50 -
mit 1 bis 4 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Nitro oder gegebe¬ nenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen substituiertes Phenyl steht,
m für die Zahlen 0, 1, 2 oder 3 steht und
Hai für Chlor oder Brom steht.
9. Verfahren zur Herstellung von Butenol-Derivaten der Formel
in welcher
X für Wasserstoff, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen oder
Alkoxy mit 1 bis 4 Kohlenstoffatomen steht,
Z für Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Nitro oder gegebe¬ nenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen substituiertes Phenyl steht,
m für die Zahlen 0, 1, 2 oder 3 steht und
Hai für Chlor oder Brom steht,
dadurch gekennzeichnet, daß man Cyclopropylketone der Formel o
(V),
Hai — CH — C — ^-X
in welcher
X und Hai die oben angegebenen Bedeutungen haben,
mit metallorganischen Verbindungen der Formel
in welcher
Z und m die oben angegebenen Bedeutungen haben,
in Gegenwart eines Verdünnungsmittels umsetzt.
10. Oxirane der Formel
in welcher
X für Wasserstoff, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen steht,
Z für Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Nitro oder gegebe- nenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen substituiertes Phenyl steht und
m für die Zahlen 0, 1, 2 oder 3 steht.
11. Verfahren zur Herstellung von Oxiranen der Formel
in welcher
X für Wasserstoff, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen steht,
Z für Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Nitro oder gegebe¬ nenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen substituiertes Phenyl steht und
m für die Zahlen 0, 1, 2 oder 3 steht,
dadurch gekennzeichnet, daß man
c) Butenol-Derivate der Formel
in welcher
X, Z und m die oben angegebenen Bedeutungen haben und
Hai für Chlor oder Brom steht,
mit Basen in Gegenwart eines Verdünnungsmittels umsetzt,
oder
d) Ketone der Formel
in welcher
X, Z und m die oben angegebenen Bedeutungen haben,
mit Dimethylsulfonium-methylid der Formel
δ® δθ (CH3)2 S CH2 (XI)
in Gegenwart eines Verdünnungsmittels umsetzt.
12. Ketone der Formel
in welcher X für Wasserstoff, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen oder
Alkoxy mit 1 bis 4 Kohlenstoffatomen steht,
Z für Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 4 Kohlen¬ stoffatomen und 1 bis 5 Halogenatomen, Nitro oder gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen substituiertes Phenyl steht und
m für die Zahlen 0, 1, 2 oder 3 steht.
13. Verfahren zur Herstellung von Ketonen der Formel
in welcher
X für Wasserstoff, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen steht,
Z für Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Nitro oder gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen substituiertes Phenyl steht und
m für die Zahlen 0, 1, 2 oder 3 steht,
dadurch gekennzeichnet, daß man Benzylketone der Formel r -
in welcher
X, Z und m die oben angegebenen Bedeutungen haben,
entweder
α) mit Bis-(dimethylamino)-methan der Formel
(CH3),N - CH, - N(CH3)2 (XIII)
in Gegenwart von Essigsäureanhydrid oder Eisessig umsetzt,
oder
ß) mit Paraformaldehyd oder Formalin in Gegenwart eines Katalysators und in Gegenwart eines Verdünnungsmittels umsetzt.
EP94928316A 1993-09-16 1994-09-06 Butenol-triazolyl derivate, deren herstellung und deren verwendung als mikrobizide Ceased EP0719260A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4331476 1993-09-16
DE4331476 1993-09-16
DE4419812 1994-06-07
DE4419812A DE4419812A1 (de) 1993-09-16 1994-06-07 Hydroxyethyl-azolyl-Derivate
PCT/EP1994/002964 WO1995007896A1 (de) 1993-09-16 1994-09-06 Butenol-triazolyl derivate, deren herstellung und deren verwendung als mikrobizide

Publications (1)

Publication Number Publication Date
EP0719260A1 true EP0719260A1 (de) 1996-07-03

Family

ID=25929611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94928316A Ceased EP0719260A1 (de) 1993-09-16 1994-09-06 Butenol-triazolyl derivate, deren herstellung und deren verwendung als mikrobizide

Country Status (13)

Country Link
US (1) US5786375A (de)
EP (1) EP0719260A1 (de)
JP (1) JPH09502710A (de)
CN (1) CN1133590A (de)
AU (1) AU7780194A (de)
BR (1) BR9407482A (de)
CA (1) CA2171754A1 (de)
CZ (1) CZ70096A3 (de)
HU (1) HU9600660D0 (de)
PL (1) PL313448A1 (de)
SK (1) SK36096A3 (de)
TR (1) TR27956A (de)
WO (1) WO1995007896A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410042B1 (en) * 1997-07-23 2002-06-25 Basf Aktiengesellschaft Plant protection products in the form of a granulate with controlled release of the active agent
US20120238762A1 (en) * 2009-12-08 2012-09-20 Kureha Corporation Azole derivatives and methods for producing the same, intermediate compounds for the derivatives and methods for producing the same, and agro-horticultural agents and industrial material protecting agents containing the derivatives

