EP0713928B1 - Verfahren und Vorrichtung zur Herstellung von Natriumnitrit - Google Patents

Verfahren und Vorrichtung zur Herstellung von Natriumnitrit Download PDF

Info

Publication number
EP0713928B1
EP0713928B1 EP95118544A EP95118544A EP0713928B1 EP 0713928 B1 EP0713928 B1 EP 0713928B1 EP 95118544 A EP95118544 A EP 95118544A EP 95118544 A EP95118544 A EP 95118544A EP 0713928 B1 EP0713928 B1 EP 0713928B1
Authority
EP
European Patent Office
Prior art keywords
sodium nitrite
sodium
nitrate
solution
nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95118544A
Other languages
English (en)
French (fr)
Other versions
EP0713928A1 (de
Inventor
Hans Jürgen Eisen
Christian Dr. Tragut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0713928A1 publication Critical patent/EP0713928A1/de
Application granted granted Critical
Publication of EP0713928B1 publication Critical patent/EP0713928B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds

Definitions

  • the invention relates to a method and a device for producing sodium nitrite from solutions with sodium nitrate.
  • a method of this type is known from DE-A1 31 25 616.
  • the sodium nitrite solution (approx. 25-35% NaNO 2 , 2-6% NaNO 3 , small amounts of NaHCO 3 and Na 2 SO 3 , approx. 58-72%) originating from the alkaline scrubbing of nitrogen oxide gases of the low-pressure nitric acid plant.
  • H 2 O first filtered in a precoat filter to remove solid residues such as silica etc.
  • the filtered so-called raw solution is largely concentrated in evaporators upon crystallization of sodium nitrite.
  • the raw solution used in this process may only be evaporated to such an extent that the ratio of NaNO 2 / NaNO 3 in the salt-free mother liquor is not less than 3.
  • the specification of the low-nitrate sodium nitrite solution only allows a sodium nitrate content of max. 0.3%. This necessitates the production from washed sodium nitrite salt and condensed water; ie sodium nitrite must first be crystallized out, separated off by centrifuges and washed and finally dissolved again in water.
  • the invention is based, the aforementioned disadvantages to overcome and create a process that is significantly higher Allows yield of sodium nitrite at a lower cost.
  • US-A-2 273 799 describes the electrochemical reduction of sodium nitrate on a porous carbon cathode which is mixed with copper or silver as a catalyst material.
  • the method according to the invention differs essentially characterized by the known method that with him the filtered raw solution the electrochemical reduction (hereinafter referred to as ECR for short) introduced sodium nitrate to sodium nitrite on a cathode as described in claims 1 and 4, is subjected before the Sodium nitrite is separated off.
  • ECR electrochemical reduction
  • the filtered crude sodium nitrite solution cooled to -10 ° C for the electrolysis.
  • the pH value should be carefully lowered slightly, just enough that none Nitrogen development occurs. This involves sodium bicarbonate and sodium carbonate converted into sodium nitrate.
  • the electrolysis takes place in such a way that at the cathode of an electrolysis cell Nitrate ions can be selectively reduced to nitrite ions.
  • the cell By construction the cell must be ensured that the in the saline existing nitrite ions on the anode are not oxidized to nitrate will.
  • a reduction of the nitrate to lower oxidation levels of the Nitrogen than in the nitrite must be chosen by choosing the appropriate cathode as well can be avoided by suitable electrolysis conditions.
  • the anodic oxidation of the nitrite can be carried out according to an embodiment of the Invention by means of the separation of anode and cathode space a cation exchange membrane or a diaphragm avoided will.
  • the aqueous solution is in the anode compartment a mineral acid with a typical concentration of 2% to 5%, preferably sulfuric or nitric acid, which is sufficiently high Guaranteed conductivity of the anolyte.
