EP0704555A1 - Aluminium-Elektrode - Google Patents

Aluminium-Elektrode Download PDF

Info

Publication number
EP0704555A1
EP0704555A1 EP95113648A EP95113648A EP0704555A1 EP 0704555 A1 EP0704555 A1 EP 0704555A1 EP 95113648 A EP95113648 A EP 95113648A EP 95113648 A EP95113648 A EP 95113648A EP 0704555 A1 EP0704555 A1 EP 0704555A1
Authority
EP
European Patent Office
Prior art keywords
aluminum foil
use according
electromagnetic radiation
approximately
electrolyte bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95113648A
Other languages
English (en)
French (fr)
Other versions
EP0704555B1 (de
Inventor
Giovanni c/o Keil & Schaafhausen Chiavarotti
Francesco c/o Keil & Schaafhausen Di Quarto
Salvatore c/o Keil & Schaafhausen Piazza
Carmelo c/o Keil & Schaafhausen Sunseri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Foil Italy SpA
Original Assignee
Becromal SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Becromal SpA filed Critical Becromal SpA
Publication of EP0704555A1 publication Critical patent/EP0704555A1/de
Application granted granted Critical
Publication of EP0704555B1 publication Critical patent/EP0704555B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/04Etching of light metals

Definitions

  • the invention relates to the use of an aluminum foil for the chemical reduction of liquid and / or gaseous components such as CO2, and / or as a detector for electromagnetic radiation, e.g. in the UV range, using the photo emission process (photo effect).
  • the photo effect is the removal of electrons from the inside of a solid through its surface into the surrounding medium, air or vacuum, by irradiation with electromagnetic radiation such as light, X-rays or ⁇ -rays.
  • electromagnetic radiation such as light, X-rays or ⁇ -rays.
  • an insulated metal plate which is irradiated with electromagnetic radiation, for example in the UV range, charges up to an electrical potential if it is ensured that the released electrons are sucked off by an electric field.
  • the number of photoelectrons or the current strength of the photocurrent formed by the photoelectrons is proportional to the frequency of the absorbed light intensity when exposed to monochromatic electromagnetic radiation.
  • the kinetic energy of the released photoelectrons depends on the frequency of the incident electromagnetic radiation and on the so-called work function of the irradiated metal.
  • the invention proposes the use of an aluminum foil for the chemical reduction of liquid and / or gaseous Components such as CO2 and / or as a detector for electromagnetic radiation, for example in the UV range, using the photo effect before.
  • This goal is essentially achieved by subjecting the aluminum foil to a surface treatment to increase the surface roughness, exposing the roughened aluminum foil as a negative electrode to a potential voltage in an electrolyte bath which may contain the reducing liquid and / or gaseous components, and exposing the roughened to a potential voltage subjecting aluminum foil in the electrolytic bath to a photoemission process, for example using the electromagnetic radiation to be detected.
  • An aluminum foil prepared in this way is particularly suitable for the chemical reduction of liquid and / or gaseous components and / or as a detector for electromagnetic radiation, since it has surprisingly been shown that a surprisingly high quantum yield is obtained even when relatively long-wave electromagnetic radiation acts on the aluminum foil is achievable.
  • the quantum yield is defined as the ratio of the number of emitted electrons to the number of incident photons. Liquid components can be easily reduced by means of the strongly reducing emitted photoelectrons.
  • the aluminum foil is roughened mechanically, for example by sandblasting, by electromechanical polishing and / or by electromechanical etching. These measures have a positive influence on the quantum yield.
  • the surface of the aluminum foil is provided with a roughness corresponding to a roughness factor between 1.75 and 3.
  • An aluminum foil with a capacitance between 0.5 and 2.0 ⁇ F cm ⁇ 2 (at + 8 V (MSE)) is advantageously used.
  • the surface of an untreated aluminum foil is enlarged by a surface treatment, in particular by electromechanical etching or the like, by a factor (surface enlargement factor (SEF) between approximately 10 and approximately 40.
  • SEF surface enlargement factor
  • the surface of the aluminum foil is treated with perchloric acid and / or ethanol to enlarge the surface.
  • the surface in particular for blasting, can be treated with aluminum particles with a grain size or an average diameter between 1 ⁇ m and approximately 45 ⁇ m.
  • solutions with the exclusion of aggressive anions e.g. Halogens used.
  • the electrolyte bath advantageously has a pH between about 5 and about 10.
  • electrolytic bath also includes gaseous components, in particular CO2 and / or N2, which can also be reduced by means of the aluminum foil using the photo effect.