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927839A (en) * 1979-03-07 1990-05-22 Imperial Chemical Industries Plc Method of preventing fungal attack on wood, hides, leather or paint films using a triazole
AU542623B2 (en) * 1980-05-16 1985-02-28 Bayer Aktiengesellschaft 1-hydroxyethyl-azole derivatives
EP0117578A3 (de) * 1983-02-23 1985-01-30 Shionogi & Co., Ltd. Azol-substituierte Alkoholderivate
EP0251086B1 (de) * 1986-06-23 1993-03-17 The Du Pont Merck Pharmaceutical Company Fungizide Karbinole
US4952232A (en) * 1987-04-29 1990-08-28 E. I. Du Pont De Nemours And Company Antifungal carbinols
US4980367A (en) * 1987-12-17 1990-12-25 E. I. Du Pont De Nemours And Company Antifungal carbinols
DE3812967A1 (de) * 1987-06-24 1989-01-05 Bayer Ag Azolylmethyl-cyclopropyl-derivate
DE3813874A1 (de) * 1987-07-10 1989-01-19 Bayer Ag Hydroxyalkyl-azolyl-derivate
DE3921481A1 (de) * 1989-06-30 1991-01-03 Bayer Ag Hydroxyethyl-cyclopropyl-azolyl-derivate
WO1991012000A1 (en) * 1990-02-13 1991-08-22 E.I. Du Pont De Nemours And Company ANILINE DERIVATIVES OF α-STYRYL CARBINOLS AS ANTIFUNGAL AGENTS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9507896A1 *

Also Published As

Publication number Publication date
PL313448A1 (en) 1996-07-08
AU7780194A (en) 1995-04-03
CA2171754A1 (en) 1995-03-23
BR9407482A (pt) 1996-11-12
WO1995007896A1 (de) 1995-03-23
HU9600660D0 (en) 1996-05-28
US5786375A (en) 1998-07-28
TR27956A (tr) 1995-11-06
SK36096A3 (en) 1996-09-04
JPH09502710A (ja) 1997-03-18
CN1133590A (zh) 1996-10-16
CZ70096A3 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
EP0793657B1 (de) Mikrobizide triazolyl-derivate
EP0832083B1 (de) Mikrobizide (mercapto-triazolylmethyl)-dioxacycloalkane
EP0906292B1 (de) Triazolyl-mercaptide und ihre verwendung als mikrobizide
EP0828734B1 (de) Triazolylmethyl-oxirane
EP0835256B1 (de) Mikrobizide benzotriazole
EP0828719A1 (de) Mikrobizide (mercapto-triazolylmethyl)-cyclopentanole
EP0843668A1 (de) Mikrobizide mercapto-triazolyl-ketone
WO1996038424A1 (de) Cycloalkan-benzyliden microbizide
WO1997006152A1 (de) Mikrobizide mercapto-triazolyl-nitrile
WO1996032395A1 (de) Benzimidazol-derivate
EP0901472B1 (de) Mercapto-imidazolyl-derivate und ihre verwendung als mikrobizide
DE4419812A1 (de) Hydroxyethyl-azolyl-Derivate
WO1996039395A1 (de) Mikrobizide (mercapto-triazolylmethyl)-butanole
US5760067A (en) Halogen alkenyl azolyl microbicides
WO1996041798A1 (de) Mikrobizide (mercapto-triazolylmethyl)-ethanole
EP0719260A1 (de) Butenol-triazolyl derivate, deren herstellung und deren verwendung als mikrobizide
WO1996036634A1 (de) Oxiranyl-hydroxyethyl-triazole
WO1996039394A1 (de) Mercapto-bis-triazole
DE19517719A1 (de) Phenyl-cyclopropyl-carboxy-azole
DE4411912A1 (de) Mikrobizide Mittel auf Basis von Benzothiophen-S,S-dioxiden
WO1996036635A1 (de) Oxiranyl-triazole
DE19517720A1 (de) Benzyl-cyclopropyl-carboxy-azole
EP0679648A1 (de) Azido-substituierte Cyclopropyl-ethyl-azole, deren Herstellung und deren Verwendung als Fungizide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT

17Q First examination report despatched

Effective date: 19971124

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971124

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20000812