  • Water is added to the anode Reacted oxygen and hydronium ions through the diaphragm, or the cation exchange membrane get into the cathode compartment can.
  • the anode itself is realized in the usual way, e.g. B. as an expanded metal electrode with a low oxygen overvoltage.
  • the electrolysis can also be performed in an undivided cell. Then through Selection of the electrode material and the electrolysis conditions ensured be that there is no oxidation of the nitrite at the anode can, for example by iron anodes in alkaline electrolyte solution.
  • the cathode compartment is made up of the sodium nitrite to be reacted and saline solution containing sodium nitrate.
  • the nitrate ion is reduced to nitrite, with consumption of hydronium ions creates water.
  • This cathode consists of one porous silver electrode with large surface area and high catalytic activity, which is a selective reduction of nitrate to nitrite at a high Current density allows. she consists from a bed of an electrical contact Metal powder or from a sintered metal plate.
  • Metal powder like Sintered metal plates can also be removed by alkaline leaching of a silver-aluminum or silver-alkaline earth alloy according to the way of producing one Raney catalyst can be obtained. This alloy is made before Leaching out by grinding or producing a porous sintered metal plate brought into the appropriate form.
  • the electrode is removed from the nitrite / nitrate solution flows through.
  • the flow can be perpendicular or parallel to the current direction take place and ensures a sufficiently high mass transfer down to the lowest nitrate concentrations on the electrode surface.
  • the electrolysis can be carried out in one step be that the nitrate content of the converted catholyte of the required Specification of low nitrate solution corresponds.
  • the method according to the invention is not only suitable for improvement of the known process for the production of sodium nitrite, but also for the production of nitrite from nitrate solutions, for example from natural saltpetre can be obtained.
  • the advantages of the method according to the invention are on the one hand see that the nitrite yield is maximum. For one thing, it stays in the Obtain the raw sodium nitrite delivered almost quantitatively to others is caused by the electrochemical reaction (ECR) of sodium nitrate the equivalent amount of sodium nitrite additionally generated. Thereby increases the available amount of sodium nitrite based on the nitrogen used considerable compared to the known method, and by at least 30%.
  • ECR electrochemical reaction
  • nitrate-free (nitrate-free) obtained with the process according to the invention Sodium nitrite solution can be added directly to 40% sodium nitrite solution and sodium nitrite salt can be processed further. This can be done in one go happen in such a way that in a sufficiently high concentration level evaporated (duplexes, triplexes) sodium nitrite solution and with solution from the electrolysis to the desired sodium nitrite concentration is set and the remaining sodium nitrite solution in the crystallizer is concentrated to salt. Crystallization, separation, drying, cooling and conditioning of the sodium nitrite salt are done in terms of process engineering as with the known method.
  • a block diagram that uses the flow of such a procedure the invention is shown in the drawing.
  • a raw sodium nitrite solution at the point marked with arrow 1, which still contains 2 to 6% by weight of sodium nitrate, the filtration 2 fed.
  • the filtration 2 After the filtration, part of this solution becomes directly the Electrolysis 3 supplied according to the invention.
  • the resulting sodium nitrite solution is partially evaporated in a concentration level 4 and then with a branched off via line 5 after electrolysis 3 Stream mixed in a mixer 6.