  • the amount of potential voltage that can be applied to the aluminum foil is preferably set to values below approximately 2 volts. This measure advantageously allows the work function to be overcome by the photoelectrons when exiting the aluminum foil to be reduced. As a result, there is also the possibility of using long-wave electromagnetic radiation to release the photoelectrons from the aluminum foil, in which case a large number of suitable electromagnetic radiation sources can be used.
  • electromagnetic radiation with a wavelength ⁇ of approximately 300 nm was advantageously used.
  • a liquid electrolyte bath a potential voltage of approximately 1.8 to 1.9 volts and an electromagnetic radiation with a wavelength ⁇ of approximately 300 nm are used.
  • a high quantum yield of approximately 2% to approximately 4 was obtained under these conditions % reached.
  • the aluminum foil is advantageously suitable for use as a detector for electromagnetic radiation, wherein the aluminum foil is exposed to electromagnetic radiation, in particular UV radiation, and the photocurrent is measured. Because of the very high quantum yield, a particularly sensitive measuring instrument or a sensitive detector for electromagnetic radiation is therefore made available.
  • an aluminum foil for, for example, the chemical reduction of liquid or gaseous components or as a detector for electromagnetic radiation
  • the aluminum foil is subjected to a surface treatment in order to enlarge the effective surface or the surface roughness.
  • the aluminum foil is then introduced as a negative electrode into an electrolyte bath and a potential voltage is applied. If the aluminum foil in the electrolyte bath is exposed to electromagnetic radiation, preferably with wavelengths in the UV range, an emission of photoelectrons from the aluminum foil can be observed directly into the electrolyte bath, provided the aluminum foil is exposed to a suitable surface treatment and placed on a suitable potential voltage and has been exposed to electromagnetic radiation of a suitable wavelength.
  • the energy threshold E th (eV) varies as a function of the applied potential voltage.
  • the main difference to the photo effect on a metal / vacuum interface results from the fact that the applied potential voltage leads to polarization of the metal / solution interface and the function of the work function (W Me / Sol ) of a metal introduced into a solution influenced essentially linearly.
  • a further reduction in the work function at the aluminum / electrolyte bath interface could not be measured, since a strong hydrogen evolution at potential voltages more negative than -1.95 volts (based on MSE) starts in the electrolyte bath.
  • an increase in the photocurrent can be achieved due to a suitable surface treatment of the metal. It is therefore appropriate to roughen the aluminum foil mechanically, for example by sandblasting, by electromechanical polishing or by electrochemical etching or a combination of these processes.
  • electropolishing of the surface of the aluminum foil by means of perchloric acid and / or ethanol has proven itself, the surface of the aluminum foil being mechanically polished in a subsequent step with aluminum particles with a diameter between approximately 1 ⁇ m and approximately 45 ⁇ m.
  • the surface of the aluminum foil has a roughness corresponding to a roughness factor between 1.75 and 3. These roughness factors are determined by measuring the capacity of the aluminum foil at 9 volts (MSE). With the surface treatment methods shown, the surface of the aluminum foil was increased by a factor (surface enlargement factor SEF) between approximately 10 and approximately 40.
  • SEF surface enlargement factor
  • the electrolytic bath consists of solutions that do not contain aggressive anions, e.g. Halogens.
  • the pH of the electrolyte bath is in a range between about 5 and about 10. Because of the hydrogen evolution mentioned above in the electrolyte bath, the magnitude of the potential voltage is set to values below about 2 volts.
  • this system can also be used to reduce very stable gaseous substances such as CO2 or N2.
  • Another type of use of the system described is the use of the aluminum / solution interface as a detector for electromagnetic radiation, in particular in the UV range, in which a high quantum yield can be achieved.

Abstract

Es wird die Verwendung einer Aluminumfolie für die chemische Reduktion flüssiger und/oder gasförmiger Komponenten wie CO2, und/oder als Detektor für elektromagnetsiche Strahlung, z.B. im UV-Bereich vorgeschlagen. Hierzu setzt man die Aluminiumfolie einer Oberflächenbehandlung zur Vergrößerung der Oberflächenrauhigkeit aus. Die aufgerauhte Aluminiumfolie bringt man als negative Elektrode in ein ggf. die zu reduzierenden flüssigen und/oder gasförmigen Komponenten enthaltenen Elektrolytbad ein und beaufschlagt die Aluminiumfolie mit einer Potentialspannung. Die aufgerauhte und mit einer Potentialspannung in dem Elektrolytbad beauschlagte Aluminiumfolie wird einem Fotoemissionsprozeß, z.B. unter Verwendung der nachzuweisenden elektromagnetichen Strahlung, unterworfen und ggf. der Fotostrom gemessen.

Description

  • Die Erfindung betrifft die Verwendung einer Aluminiumfolie für die chemische Reduktion flüssiger und/oder gasförmiger Komponenten wie CO₂, und/oder als Detektor für elektromagnetische Strahlung, z.B. im UV-Bereich, unter Ausnutzung des Fotoemissionsprozesses (Fotoeffekt).
  • Unter dem Fotoeffekt versteht man das Herauslösen von Elektronen aus dem Inneren eines Festkörpers durch seine Oberfläche hindurch in das umgebende Medium, Luft oder Vakuum, durch Einstrahlung elektromagnetischer Strahlung, wie Licht-, Röntgen- oder γ-Strahlen. Bei diesem, sogenannten äußeren Fotoeffekt lädt sich eine mit elektromagnetischer Strahlung, bspw. im UV-Bereich bestrahlte, isoliert aufgehängte-Metallplatte auf ein elektrisches Potential auf, wenn dafür gesorgt wird, daß die herausgelösten Elektronen durch ein elektrisches Feld abgesaugt werden. Die Anzahl der Fotoelektronen bzw. die Strömstärke des durch die Fotoelektronen gebildeten Fotostroms ist bei Einwirkung monochromatischer elektromagnetischer Strahlung der Frequenz der absorbierten Lichtintensität proportional. Die kinetische Energie der ausgelösten Fotoelektronen hängt von der Frequenz der einfallenden elektromagnetischen Strahlung und von der sogenannten Austrittsarbeit des bestrahlten Metalls ab.
  • Die Erfindung schlägt die Verwendung einer Aluminiumfolie für die chemische Reduktion flüssiger und/oder gasförmiger Komponenten wie CO₂ und/oder als Detektor für elekromagnetische Strahlungen, z.B. im UV-Bereich, unter Ausnutzung des Fotoeffektes vor. Dieses Ziel wird im wesentlichen dadurch erreicht, daß man die Aluminiumfolie einer Oberflächenbehandlung zur Vergrößerung der Oberflächenrauhigkeit aussetzt, die aufgerauhte Aluminiumfolie als negative Elektrode in einem ggf. die reduzierenden flüssigen und/oder gasförmigen Komponenten enthaltenen Elektrolytbad einer Potentialspannung aussetzt, und die aufgerauhte mit einer Potentialspannung in dem Elektrolytbad beaufschlagte Aluminiumfolie einem Fotoemissionsprozeß, z.B. unter Verwendung der nachzuweisenden elektromagnetischen Strahlung, unterwirft. Eine solchermaßen präparierte Aluminiumfolie eignet sich in besonderer Weise für die chemische Reduktion flüssiger und/oder gasförmiger Komponenten und/oder als Detektor für elektromagnetische Strahlung, da sich überraschenderweise zeigt, daß bereits bei einer Einwirkung von relativ langwelliger elektromagnetischer Strahlung auf die Aluminiumfolie eine überraschend hohe Quantenausbeute erzielbar ist. Die Quantenausbeute ist definiert als das Verhältnis der Anzahl der emittierten Elektronen bezogen auf die Anzahl der einfallenden Fotonen. Mittels der stark reduzierend wirkenden emittierten Fotoelektronen können flüssige Komponenten ohne weiteres reduziert werden. Es besteht darüber hinaus die Möglichkeit, mit einer derartigen Aluminiumfolie sehr stabile gasförmige Substanzen wie CO₂ oder N₂ mittels der aus der Aluminiumfolie austretenden Fotoelektronen zu reduzieren.
  • Nach einer bevorzugten Ausführungsform der Erfindung rauht man die Aluminiumfolie mechanisch, z.B. durch Sandstrahlen, durch elektromechanisches Polieren und/oder durch elektromechanisches Ätzen auf. Durch diese Maßnahmen wird die Quantenausbeute positiv beeinflußt.
  • Nach einer weiteren Ausführungsform der Erfindung versieht man die Oberfläche der Aluminiumfolie mit einer Rauhigkeit entspechend einem Rauhigkeitsfaktor zwischen 1,75 und 3.
  • Von Vorteil wird eine Aluminiumfolie mit einer Kapazität zwischen 0,5 und 2,0 µF cm⁻² (bei + 8 V (MSE) verwendet.
  • Nach einer anderen vorteilhaften Weiterbildung der Erfindung vergrößert man die Oberfläche einer unbehandelten Aluminiumfolie durch eine Oberflächenbehandlung, insbesondere durch elektromechanisches Ätzen oder dgl., um einen Faktor (Oberflächenvergrößerungsfaktor (SEF) zwischen etwa 10 und etwa 40.
  • Es hat sich als vorteilhaft erwiesen, daß die Oberfläche der Aluminiumfolie mit Perchlorsäure und/oder Ethanol zur Vergrößerung der Oberfläche behandelt wird.
  • Alternativ oder in Kombination zu dieser Oberflächenbehandlung der Aluminiumfolie mit Perchlorsäure und/oder Ethanol kann die Oberfläche, insbesondere zum strahlen, mit Aluminiumpartikeln einer Korngröße bzw. eines mittleren Durchmessers zwischen 1 µm und etwa 45 µm behandelt werden.
  • Von Vorteil werden als Elektrolytbad Lösungen unter Ausschluß aggressiver Anionen, wie z.B. Halogene, verwendet.
  • Nach einem weiteren Merkmal der Erfindung weist das Elektrolytbad von Vorteil einen pH-Wert zwischen etwa 5 und etwa 10 auf.