  • the resulting low-nitrite solution (S) with a content of 39 to 41 wt .-% sodium nitrite subtracted at 7.
  • Part of the resulting in concentration level 4 Solution is fed via line 8 to a crystallization stage 9.
  • the resulting salt is separated in the separation stage 10.
  • the remaining mother liquor is via line 11 in the crystallization stage 9 returned.
  • the sodium nitrite salt separated in the separation stage 10 is dried in drying stage 12, cooled and conditioned and subtracted at 13.
  • Part of the filtered raw solution is fed via line 14 to a further concentration stage 15.
  • the resulting nitrite solution which still has a sodium nitrate content of 6 to 10 wt .-%, is in a mixer 16 with a subset the crude nitrite solution drawn off after the filtration 2 through line 17 mixed.
  • the resulting nitrite solution has a sodium nitrite content from 39 to 41% by weight and a sodium nitrate content of 2 to 4 % By weight. It is deducted at 21.
  • nitrite solution Part of that at the concentration level 4 resulting nitrite solution is via line 19 to a mixer 20 fed where they are via line 18 with a portion of filtered crude solution is united. This creates a nitrite solution with 39 to 41 % By weight sodium nitrite and 1 to 2% by weight sodium nitrate, which was subtracted at 21 becomes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von Natriumnitrit aus Lösungen mit Natriumnitrat. Ein Verfahren dieser Art ist aus der DE-A1 31 25 616 bekannt. Bei diesem Verfahren wird die aus der alkalischen Wäsche von Stickoxidgasen der Salpetersäure-Niederdruckanlage stammende Natriumnitritlösung (ca. 25-35% NaNO2, 2-6% NaNO3, geringe Mengen NaHCO3 und Na2SO3, ca. 58-72% H2O) zunächst in einem Anschwemmfilter filtriert, um feste Rückstände wie Kieselsäure etc. zu entfernen. Die filtrierte sogenannte Rohlösung wird in Verdampfern bei Kristallisation von Natriumnitrit weitgehend eingeengt. Dabei fällt eine Kristallisatmaische an mit einem Feststoffgehalt von ca. 15-24% Natriumnitrit, welcher sich durch Sedimentation in einem Eindickbehälter auf ca. 40-60% erhöht. Das auskristallisierte Natriumnitrit-Salz wird auf Schubzentrifugen aus der Maische abgetrennt, konditioniert und anschließend getrocknet, gekühlt und zum Versand gebracht.
Ein Teil des zentrifugenfeuchten Natriumnitrit-Salzes wird in filtrierter Natriumnitrit-Rohlösung zu einer ca. 40%igen Lösung aufgelöst. Ein weiterer Teil wird mit Kondenswasser zu einer ca. 40%igen salpeterarmen Natriumnitrit-Lösung aufgelöst. Die an den Zentrifugen anfallenden Mutterlaugen gelangen über eine sogenannte Inversionsanlage zur Herstellung von Natriumnitrat (Natronsalpeter). Dieses bekannte Verfahren hat mehrere Nachteile.
Zur Vermeidung von Qualitätsbeeinträchtigungen bei Natriumnitrit durch Auskristallisieren von Natriumnitrat sowie durch anhaftendes Natriumcarbonat darf bei diesem Verfahren die eingesetzte Rohlösung nur soweit eingedampft werden, daß das Verhältnis von NaNO2/NaNO3 in der salzfreien Mutterlauge nicht kleiner als 3 ist. Somit muß soviel wertvolles Natriumnitrit verworfen werden, wie es der dreifachen stöchiometrischen Menge des in den Prozeß eingebrachten Natriumnitrats entspricht. Außerdem erlaubt die Spezifikation der salpeterarmen Natriumnitrit-Lösung nur einen Natriumnitrat-Gehalt von max. 0,3%. Das macht die Herstellung aus gewaschenem Natriumnitrit-Salz und Kondenswasser erforderlich; d.h. Natriumnitrit muß erst auskristallisiert, über Zentrifugen abgetrennt und gewaschen und schließlich wieder in Wasser aufgelöst werden.
Der Erfindung liegt die Aufgabe zugrunde, die vorgenannten Nachteile zu überwinden und ein Verfahren zu schaffen, das eine erheblich höhere Ausbeute an Natriumnitrit bei geringeren Kosten ermöglicht.
Die US-A-2 273 799 beschreibt die elektrochemische Reduktion von Natriumnitrat an einer porösen Kohlenstoffkathode, die mit Kupfer oder Silber als Katalysator material versetzt ist.
Diese Aufgabe wird dadurch gelöst, daß das Natriumnitrat durch elektrochemische Reduktion gemäß Anspruch 1 zu Natriumnitrit umgewandelt und danach abgetrennt wird.