  • Im Rahmen dieser Erfindung werden unter dem Begriff Elektrolytbad auch gasförmige Komponenten, insbesondere CO₂ und/oder N₂ verstanden, die mittels der Aluminiumfolie unter Ausnutzung des Fotoeffekts ebenfalls reduzierbar sind.
  • Der Betrag der Potentialspannung, mit der die Aluminiumfolie beaufschlagbar ist, wird bevorzugt auf Werte unter etwa 2 Volt eingestellt. Durch diese Maßnahme läßt sich in vorteilhafter Weise die von den Fotoelektronen beim Austreten aus der Aluminiumfolie zu überwindende Austrittsarbeit senken. Infolge dessen besteht auch die Möglichkeit, langwellige elektromagnetische Strahlung zum Auslösen der Fotoelektronen aus der Aluminiumfolie einzusetzen, wobei in diesem Fall auf eine Vielzahl geeigneter elektromagnetischer Strahlungsquellen zurückgegriffen werden kann.
  • Als besonders vorteilhaft hat sich die Verwendung elektromagnetischer Strahlung im UV-Bereich erwiesen.
  • In einem speziellen Anwendungsfall wurde elektromagnetische Strahlung einer Wellenlänge λ von etwa 300 nm mit Vorteil verwendet.
  • Nach einer speziellen Ausgestaltung verwendet man ein flüssiges Elektrolytbad, eine Potentialspannung von etwa 1,8 bis 1,9 Volt und eine elektromagnetische Strahlung mit einer Wellenlänge λ von etwa 300 nm. Unter diesen Bedingungen wurde überraschenderweise eine hohe Quantenausbeute von etwa 2% bis etwa 4% erreicht.
  • Aufgrund der hohen Quantenausbeute eignet sich die Aluminiumfolie mit Vorteil für die Verwendung als Detektor für elektromagnetische Strahlung, wobei man die Aluminiumfolie mit elektromagnetischer Strahlung, insbesondere UV-Strahlung, beaufschlagt und den Fotostrom meßtechnisch erfaßt. Aufgrund der recht hohen Quantenausbeute wird daher ein besonders empfindliches Meßinstrument bzw. ein empfindlicher Detektor für elektromagnetiche Strahlung zur Verfügung gestellt.
  • Weitere Ziele, Merkmale, Vorteile und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen. Dabei bilden alle Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, auch unabhängig in ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung.
  • Zur Verwendung einer Aluminiumfolie für bspw. die chemische Reduktion flüssiger oder gasförmiger Komponenten oder als Detektor für elektromagnetische Strahlung wird die Aluminiumfolie einer Oberflächenbehandlung zur Vergrößerung der wirksamen Oberfläche bzw. der Oberflächenrauhigkeit ausgesetzt. Anchließend wird die Aluminiumfolie als negative Elektrode in ein Elektrolytbad eingebracht und mit einer Potentialspannung beaufschlagt. Setzt man die Aluminiumfolie in dem Elektrolytbad einer elektromagnetischen Strahlung, vorzugsweise mit Wellenlängen im UV-Bereich, aus, so ist eine Emission von Fotoelektronen aus der Aluminiumfolie direkt in das Elektrolytbad zu beobachten, sofern die Aluminiumfolie einer geeigneten Oberflächenbehandlung ausgesetzt, auf eine geeignete Potentialspannung gelegt und mit einer elektromagnetischen Strahlung geeigneter Wellenlänge beaufschlagt worden ist. Dieses Phänomen der Emission von Fotoelektronen aus der Aluminiumfolie direkt in das Elekrolytbad weist einige Gemeinsamkeiten mit dem Fotoeffekt auf, wie er an der Grenzschicht zwischen einem Metall und dem Vakuum beim Auftreffen von elektromagnetischer Strahlung auf die Metallfläche nachweisbar ist. Allerdings weist die photoninduzierte Emission von Elektronen aus einer Aluminiumfolie, die in ein Elektrolytbad eingetaucht ist, auch folgende unterschiedlichen Aspekte auf:
  • An der Grenzschicht zwischen der Metalloberfläche und der Elekrolytlösung baut sich eine elektrische Doppelschicht auf, an der die ganze Potentialspannung, mit der die Aluminiumfolie beaufschlagt wird, abfällt. Hieraus folgt, daß eine weitere Variable die Fotoemission der Elektronen aus der Aluminiumschicht in das Elektrolytbad beeinflußt. Im Vergleich zum Fotoeffekt an einer Metall/Vakuum-Grenzschicht ändert sich der Energieschwellwert für die Fotoemission der Elektronen gemäß der Gleichung E th (eV) = E th (0) - eV,
    Figure imgb0001
    wobei Eth (0) derjenige Energieschwellwert (entsprechend der sogenannten Austrittsarbeit) bei einer Potentialspannung von 0 bzogen auf die elektrochemische Skala ist und der Term eV die Potentialspannung der Aluminiumfolie in dem Elektrolytbad bezogen auf eine Referenzelektrode angibt. Ersichtlich variiert der Energieschwellwert Eth (eV) in Abhängigkeit von der angelegten Potentialspannung. Der wesentliche Unterschied zu dem Fotoeffekt an einer Metall/Vakuum-Grenzschicht ergibt sich aus der Tatsache, daß die angelegte Potentialspannung zu einer Polarisation der Metall/Lösung-Grenzfläche führt und die Funktion der Austrittsarbeit (WMe/Sol) eines in eine Lösung eingebrachten Metalls im wesentlichen linear beeinflußt.
  • Während die Emission eines Fotoelektrons aus einem Metall in das Vakuum als rein physikalisches Phänomen interpretiert werden kann, ohne daß es im Anschluß an die Emission der Elektronen zu chemischen Reaktionen kommt, ist dies im Falle einer Metall/Lösung-Grenzfläche anders. Dann gelangen nämlich die aufgrund des Fotoeffekts emittierten Elektronen in die Lösung bzw. das Elektrolytbad und setzen eine Reihe chemischer Reaktionen in Gang. Als Endresultat findet eine chemische Reduktion der flüssigen oder gasförmigen Komponenten, die in dem Elektrolytbad enthalten sind, statt.
  • Eine Abschätzung der Intensität des Fotostroms an einer Metall/Lösung-Grenzfläche ist relativ schwierig. Unter Außerachtlassung von Oberflächenvergrößerungseffekten, die gewöhnlich auf die Oberflächenrauhigkeit und/oder an der Oberfläche erzeugte Elektronen auf Plasmaschwingungen des Metalls zurückzuführen sind, ergeben Modellberechnungen Quantenausbeuten in der Größenordnung von 10⁻⁵ bis 10⁻⁴ für unterschiedliche Metall/Elektrolyt-Oberflächen.
  • Im Spezialfall einer Aluminium/Vakuum-Grenzfläche konnten Quantenausbeuten von etwa 4% bei einer Energie der eingestrahlten elektromagnetischen Strahlung nahe der Plasmafrequenz (hγ = 10 eV) gemessen werden. Andererseits konnte für eine Aluminium/Elektrolyt-Grenzfläche ein Emissionsgrenzwert nahe hγ = 2 eV ermittelt werden, der auf einer Reduzierung der metallischen Austrittsarbeit aufgrund der angelegten potentialen Spannung zurückzuführen ist. Die Austrittsarbeit für die Grenzschicht/Aluminium/Elektrolyt liegt bei etwa h γ = 4,15 eV. Eine weitere Reduzierung der Austrittsarbeit an der Grenzschicht Aluminium/Elektrolytbad konnte nicht gemessen werden, da eine starke Wasserstoffentwicklung bei Potentialspannungen negativer als -1,95 Volt (bezogen auf MSE) in dem Elektrolytbad einsetzt.
  • Wie aus der Tabelle am Ende der Beschreibung zu entnehmen ist, kann eine Verstärkung des Fotostroms aufgrund einer geeigneten Oberflächenbehandlung des Metalls erreicht werden. So ist es angezeigt, die Aluminiumfolie mechanisch, z.B. durch Sandstrahlen, durch elektromechanisches Polieren oder durch elektrochemisches Ätzen oder einer Kombination dieser Verfahren aufzurauhen. Insbesondere hat sich ein Elektropolieren der Oberfläche der Aluminiumfolie mittels Perchlorsäure und/oder Ethanol bewährt, wobei die Oberfläche der Aluminiumfolie in einem anschließenden Schritt mit Aluminiumpartiklen eines Durchmessers zwischen etwa 1 µm und etwa 45 µm mechanisch poliert wird. Die Oberfläche der Aluminiumfolie weist eine Rauhigkeit entsprechend einem Rauhigkeitsfaktor zwischen 1,75 und 3 auf. Diese Rauhigkeitsfaktoren werden über eine Messung der Kapazität der Aluminiumfolie bei 9 Volt (MSE) ermittelt. Mit den dargestellten Oberflächenbehandlungsmethoden wurde die Oberfläche der Aluminiumfolie um einen Faktor (Oberflächenvergrößerungsfaktor SEF) zwischen etwa 10 und etwa 40 erhöht.
  • Das Elektrolytbad besteht aus solchen Lösungen, die keine aggressiven Anionen, wie z.B. Halogene, aufweisen. Der pH-Wert des Elektrolytbades liegt in einem Bereich zwischen etwa 5 und etwa 10. Aufgrund der oben erwähnten Wasserstoffentwicklung in dem Elekrolytbad wird der Betrag der Potentialspannung auf Werte unter etwa 2 Volt eingestellt. Bei der eingestrahlten elektromagnetischen Strahlung handelt es sich um Wellenlängen im UV-Bereich, insbesondere wurde Strahlung einer Wellenlänge von λ von etwa 300 nm eingesetzt. Dies entspricht einer Fotonenergie von hγ = 4 eV. Unter diesen Bedingungen konnte im Dauerzustand, also im eingeschwungenen Zustand des Systems, eine Quantenausbeute von ewa 2% bis etwa 4% erzielt werden.
  • Berücksichtigt man die äußerst starke reduzierende Wirkung der emittierten Fotoelektronen, kann mit diesem System auch eine Reduzierung sehr stabiler gasförmiger Substanzen, wie CO₂ oder N₂ erreicht werden. Eine weitere Art der Verwendung des beschriebenen Systems besteht in dem Einsatz der Aluminium/Lösung-Grenzfläche als Detektor für elektromagnetische Strahlung insbesondere im UV-Bereich, in dem eine hohe Quantanausbeute erzielbar ist.
    Probe Fläche [cm²] Kapazität bei +8 V(MSE) [µF cm⁻²] Iph(max) bei -1.8 V(MSE) und λ=300 nm [nA] Rauhigkeitsfaktor Oberflächenvergrößerungsfaktor SEF
    Becromal 3D 0.660 1.80 1050 * 3 27
    Electropolished rod 0.283 0.60 13 1 1
    Mechanically polished rod 0.283 1.06 300 1.76 13
    * Iph(max) = 1300 nA bei -1.9 V(MSE)

Claims (15)

  1. Verwendung einer Aluminiumfolie für die chemische Reduktion flüssiger und/oder gasförmiger Komponenten wie CO₂, und/oder als Detektor für elektromagnetische Strahlung, z. B. im UV-Bereich, indem man
    - die Aluminiumfolie einer Oberflächenbehandlung zur Vergrößerung der Oberflächenrauhigkeit aussetzt,
    - die aufgerauhte Aluminiumfolie als negative Elektrode in einem ggf. die zu reduzierenden flüssigen und/oder gasförmigen Komponenten enthaltenen Elektrolytbad einer Potentialspannung aussetzt, und
    - die aufgerauhte mit einer Potentialspannung in dem Elektrolytbad beaufschlagte Aluminiumfolie einem Fotoemissionsprozeß, z. B. unter Verwendung der nachzuweisenden elektromagnetischen Strahlung, unterwirft.
  2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß man die Aluminiumfolie mechanisch, z. B. durch Sandstrahlen, durch elektromechanisches Polieren und/oder durch elektrochemisches Ätzen aufrauht.
  3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man die Oberfläche der Aluminiumfolie mit einer Rauhigkeit entsprechend einem Rauhigkeitsfaktor zwischen 1,75 und 3 versieht.
  4. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man eine Aluminiumfolie mit einer Kapazität zwischen 0,5 und 2,0 µF cm⁻² (bei + 8 V (MSE)) verwendet.
  5. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man die Oberfläche der Aluminiumfolie durch eine Oberflächenbehandlung, insbesondere durch elektromechanisches Ätzen oder dgl., um einen Faktor (Oberflächenvergrößerungsfaktor SEF) zwischen etwa 10 und etwa 40 vergrößert.
  6. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man die Oberfläche der Aluminiumfolie mit Perchlorsäure und/oder Ethanol behandelt.
  7. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man zur Oberflächenbehandlung der Aluminiumfolie, insbesondere zum Polieren, Aluminiumpartikel einer Korngröße bzw. eines mittleren Durchmessers zwischen etwa 1 µm und etwa 45 µm verwendet.
  8. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man als Elektrolytbad Lösungen unter Ausschluß aggresiver Anionen, wie z.B. Halogene, verwendet.
  9. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Elektrolytbad einen pH-Wert zwischen etwa 5 und etwa 10 aufweist.
  10. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Elektrolytbad gasförmige Komponenten, insbesondere CO₂ und/oder N₂, aufweist.
  11. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man den Betrag der Potentialspannung auf Werte unter etwa 2 Volt einstellt.
  12. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man elektromagnetische Strahlung im UV-Bereich verwendet.
  13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, daß man elektromagnetische Strahlung einer Wellenlänge λ von etwa 300 nm verwendet.
  14. Verwendung nach einem der vorhergehenden Ansprüche 1 bis 9, 11 bis 13, dadurch gekennzeichnet, daß man mit einem flüssigen Elektrolytbad, einer Potentialspannung von etwa 1,8 bis etwa 1,9 V und eine elektromagnetische Strahlung mit einer Wellenlänge λ von etwa 300 nm eine Quantenausbeute (Anzahl der emittierten Elektronen/Anzahl der auftreffenden Fotonen) von etwa 2% bis etwa 4% erzielt.
  15. Verwendung nach einem der vorhergehenden Ansprüche als Detektor für elektromagnetische Strahlung, dadurch gekennzeichnet, daß man die Aluminiumfolie mit elektromagnetischer Strahlung, insbesondere UV-Strahlung beaufschlagt und den Fotostrom meßtechnisch erfaßt.
EP95113648A 1994-09-28 1995-08-31 Aluminium-Elektrode Expired - Lifetime EP0704555B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4434557A DE4434557C2 (de) 1994-09-28 1994-09-28 Verwendung einer Aluminiumfolie
DE4434557 1994-09-28

Publications (2)

Publication Number Publication Date
EP0704555A1 true EP0704555A1 (de) 1996-04-03
EP0704555B1 EP0704555B1 (de) 1997-11-12

Family

ID=6529343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95113648A Expired - Lifetime EP0704555B1 (de) 1994-09-28 1995-08-31 Aluminium-Elektrode

Country Status (3)

Country Link
US (1) US5695628A (de)
EP (1) EP0704555B1 (de)
DE (3) DE4434557C2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4434556A1 (de) * 1994-09-28 1996-04-04 Becromal Spa Solarkollektor
AUPR099500A0 (en) * 2000-10-25 2000-11-16 Sustainable Technologies International Pty Ltd Uv sensors and arrays and methods to manufacture thereof
FR2936057B1 (fr) * 2008-09-17 2010-10-15 Commissariat Energie Atomique Procede de caracterisation de couches dielectriques par spectroscopie de photo-emission ultraviolette

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE381725C (de) * 1923-09-24 Licht Therapie G M B H Vorrichtung zur Messung der Intensitaet ultravioletter Strahlung
US3628017A (en) * 1970-06-18 1971-12-14 Itek Corp Ultraviolet light-sensitive cell using a substantially chemically unchanged semiconductor electrode in an electrolyte
US4107008A (en) * 1975-06-16 1978-08-15 Beeston Company Limited Electrolysis method for producing hydrogen and oxygen
JPS5610219A (en) * 1979-07-04 1981-02-02 Matsushita Electric Ind Co Ltd Ultraviolet integral detecting element and ultraviolet integral detector
US4481091A (en) * 1981-02-17 1984-11-06 At&T Bell Laboratories Chemical processing using electromagnetic field enhancement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE19218E (en) * 1934-06-19 Light-sensitive device
US2064260A (en) * 1930-03-08 1936-12-15 Kurt Adamczick And Willy List Method and apparatus for synthesizing nitrogen compounds
JPS56138221A (en) * 1980-03-31 1981-10-28 Matsushita Electric Ind Co Ltd Ultraviolet ray detecting element
DE3829541A1 (de) * 1987-09-03 1989-03-16 Ricoh Kk Blattfoermige elektrode, verfahren zur herstellung derselben und diese enthaltende sekundaerbatterie
SU1711062A1 (ru) * 1989-01-12 1992-02-07 Институт теплофизики СО АН СССР Способ вы влени дефектов структуры поверхности алюмини
JP2627563B2 (ja) * 1989-09-18 1997-07-09 富士写真フイルム株式会社 感光性平版印刷版用支持体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE381725C (de) * 1923-09-24 Licht Therapie G M B H Vorrichtung zur Messung der Intensitaet ultravioletter Strahlung
US3628017A (en) * 1970-06-18 1971-12-14 Itek Corp Ultraviolet light-sensitive cell using a substantially chemically unchanged semiconductor electrode in an electrolyte
US4107008A (en) * 1975-06-16 1978-08-15 Beeston Company Limited Electrolysis method for producing hydrogen and oxygen
JPS5610219A (en) * 1979-07-04 1981-02-02 Matsushita Electric Ind Co Ltd Ultraviolet integral detecting element and ultraviolet integral detector
US4481091A (en) * 1981-02-17 1984-11-06 At&T Bell Laboratories Chemical processing using electromagnetic field enhancement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 5, no. 56 (P - 57)<728> 17 April 1981 (1981-04-17) *

Also Published As

Publication number Publication date
US5695628A (en) 1997-12-09
DE4434557C2 (de) 2000-03-09
EP0704555B1 (de) 1997-11-12
DE59500977D1 (de) 1997-12-18
DE4434557A1 (de) 1996-04-04
DE29500544U1 (de) 1995-03-16

Similar Documents

Publication Publication Date Title
DE1621115C3 (de) Verfahren zur Herstellung eines Trägers aus Aluminium für lithographische Druckplatten
DE3030815C2 (de) Elektrolytisches Körnungsverfahren
DE3222170C2 (de)
DE2327764B2 (de) Wäßriges Bad zur elektrolytischen Körnung von Aluminium
DE3246070A1 (de) Verfahren und vorrichtung zur reduktion, insbesondere methanisierung von kohlendioxid
DE3305067A1 (de) Platten-, folien- oder bandfoermiges material aus mechanisch und elektrochemisch aufgerauhtem aluminium, ein verfahren zu seiner herstellung und seine verwendung als traeger fuer offsetdruckplatten
EP0034324B1 (de) Verfahren zum Konservieren von druckfertig entwickelten Flachdruckformen
EP0704555B1 (de) Aluminium-Elektrode
EP0141056B1 (de) Verfahren zur einstufigen anodischen Oxidation von Trägermaterialien aus Aluminium für Offsetdruckplatten
DE3910213A1 (de) Verfahren und vorrichtung zum aufrauhen eines traegers fuer lichtempfindliche schichten
EP0139111A1 (de) Verfahren zur zweistufigen anodischen Oxidation von Trägermaterialien aus Alumunium für Offsetdruckplatten
EP0269851B1 (de) Trägermaterial auf der Basis von Aluminium oder dessen Legierungen für Offsetdruckplatten sowie Verfahren zu dessen Herstellung
DE3446208A1 (de) Ionisationsdetektor und verfahren zum verbessern des stromverhaltens von dessen detektorelementen
DE3446207A1 (de) Ionisationsdetektorgehaeuse, verfahren zu seiner herstellung und damit ausgeruesteter strahlungsdetektor
DE2337671B2 (de) Elektrolytisches behandlungsverfahren fuer eine lithographische druckplatte und dessen anwendung zur wiederherstellung von deren hydrophilen eigenschaften
DE2655137C2 (de) Verfahren zur elektrochemischen Bearbeitung metallischer Oberflächen
DE1912542B2 (de) Bad und verfahren zur kathodischen vorbehandlung von kupfer- und kupferlegierungsoberflaechen fuer das aufbringen von organischem material
EP0132549B1 (de) Verfahren und Vorrichtung zur kontinuierlichen einseitigen anodischen Oxidation von Aluminiumbändern und deren Verwendung bei der Herstellung von Offsetdruckplatten
EP0400386A2 (de) Verfahren zur Bestimmung der Rekombinationsgeschwindigkeit von Minoritätsträgern an Grenzflächen zwischen Halbleitern und anderen Substanzen
DE69726760T2 (de) Behandlung von werkstücken aus aluminium
DE1807370C3 (de) Verfahren zur Herstellung eines Beugungsgitters
DE3446229A1 (de) Verfahren zum herstellen eines ionisationsdetektors
DE1131481B (de) Aluminiumoxyd- oder Berylliumoxydfolie als Fenster fuer den Durchtritt von Strahlung und Verfahren zu ihrer Herstellung
DE3608604A1 (de) Strukturierbares fotoelektrochemisches abtragen
DE102022202765A1 (de) Laserstrukturierter, beschichteter elektrischer Leiter und Verfahren zum Herstellen davon

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

17P Request for examination filed

Effective date: 19960305

EL Fr: translation of claims filed
GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961223

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 59500977

Country of ref document: DE

Date of ref document: 19971218

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041027

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060428