Das erfindungsgemäße Verfahren unterscheidet sich im wesentlichen dadurch vom bekannten Verfahren, daß bei ihm die filtrierte Rohlösung der elektrochemischen Reduktion (im folgenden kurz ECR genannt) des eingebrachten Natriumnitrats zu Natriumnitrit an einer Kathode wie sie in den Ansprüchen 1 und 4 beschrieben ist, unterzogen wird, bevor die Abtrennung von Natriumnitrit erfolgt.
Beim erfindungsgemäßen Verfahren wird die filtrierte Natriumnitrit-Rohlösung für die Elektrolyse auf -10 °C abgekühlt. Zur Beseitigung des Na-Hydrogencarbonats und -carbonats kann vorher mit wenig Salpetersäure der pH-Wert vorsichtig leicht abgesenkt werden, gerade soweit, daß keine Nitroseentwicklung eintritt. Dabei werden Na-Hydrogencarbonat und Na-Carbonat in Na-Nitrat überführt.
Die Elektrolyse erfolgt derart, daß an der Kathode einer Elektrolysezelle Nitrationen selektiv zu Nitritionen reduziert werden. Durch die Konstruktion der Zelle muß dabei sichergestellt werden, daß die in der Salzlösung vorhandenen Nitritionen an der Anode nicht zum Nitrat oxidiert werden. Eine Reduktion des Nitrats zu niedrigeren Oxidationsstufen des Stickstoffs als im Nitrit muß durch Wahl der geeigneten Kathode sowie durch geeignete Elektrolysebedingungen vermieden werden.
Die anodische Oxidation des Nitrits kann gemäß einer Ausbildung der Erfindung durch die Trennung von Anoden- und Kathodenraum mittels einer Kationenaustauschermembran oder eines Diaphragmas vermieden werden. In diesem Fall befindet sich im Anodenraum die wäßrige Lösung einer Mineralsäure mit einer typischen Konzentration von 2% bis 5%, vorzugsweise Schwefel- oder Salpetersäure, die eine ausreichend hohe Leitfähigkeit des Anolyten gewährleistet. An der Anode wird Wasser zu Sauerstoff und Hydroniumionen umgesetzt, die durch das Diaphragma, bzw. die Kationenaustauschermembran in den Kathodenraum gelangen können. Die Anode selbst wird in der dafür üblichen Art und Weise realisiert, z. B. als Streckmetallelektrode mit einer niedrigen Sauerstoffüberspannung.
Gemäß einer anderen Ausbildung der Erfindung kann die Elektrolyse auch in einer ungeteilten Zelle durchgeführt werden. Dann muß durch Auswahl des Elektrodenmaterials und der Elektrolysebedingungen sichergestellt werden, daß keine Oxidation des Nitrits an der Anode erfolgen kann, zum Beispiel durch Eisenanoden in alkalischer Elektrolytlösung.
Der Kathodenraum wird erfindungsgemäß von der umzusetzenden Natriumnitrit und Natriumnitrat enthaltenden Salzlösung durchströmt. An der Kathode wird das Nitration zum Nitrit reduziert, wobei unter Verbrauch von Hydroniumionen Wasser entsteht. Diese Kathode besteht aus einer porösen Silberelektrode großer Oberfläche und großer katalytischer Aktivität, die eine selektive Reduktion des Nitrats zum Nitrit bei einer hohen Stromdichte ermöglicht. Sie besteht aus einer mit elektrischem Kontakt versehenen Schüttung eines Metallpulvers oder aus einer Sintermetallplatte. Metallpulver wie auch Sintermetallplatte können durch alkalisches Auslaugen einer Silber-Aluminium- oder Silber-Erdalkalilegierung nach Art der Herstellung eines Raney-Katalysators gewonnen werden. Diese Legierung wird vor dem Auslaugen durch Mahlen bzw. Herstellung einer porösen Sintermetallplatte in die entsprechende Form gebracht.
Während der Elektrolyse wird die Elektrode von der Nitrit-/Nitratlösung durchströmt. Die Durchströmung kann senkrecht oder parallel zur Stromrichtung erfolgen und gewährleistet einen ausreichend hohen Stoffübergang an der Elektrodenoberfläche bis zu niedrigsten Nitratkonzentrationen. Dadurch kann die Elektrolyse in einem Schritt soweit durchgeführt werden, daß der Nitratgehalt des umgesetzten Katholyten der geforderten Spezifikation von nitratarmer Lösung entspricht.
Das erfindungsgemäße Verfahren eignet sich nicht nur zur Verbesserung des bekannten Verfahrens zur Herstellung von Natriumnitrit, sondern auch zur Herstellung von Nitrit aus Nitratlösungen, die beispielsweise aus natürlichen Salpetervorkommen gewonnen werden.
Die Vorteile des erfindungsgemäßen Verfahrens sind einerseits darin zu sehen, daß die Nitrit-Ausbeute maximal ist. Zum einen bleibt das in der Rohlösung angelieferte Natriumnitrit fast quantitativ erhalten, zum anderen wird durch die elektrochemische Reaktion (ECR) des Natriumnitrats die äquivalente Menge Natriumnitrit zusätzlich erzeugt. Dadurch erhöht sich die auf den eingesetzten Stickstoff bezogene verfügbare Natriumnitrit-Menge gegenüber dem bekannten Verfahren beträchtlich, und zwar um mindestens 30%.
Die mit dem erfindungsgemäßen Verfahren gewonnene salpeterfreie (nitratfreie) Natriumnitritlösung kann direkt zu Natriumnitritlösung 40%ig und Natriumnitrit-Salz weiterverarbeitet werden. Dies kann in einem Zug geschehen, dergestalt, daß in einer ausreichend hohen Konzentrationsstufe beim Eindampfen (Duplexe, Triplexe) Natriumnitritlösung ausgekreist und mit Lösung aus der Elektrolyse auf die gewünschte Natriumnitrit-Konzentration eingestellt wird und die restliche Natriumnitritlösung im Kristaller zu Salz konzentriert wird. Kristallisation, Separation, Trocknung, Kühlung und Konditionierung des Natriumnitrit-Salzes geschehen verfahrenstechnisch wie beim bekannten Verfahren.
Ein Blockschema, das den Ablauf eines solchen Verfahrens unter Einsatz der Erfindung darstellt, ist der Zeichnung zu entnehmen. Dort wird an der mit dem Pfeil 1 gekennzeichneten Stelle eine Natriumnitrit-Rohlösung, die noch 2 bis 6 Gew.-% Natriumnitrat enthält, der Filtration 2 zugeführt. Nach der Filtration wird ein Teil dieser Lösung direkt der erfindungsgemäßen Elektrolyse 3 zugeführt. Die hierbei entstehende Natriumnitritlösung wird teilweise in einer Konzentrationsstufe 4 eingedampft und dann mit einem über Leitung 5 nach der Elektrolyse 3 abgezweigten Strom in einem Mischer 6 gemischt. Die entstehende salpeterarme Nitrit-lösung (S) mit einem Gehalt von 39 bis 41 Gew.-% Natriumnitrit wird bei 7 abgezogen. Ein Teil der in der Konzentrationsstufe 4 entstehenden Lösung wird über eine Leitung 8 einer Kristallisationsstufe 9 zugeführt. Das hierbei entstehende Salz wird in der Trennstufe 10 abgetrennt. Die dabei verbleibende Mutterlauge wird über die Leitung 11 in die Kristallisationsstufe 9 zurückgeführt. Das in der Trennstufe 10 abgetrennte Natriumnitrit-Salz wird in der Trockenstufe 12 getrocknet, gekühlt und konditioniert und bei 13 abgezogen. Ein Teil der filtrierten Rohlösung wird über die Leitung 14 einer weiteren Konzentrationsstufe 15 zugeführt. Die hier entstehende Nitritlösung, die noch einen Natriumnitratgehalt von 6 bis 10 Gew.-% besitzt, wird in einem Mischer 16 mit einer Teilmenge der nach der Filtration 2 durch Leitung 17 abgezogenen Nitrit-Rohlösung vermischt. Die dabei entstehende Nitrit-Lösung weist einen Natriumnitritgehalt von 39 bis 41 Gew.-% und einen Natriumnitratgehalt von 2 bis 4 Gew.-% auf. Sie wird bei 21 abgezogen. Ein Teil der bei der Konzentrationsstufe 4 anfallenden Nitritlösung wird über Leitung 19 einem Mischer 20 zugeführt, wo sie über Leitung 18 mit einer Teilmenge filtrierter Rohlösung vereinigt wird. Dabei entsteht eine Nitritlösung mit 39 bis 41 Gew.-% Natriumnitrit und 1 bis 2 Gew.-% Natriumnitrat, die bei 21 abgezogen wird.
Aus der vorstehenden Beschreibung ist zu ersehen, daß weitere Vorteile des erfindungsgemäßen Verfahrens in der vereinfachten Herstellung von Natriumnitrit-Lösungen sowie salpeterhaltiger Natriumnitrit-Lösungen liegen. Letztere lassen sich durch Verschnitt der aufkonzentrierten ECR-Lösung mit filtrierter Rohlösung herstellen. Die salpeterfreie Qualität kann durch Verschnitt von dünner mit aufkonzentrierter ECR-Lösung gewonnen werden. Alle Variationen sind möglich. Das heißt: Alle Natriumnitrit-Lösungs-Qualitäten sind in der Flüssigphase des Verfahrens zu produzieren, wodurch der aufwendige Weg über den Feststoff, welcher Zentrifugen, Löseeinrichtungen, etc. erfordert, entfällt.

Claims (4)

  1. Verfahren zur Herstellung von Natriumnitrit aus Lösungen mit Natriumnitrat durch Elektrolyse in einer Zelle, in die die Natriumnitrat enthaltende Lösung durch eine Kathode eingeführt wird, die aus einer porösen Elektrode großer Oberfläche und großer katalytischer Aktivität besteht, dadurch gekennzeichnet, daß die Kathode aus einer mit elektrischem Kontakt versehenen Schüttung oder einer Sintermetallplatte aus Silbermetallpulver besteht, die durch alkalisches Auslaugen einer Silber-Aluminium oder Silber-Erdalkalilegierung gewonnen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Material für die Schüttung oder Sintermetallplatte nach dem Raney-Verfahren gewonnen wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Legierung vor dem Auslaugen durch Mahlen oder Herstellung einer Sintermetallplatte in die entsprechende Form gebracht wird.
  4. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, bei der die Zelle zur Durchführung der Elektrolyse mit einer Kathode versehen ist, die aus einer porösen Elektrode großer Oberfläche oder großer katalytischer Aktivität besteht, dadurch gekennzeichnet, daß die Kathode aus einer Schüttung oder einer Sintermetallplatte besteht, die durch alkalisches Auslaugen einer Silber-Aluminium oder Silber-Erdalkalilegierung hergestellt worden ist.
EP95118544A 1994-11-24 1995-11-24 Verfahren und Vorrichtung zur Herstellung von Natriumnitrit Expired - Lifetime EP0713928B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4441937 1994-11-24
DE4441937A DE4441937A1 (de) 1994-11-24 1994-11-24 Verfahren und Vorrichtung zur Herstellung von Natriumnitrit

Publications (2)

Publication Number Publication Date
EP0713928A1 EP0713928A1 (de) 1996-05-29
EP0713928B1 true EP0713928B1 (de) 1998-06-17

Family

ID=6534101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95118544A Expired - Lifetime EP0713928B1 (de) 1994-11-24 1995-11-24 Verfahren und Vorrichtung zur Herstellung von Natriumnitrit

Country Status (2)

Country Link
EP (1) EP0713928B1 (de)
DE (2) DE4441937A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020198726A1 (en) * 2019-03-28 2020-10-01 Kemin Industries, Inc. Compositions of electrochemically reduced plant-based extracts for curing meat and related methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE174737C (de) *
US2273799A (en) * 1938-12-17 1942-02-17 Nat Carbon Co Inc Process for electrolytic reduction
DE2940186C2 (de) * 1978-10-06 1986-09-18 Asahi Kasei Kogyo K.K., Osaka Verfahren zur Herstellung von Nitriten
DE3125616C2 (de) 1980-07-05 1994-05-11 Basf Ag Verfahren zur Herstellung von festen Alkalinitriten
DE3729669A1 (de) * 1987-09-04 1989-03-16 Basf Ag Verfahren zur herstellung von alkalimetallnitraten

Also Published As

Publication number Publication date
DE59502587D1 (de) 1998-07-23
EP0713928A1 (de) 1996-05-29
DE4441937A1 (de) 1996-05-30

Similar Documents

Publication Publication Date Title
DE3622536C2 (de)
EP0012215B1 (de) 2-Hydroxybutansulfonsaures Cholin und dessen Verwendung als Leitsalz
DE102021123151A1 (de) Verfahren und Anlage zur Rückgewinnung von Metallen aus schwarzer Masse
DE2808424A1 (de) Verfahren zur gewinnung von kristallen von natriumcarbonatmonohydrat
DE60209109T2 (de) Verfahren zur reinigung einer redox-mediator enthaltenden lösung vor dessen elektrolytischen regenerierung
DE2728171C3 (de) Verfahren zur Gewinnung von Wasserstoff und Sauerstoff aus Wasser
EP0713928B1 (de) Verfahren und Vorrichtung zur Herstellung von Natriumnitrit
DE68904663T2 (de) Verfahren zur elektrochemischen oxidation von cer 3+ nach cer 4+ in einer emulsion.
DE2753233A1 (de) Verfahren zur herstellung von chlor und natriumcarbonatmonohydrat
DE2240731A1 (de) Verfahren zur herstellung von glyoxylsaeure
EP0721017B1 (de) Verfahren zur Herstellung von reinen Lösungen des Wolframs und Molybdäns
EP0108968A1 (de) Verfahren zur Herstellung von aktivem Aluminiumoxyd
DE2757069C3 (de) Verfahren zur Abtrennung von Gallium aus den bei der Herstellung von Tonerde aus siliziumreichen, aluminiumhaltigen Erzen, insbesondere Nephelinen, bei einer zweistufigen Carbonisierung anfallenden Produkten
EP0138801A1 (de) Elektrolytisches Silberraffinationsverfahren
DE19506242C2 (de) Verfahren zur direkten elektrochemischen Oxidation von sulfithaltigen Lösungen, insbesondere Abwässern aus Gasreinigungsanlagen
DE2837313A1 (de) Verfahren zur elektrolyse waessriger alkalihalogenid-loesungen
DE1266292B (de) Verfahren zur Herstellung von Ammoniumparawolframat durch anodische Oxydation von Wolframabfaellen
DE19532784C2 (de) Elektrolyseverfahren zum Regenerieren verbrauchter Eisen-III-chlorid- oder Eisen-III-sulfat-Ätzlösungen
DD297141A5 (de) Verfahren zur herstellung einer natriumhydroxid-lauge
EP0433750B1 (de) Verfahren zur Herstellung von Chromsäure
EP0160171B1 (de) Verfahren zur Herstellung von ammonsalzhaltigen Mangan(II)-Salzlösungen
DE3104578A1 (de) Verfahren zum entfernen von metallen aus metallsalzloesungen
DD297140A5 (de) Verfahren zur herstellung einer natriumhydroxid-lauge
AT409764B (de) Verfahren zur oxidation von vanadium
DE1907523C3 (de) Verfahren zur extraktiven Elektrolyse von Zink aus seinen schwefelsauren Lösungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19960717

17Q First examination report despatched

Effective date: 19970121

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & WANN PATENTANWALTSBUERO, INHABER KLAUS

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980701

REF Corresponds to:

Ref document number: 59502587

Country of ref document: DE

Date of ref document: 19980723

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011017

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011024

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011029

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011116

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011220

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20021213

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST