EP0702608B1 - Verfahren und vorrichtung zur erzeugung von halbzeug - Google Patents

Verfahren und vorrichtung zur erzeugung von halbzeug Download PDF

Info

Publication number
EP0702608B1
EP0702608B1 EP94916903A EP94916903A EP0702608B1 EP 0702608 B1 EP0702608 B1 EP 0702608B1 EP 94916903 A EP94916903 A EP 94916903A EP 94916903 A EP94916903 A EP 94916903A EP 0702608 B1 EP0702608 B1 EP 0702608B1
Authority
EP
European Patent Office
Prior art keywords
melt
smoothing
metal
metal profile
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94916903A
Other languages
English (en)
French (fr)
Other versions
EP0702608A1 (de
Inventor
Fritz P. Pleschiutschnigg
Lothar Parschat
Dieter Stalleicken
Tarek El Gammal
Michael Vonderbank
Peter Lorenz Hamacher
Ingo Von Hagen
Ulrich Menne
Uwe Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0702608A1 publication Critical patent/EP0702608A1/de
Application granted granted Critical
Publication of EP0702608B1 publication Critical patent/EP0702608B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0036Crucibles
    • C23C2/00361Crucibles characterised by structures including means for immersing or extracting the substrate through confining wall area
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5184Casting and working

Definitions

  • the invention relates to a method for producing semi-finished products in the form of thin metal strands according to the preamble of claim 1 and a device for performing the method.
  • a method and a device for producing thin metal strands are known from EP 0 311 602 B1, from which the preambles of claims 1 and 9 are based.
  • a metal profile cleaned on the surface for example in the form of a band-shaped steel sheet (mother band) with a thickness of 0.1-1.4 mm, is continuously guided through the bottom of a melt container filled with a similar steel melt.
  • a slot-like opening is provided in the bottom of the melt container, which is provided with a sealing device in order to prevent melt from escaping.
  • the temperature of the melt is close to the liquidus temperature T liq .
  • the steel strip is moved through the melt at a constant speed and led upwards out of the melt.
  • the thickness of this layer can be a multiple of the thickness of the original mother tape. It depends in particular on the residence time in the melt (speed of the mother tape), on the melt temperature (temperature difference to the solidus temperature T sol ), on the heat of fusion and the specific heat of the material used and on the mother tape thickness. The process must be carried out in such a way that re-melting of crystals that are already adhering is avoided. Under this condition there is a temperature gradient across the strip thickness. During the movement through the melt pool, the temperature inside the mother tape is the lowest and rises towards the edge. A temperature curve of the same quality is also present in the adhering layer. The liquidus temperature T liq is precisely present in the outermost region of the layer.
  • the adhesive layer initially has a mixed composition of the crystals formed and the molten phase in between (mushy zone). The proportion of molten phases increases towards the outside. After leaving the molten bath, the adhering layer cools down, whereby the temperature gradient that existed up to that point is reversed. The adherent layer solidifies completely.
  • EP 0 311 602 B1 describes a second method variant in which the mother tape is introduced in the reverse manner into the melt bath from above and is pulled off again through the bottom of the melt vessel.
  • the problem of the floor sealing is particularly serious, since the directions of exit of the melt and the strip material are the same and, as a result, not only is there no dynamic sealing effect, but moreover a negative "entrainment effect" which supports the tendency of the melt to exit can also be found.
  • a special sealing device in the form of a pair of sealing rollers is required in the bottom region of the melt vessel. This pair of sealing rollers drastically compresses the "mushy zone” and thus squeezes out large parts of the liquid phase from the "sponge-like" crystallizate structure already formed. This has the consequence that the thickness of the adhesive layer that can be achieved is considerably less than that of the first method variant. For economic reasons alone, such a procedure can hardly be considered for practical application.
  • the object of the invention is to develop a generic method in such a way that the required sheet thickness tolerance of at most 2% can be reliably maintained and to provide an apparatus for carrying out the method.
  • a sheet coil 12 is used as the mother sheet, which is unwound at a certain speed.
  • Reference number 11 designates a strip welding system which connects the end of an already unwound coil to a new coil 12 in order to enable a continuous process sequence.
  • a strip storage system is indicated, which stops the supply of strip during the welding process at a short time Coil change can catch, so that the production operation is not interrupted.
  • a belt cleaning 6 is arranged, in which the surface of the mother belt used is made metallically clean.
  • a pair of transport rollers 2 ensures that the mother tape, which asked for a width / thickness ratio of at least 60, preferably at least 100, is guided into the melt 3 at a constant preselected speed through a corresponding slot-like opening in the bottom of the melt container 1.
  • the mother tape has a very low heat content, since it has room temperature, for example.
  • the melt 3 (eg steel) consists of the same material as the mother tape.
  • a seal, which is arranged on the bottom of the melt container 1, is not shown separately in the figure. While the mother tape is passed through the melt 3 from bottom to top, a layer which grows with increasing dwell time (ie with an approach to the melt pool level) crystallizes, since the mother tape draws heat from the melt 3 in its immediate vicinity, whereby it heats up.
  • the melt 3 is otherwise kept at a temperature of, for example, 10 K above the liquidus temperature.
  • the level of the weld pool level is kept at a constant value by means of a feed, not shown. Taking these and other parameters into account (in particular solidus temperature, heat of fusion, specific heat of the melt material), the belt speed via the transport rollers 2 is preferably set such that the mother belt with the adhering layer when leaving the melt 3 is 3 to 7 times as thick has like the original mother band.
  • a smoothing roller device in the form of a pair of smoothing rollers 4 arranged next to one another is positioned above the melt pool level.
  • the distance of this pair of smoothing rollers 4 from the melt pool level is variable in that the height of the pair of smoothing rollers 4, for example, by a Electromechanical or hydraulic adjustment device, which is indicated by the arrows, is adjustable.
  • the minimum distance of the pair of smoothing rollers 4 from the melt pool level is about 0.5 m, the maximum distance 5 m.
  • the altitude is chosen so that the smoothing stitch takes place at a point where the layer adhering to the mother tape is already relatively solidified on the one hand, but on the other hand still has sufficient proportions of liquid phase in its outer zone which also have a problem-free material flow transversely to the longitudinal direction of the Enable mother band. It is therefore a question of the most favorable quantitative ratio of the solid to the liquid phase.
  • the average temperature in the crystallized layer can be used as a control variable for this.
  • a means a factor in the range of 0.1-0.8, preferably in the range 0.2-0.4.
  • the lower a is, the higher the solidified part.
  • the lower limit is to be regarded as critical in that, in the case of malfunctions, complete or almost complete solidification can easily occur, which would make it impossible to compensate for any larger strip thickness differences.
  • the upper limit of value a is primarily economic. Due to the high proportion of molten phase, a considerable part was squeezed down because of the vertical guidance of the strip material, so that the output would decrease accordingly.
  • a strand surface temperature measuring device (not shown) can be provided in the adjustment range of the pair of smoothing rollers 4.
  • the smoothing roller pair 4 is expediently with an internal fluid cooling (e.g. water cooling).
  • the desired reduction in the thickness of the metal strand as a result of the smoothing stitch should be in a range of 5-15%.
  • the adhesive layer of the mother tape is protected against the entry of atmospheric oxygen by a housing 5 which can be flooded with an inert atmosphere.
  • the housing 5 directly adjoins the melt container 1 and also envelops the pair of smoothing rollers 4.
  • at least parts of the walls of the housing 5 are provided with thermal insulation.
  • the walls of the housing 5 it is expedient to design the walls of the housing 5 as cooling walls, in particular as walls that are fluid-cooled from the inside (for example water cooling).
  • Controlling the coolant temperature then allows controlled cooling of the semifinished product produced in the cooling zone 8 downstream of the smoothing roller device 4, which leads to particularly favorable material properties.
  • the band-shaped material is guided in loops in a central section of the cooling zone 8 by corresponding deflection rollers, so that a correspondingly longer dwell time occurs in this zone.
  • the metal strand produced After the metal strand produced has cooled sufficiently, it leaves the housing 5 with its inert atmosphere and can be oiled, for example, by an electrostatic oiling device 9 and protected against corrosion.
  • the material is then continuously wound into a coil 13. After reaching a certain weight, the coil 13 is cut off from the rest of the strand by means of a pair of scissors 10 and is further processed into a warm or Cold rolling mill transported away.
  • the melt showed an analysis comparable to the steel strip.
  • the melt vessel 1 became liquid steel continuously from a distributor, not shown fed.
  • the height of the molten bath 3 and the speed of the steel strip are the control variables for setting the desired contact tent between the steel strip and the molten bath 3, which should be about 2 seconds in the present case. Since the belt speed was 1 m / s, a melt pool height of 2 m was therefore maintained at all times. In the steel melt 3, which had a temperature of approx. 1512 ° C, a crystallization of a total thickness of approximately 2.5 mm occurred during the passage of the steel strip, so that the total thickness of the steel strip as it emerged from the steel melt 3 was approximately 3 mm was.
  • the smoothing unit 4 was therefore adjusted in its vertical position so that this temperature was given on the entry side into the smoothing unit under the present cooling conditions.
  • the smoothing stitch carried out resulted in a completely void-free steel strip with an optimally welded layering and a uniform thickness of approx. 2.5 mm.
  • the existing deviation of the actual strip thickness from the target strip thickness was still only 1.6%, which is significantly below the maximum permissible value of 2% for hot strip, which is to be processed cold.
  • the steel strip After exiting the smoothing mill 4, the steel strip, which was further protected from oxidation by an argon atmosphere, was checked in the water-cooled dome of the housing 5 Subsequent cooling and after passing through a likewise cooled and filled with argon buffer space (cooling zone 8) fed to a winding station 13. The steel strip was then rolled out to a thickness of again 0.5 mm in a cold rolling mill, not shown.
  • the cold strip produced in this way had excellent mechanical-technological properties and met all the quality requirements. About 20% of the current production volume was returned to the process as input material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Fish Paste Products (AREA)
  • Multi-Process Working Machines And Systems (AREA)

Description

  • Die Erfindung betrifft ein verfahren zur Erzeugung von Halbzeug in Form dünner Metallstränge gemäß dem Oberbegriff des Patentanspruchs 1 und eine Vorrichtung zur Durchführung des Verfahrens.
  • Aus der EP 0 311 602 B1, von der die Oberbegriffe der Ansprüche 1 und 9 ausgehen, ist ein Verfahren und eine Vorrichtung zur Herstellung dünner Metallstränge bekannt. Dabei wird ein an der Oberfläche gereinigtes Metallprofil beispielsweise in Form eines bandförmigen Stahlblechs (Mutterband) mit einer Dicke von 0,1-1,4 mm kontinuierlich durch den Boden eines mit einer artgleichen Stahlschmelze gefüllten Schmelzenbehälters geführt. Hierzu ist eine schlitzartige Öffnung im Boden des Schmelzenbehälters vorgesehen, die mit einer Dichteinrichtung versehen ist, um den Austritt von Schmelze zu verhindern. Die Temperatur der Schmelze liegt in der Nähe der Liquidustemperatur Tliq. Das Stahlband wird mit einer konstanten Geschwindigkeit durch die Schmelze bewegt und nach oben aus der Schmelze herausgeführt. Rufgrund seines niedrigen Wärmeinhalts (Bandtemperatur etwa gleich Raumtemperatur) bildet sich auf der Oberfläche des Stahlbandes eine anhaftende Schicht aus kristallisierter und noch flüssiger Schmelze aus. Die Dicke dieser Schicht kann ein Mehrfaches der Dicke des ursprünglichen Mutterbandes betragen. Sie hängt insbesondere ab von der Verweilzeit in der Schmelze (Geschwindigkeit des Mutterbandes), von der Schmelzentemperatur (Temperaturdifferenz zur Solidustemperatur Tsol), von der Schmelzwärme und der spezifischen Wärme des eingesetzten Werkstoffs und von der Mutterbanddicke. Die Verfahrensführung muß hierbei so erfolgen, daß ein Wiederaufschmelzen von bereits anhaftendem Kristallisat vermieden wird. Unter dieser Voraussetzung besteht über die Banddicke gesehen ein Temperaturgradient. Während der Bewegung durch das Schmelzbad ist die Temperatur im Inneren des Mutterbandes am niedrigsten und steigt zum Rand hin an. Ein qualitativ gleichartiger Temperaturverlauf liegt auch in der anhaftenden Schicht vor. Im äußersten Bereich der Schicht liegt genau die Liquidustemperatur Tliq vor.
  • Die anhaftende Schicht hat zunächst eine gemischte Zusammensetzung aus gebildetem Kristallisat und dazwischen bestehender schmelzflüssiger Phase (mushy zone). Der Anteil der schmelzflüssigen Phasen nimmt nach außen hin zu. Nach Verlassen des Schmelzbads kühlt die anhaftende Schicht ab, wobei sich das bis dahin bestehende Temperaturgefälle umkehrt. Es kommt zu einer vollständigen Durcherstarrung der anhaftenden Schicht.
  • Aus der EP 0 311 602 B1 ist es auch bekannt, ein in der vorstehend beschriebenen Weise zu erzeugendes Halbzeug nach Verlassen des Schmelzbads in einer gegen Oxidation schützenden Atmosphäre bis zum Erkalten oder bis zum Eintritt in eine Verformungsmaschine zu halten, in der das Halbzeug einem Warm- und/oder Kaltformgebungsprozeß unterworfen wird. Ein Teil der dabei erzeugten Fertigproduktmenge wird dann als Mutterband wieder an den Anfang des Verfahrens zurückgeführt und erneut durch das Schmelzbad hindurchgeführt.
  • In bezug auf die Erzeugung von Stahlbandmaterial steht der praktischen Anwendung dieses Verfahrens bisher ein entscheidendes Hindernis im Wege. Die Abnehmer von qualitativ hochwertigem Kalt- oder Warmband verlangen vom Produzenten unter anderem die Einhaltung einer Schwankungsbreite der Blechdicke, die bei höchstens 2 % der Nenndicke liegt. Mit dem bisherigen Verfahren läßt sich eine derartig enge Toleranz nicht sicher einhalten. Bestehende Unregelmäßigkeiten in der Dicke des Bandes, die nach dem Verlassen des Schmelzbads bestehen und die vorgeschriebene Höchstgrenze überschreiten, lassen sich durch nachfolgende Umformvorgange nämlich praktisch nicht mehr beseitigen. Dies liegt daran, daß aufgrund des extremen Flachheitsgrads des im Walzprozeß eingesetzten Halbzeugs (Breite/Decke-Verhältnis mindestens 60) die Umformung (bei abnehmender Dicke) praktisch nur in Längsrichtung erfolgt und keine nennenswerte Breitung mehr eintritt. Bestehende Dickenunterschiede entlang einer Linie quer zur Bandlangsrichtung bleiben daher - relativ gesehen - unverändert bestehen.
  • In der EP 0 311 602 B1 ist eine zweite Verfahrensvariante beschrieben, bei der das Mutterband in umgekehrter Weise von oben in das Schmelzbad eingeführt und durch den Boden des Schmelzengefaßes wieder abgezogen wird. Bei dieser Ausführungsform ist das Problem der Bodenabdichtung besonders gravierend, da die Austrittsrichtungen der Schmelze und des Bandmaterials gleich sind und infolge dessen nicht nur ein dynamischer Dichteffekt fehlt, sondern darüber hinaus sogar ein negativer, die Austrittsneigung der Schmelze unterstützender "Mitnahmeeffekt" festzustellen ist. Aus diesem Grunde ist eine besondere Abdichtungseinrichtung in Form eines Dichtrollenpaares im Bodenbereich des Schmelzengefäßes erforderlich. Dieses Dichtrollenpaar bewirkt ein drastisches Zusammendrücken der "mushy zone" und damit ein Herausquetschen großer Teile der flüssigen Phase aus dem bereits gebildeten "schwammartigen" Kristallisatgebilde. Das hat zur Folge, daß die Dicke der erzielbaren anhaftenden Schicht gegenüber der ersten Verfahrensvariante erheblich geringer ist. Allein schon aus wirtschaftlichen Erwägungen kommt daher eine solche Verfahrensführung für eine praktische Anwendung kaum in Frage.
  • Aufgabe der Erfindung ist es, ein gattungsgemäßes Verfahren dahingehend weiterzubilden, daß die geforderte Blechdickentoleranz von maximal 2 % sicher eingehalten werden kann, und eine Vorrichtung zur Durchführung des Verfahrens anzugeben.
  • Gelöst wird diese Aufgabe hinsichtlich des Verfahrens durch die kennzeichnenden Merkmale des Patentanspruchs 1. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen 2 bis 8 angegeben. Eine Vorrichtung zur Durchführung des Verfahrens, die grundsätzlich auch für die Herstellung andersartiger Profile (z.B. runde oder beliebig polygone Querschnittsformen) geeignet ist, weist die Merkmale des Patentanspruchs 9 auf und ist durch die kennzeichnenden Merkmale der Unteransprüche 10 bis 14 in vorteilhafter Weise ausgestaltbar.
  • Im folgenden wird die Erfindung anhand des in der einzigen Figur schematisch dargestellten Ausführungsbeispiels einer für das Verfahren geeigneten Vorrichtung näher erläutert.
  • Als Mutterblech wird ein Blechcoil 12 eingesetzt, das mit einer bestimmten Geschwindigkeit abgewickelt wird. Mit dem Bezugszeichen 11 ist eine Bandschweißanlage bezeichnet, die das Ende eines bereits abgewickelten Coils mit einem neuen Coil 12 verbindet, um einen kontinuierlichen Verfahrensablauf zu ermöglichen. Bei 7 ist eine Bandspeicheranlage angedeutet, die einen kurzfristig eintretenden Stillstand des Bandnachschubs während des Schweißvorgangs bei einem Coilwechsel auffangen kann, so daß der Produktionsbetrieb nicht unterbrochen wird. Im Produktionsfluß hinter der Bandspeicheranlage 7 ist eine Bandreinigung 6 angeordnet, in der die Oberfläche des eingesetzten Mutterbandes metallisch rein gemacht wird. Ein Transportrollenpaar 2 sorgt dafür, daß das Mutterband, das ein Breite/Dicke-Verhältnis von mindestens 60, vorzugsweise von mindestens 100 bat, mit einer gleichbleibenden vorgewählten Geschwindigkeit durch eine entsprechende schlitzartige öffnung im Boden des Schmelzenbehälters 1 in die Schmelze 3 geführt wird. Das Mutterband hat einen sehr geringen Wärmeinhalt, da es beispielsweise Raumtemperatur aufweist. Die Schmelze 3 (z.B. Stahl) besteht aus dem gleichen Werkstoff wie das Mutterband. Eine Abdichtung, die am Boden des Schmelzenbehälters 1 angeordnet ist, ist in der Figur nicht gesondert dargestellt. Während das Mutterband von unten nach oben durch die Schmelze 3 geführt wird, kristallisiert eine mit zunehmender Verweilzeit (d.h. mit Annäherung an den Schmelzbadspiegel) wachsende Schicht an, da das Mutterband in seiner unmittelbaren Umgebung der Schmelze 3 Wärme entzieht, wobei es sich erwärmt. Die Schmelze 3 wird ansonsten auf einer Temperatur von z.B. 10 K über der Liquidustemperatur gehalten. Durch eine nicht dargestellte Einspeisung wird die Höhe des Schmelzbadspiegels auf einem gleichbleibenden Wert gehalten. Unter Berücksichtigung dieser und weiterer Parameter (insbesondere Solidustemperatur, Schmelzwärme, spezifische Wärme des Schmelzenwerkstoffs) ist die Bandgeschwindigkeit über die Transportrollen 2 vorzugsweise so eingestellt, daß das Mutterband mit der anhaftenden Schicht beim Verlassen der Schmelze 3 eine 3- bis 7-mal so große Dicke hat wie das ursprüngliche Mutterband.
  • Oberhalb des Schmelzbadspiegels ist eine Glättwalzeinrichtung in Form eines nebeneinander angeordneten Glättwalzenpaares 4 positioniert. Der Abstand dieses Glättwalzenpaares 4 von dem Schmelzbadspiegel ist dadurch veränderlich, daß die Höhenlage des Glättwalzenpaares 4 z.B. durch eine elektromechanische oder hydraulische Verstelleinrichtung, die durch die eingezeichneten Pfeile angedeutet ist, einstellbar ist. Der Mindestabstand des Glättwalzenpaares 4 von dem Schmelzbadspiegel betraut etwa 0,5 m, der maximale Abstand 5 m. Die Höhenlage wird so gewählt, daß der Glättstich an einer Stelle stattfindet, an der die am Mutterband anhaftende Schicht einerseits zwar schon relativ weit durcherstarrt ist, aner andererseits in ihrer Außenzone noch ausreichende Anteile an flüssiger Phase aufweist die einen problemlosen Materialfluß auch quer zur Längsrichtung des Mutterbandes ermöglichen. Es kommt also auf ein möglichst günstiges Mengenverhältnis der festen zur flüssigen Phase an. Als Regelgröße hierfür kann die Durchschnittstemperatur in der ankristallisierten Schicht herangezogen werden. Die Glättung soll erfindungsgemäß bei einer Temperatur Tgl erfolgen, die folgender Beziehung genügt: T gl = T sol + a x (T liq - T sol )
    Figure imgb0001
  • Darin bedeutet a einen Faktor im wertebereich von 0,1 - 0,8, vorzugsweise im Bereich 0,2 - 0,4. Je niedriger a ist, um so höher ist der durcherstarrte Anteil. Die untere Grenze ist insofern als kritisch anzusehen, als im Falle von Störungen leicht eine völlige oder nahezu völlige Durcherstarrung eintreten kann, die einen Ausgleich etwa bestehender größerer Banddickendifferenzen unmöglich machen würde. Die obere Grenze des Wertes a ist in erster Linie wirtschaftlich bedingt. Aufgrund des hohen Anteils an schmelzflüssiger Phase wurde wegen der vertikalen Fuhrung des Bandmaterials ein erheblicher Teil nach unten abgequetscht werden, so daß die Ausbringung sich entsprechend verringern würde. Zur Erleichterung der Einstellarbeiten kann im Verstellbereich des Glättwalzenpaares 4 eine nicht dargestellte Strangoberflächentemperatur-Meßeinrichtung vorgesehen sein. Das Glättwalzenpaar 4 wird zweckmäßigerweise mit einer inneren Fluidkühlung (z.B. Wasserkühlung) versehen. Die durch den Glättstich angestrebte Dickenabnahme des Metallstrangs sollte in einem Bereich von 5 - 15 % liegen.
  • Um eine für die nachfolgende Weiterverarbeitung des erzeugten Halbzeugs störende Oxidation der Strangoberfläche zu vermeiden, ist die anhaftende Schicht des Mutterbandes durch eine Einhausung 5, die mit einer inerten Atmosphäre geflutet werden kann, gegen den Zutritt von Luftsauerstoff geschützt. Die Einhausung 5 schließt unmittelbar an den Schmelzenbehälter 1 an und hüllt auch das Glättwalzenpaar 4 mit ein. Um eine unerwünscht schnelle Abkühlung der anhaftenden Schicht und damit eine zu weitgehende Durcherstarrung zu vermeiden, kann im Bedarfsfall insbesondere im Bereich der Verstellung der Glättwalzeinrichtung 4 vorgesehen sein, daß zumindest Teile der Wände der Einhausung 5 mit einer thermischen Isolierung versehen sind. Im übrigen ist es zweckmäßig, die Wände der Einhausung 5 als Kühlwände, insbesondere als von innen fluidgekühlte (z.B. Wasserkühlung) Wände auszuführen. über die Steuerung der Kühlmitteltemperatur läßt sich dann nämlich in der sich hinter der Glättwalzeinrichtung 4 anschließenden Kühlzone 8 eine kontrollierte Kühlung des erzeugten Halbzeugs realisieren, die zu besonders günstigen Werkstoffeigenschaften führt. Ähnlich wie bei einer Kontiglühe wird das bandförmige Material in einem mittleren Abschnitt der Kühlzone 8 durch entsprechende Umlenkrollen in Schleifen geführt, so daß in dieser Zone eine entsprechend längere Verweilzeit eintritt. Nachdem der erzeugte Metallstrang eine hinreichende Abkühlung erfahren hat, verläßt er die Einhausung 5 mit ihrer inerten Atmosphäre und kann z.B. durch eine elektrostatische Einöleinrichtung 9 eingeölt und vor Korrosion geschützt werden. Das Material wird anschließend kontinuierlich zu einem Coil 13 aufgewickelt. Das Coil 13 wird nach Erreichen eines bestimmten Gewichts mittels einer Schere 10 vom übrigen Strang abgetrennt und zur Weiterverarbeitung in ein Warm- oder Kaltwalzwerk abtransportiert.
  • Es ist selbstverständlich auch möglich, wie dies bereits in der EP 0 311 602 B1 beschrieben ist, die Weiterverarbeitung unmittelbar anzuschließen. In diesem Fall kann die Abkühlung bei Bedarf zur Einsparung von Wärmeenergie bereits weit oberhalb der Raumtemperatur unterbrochen und die Einhausung mit inerter Atmosphäre bis zur anschließenden Umformmaschine geführt werden.
  • Die Erfindung wird anhand des nachfolgenden Ausführungsbeispiels, bei dem auf das in der Figur dargestellte Anlagenschema Bezug genommen wird, näher erläutert.
  • Ein Kaltband aus einem Stahl X60 mit
       0,16 % C
       0,35 % Si
       1,30 % Mn
       0,013 % P
       0,003 % S
       0,041 % Al
       0,025 % Nb
       0,0092 % N
       Rest Eisen und übliche Verunreinigungen,
    das eine Dicke Von 0,5 mm und eine Breite von 1000 mm aufwies, trat nach einer Entfettung in einem Beizbad 6 mit Hilfe eines Treibrollenpaares 2 senkrecht durch den Boden eines mit flüssigem Stahl gefüllten Schmelzengefäßes 1 ein. Die Schmelze wies eine mit dem Stahlband vergleichbare Analyse auf. Dem Schmelzengefäß 1 wurde aus einem nicht dargestellten Verteiler kontinuierlich flüssiger Stahl zugeführt. Die Höhe des Schmelzbads 3 und die Geschwindigkeit des Stahlbandes sind die Regelgrößen, um die gewünschte Kontaktzelt zwischen dem Stahlband und dem Schmelzbad 3, die im vorliegenden Fall etwa 2 sek betragen sollte, einzustellen. Da die Bandgeschwindigkeit bei 1 m/s lag, wurde daher eine Schmelzbadhöhe von 2 m permanent eingehalten. In der Stahlschmelze 3, die eine Temperatur von ca. 1512°C aufwies, kam es beim Durchlauf des Stahlbandes zu einer Aufkristallisation in einer Dicke von insgesamt etwa 2,5 mm, so daß die Gesamtdicke des Stahlbandes beim Austritt aus der Stahlschmelze 3 etwa 3 mm betrug. Dieses Stahlband mit "teigiger" Oberfläche (zwei Phasen: Schmelze und Kristalle) wurde dann entsprechend der Formel T = T sol + a x (T liq - T sol )
    Figure imgb0002
    (hier a = 0,5 gewählt) mit einer Durchschnittstemperatur von T = 1497°C + 0,5 x (1507°C - 1497°C) = 1502°C in der aufgewachsenen Schicht in das vertikal verschiebbare Glättwalzwerk 4, das in einer mit z.B. Argon gefüllten und kontrolliert gekühlten Einhausung 5 angeordnet war, eingeführt, wo seine maximale Dicke um ca. 17 % (0,5 mm) reduziert und seine Oberflächenrauhigkeit weitestgehend abgebaut wurde. Für die vorliegenden Verhältnisse erwies sich zum Erreichen des angestrebten Zieles eine integrale Temperatur von 1502°C für die Durchführung des erfindungsgemäßen Glättstichs als besonders günstig. Das Glättwatzwerk 4 wurde daher in seiner vertikalen Position so eingestellt, daß diese Temperatur auf der Eintrittsseite in das Glättwalzwerk unter den vorliegenden Abkühlbedingungen gegeben war. Der durchgeführte Glättstich führte zu einem vollständig lunkerfreien und in seiner Schichtung optimal verschweißten Stahlband mit einer gleichförmigen Dicke von ca. 2,5 mm. Die vorhandene Abweichung der tatsächlichen Banddicke von der Sollbanddicke lag mit nur 1,6 % noch deutlich unter dem maximal zulässigen Wert von 2 % für Warmband, das kalt weiterverarbeitet werden soll. Nach dem Austritt aus dem Glättwalzwerk 4 wurde das Stahlband, das weiterhin durch eine Argonatmosphäre vor Oxidation geschützt war, in dem wassergekühlten Dom der Einhausung 5 einer kontrollierten Abkühlung unterzogen und nach Durchlaufen eines ebenfalls gekühlten und mit Argon gefüllten Pufferraums (Kühlzone 8) einer Wickelstation 13 zugeführt. Anschließend wurde das Stahlband in einem nicht dargestellten Kaltwalzwerk auf eine Dicke von wiederum 0,5 mm ausgewalzt. Das so erzeugte Kaltband wies ausgezeichnete mechanisch-technologische Eigenschaften auf und erfüllte alle gestellten Qualitätsanforderungen. Etwa 20 % der laufend erzeugten Produktionsmenge wurden wieder als Eingangsmaterial in den Prozeß zurückgeführt.
  • Mit der vorliegenden Erfindung ist es auf überraschend einfache Weise möglich, einen bandförmigen Metallstrang zu erzeugen, der hinsichtlich seiner Form- und Oberflächentoleranz außerordentlich präzise (Abweichung des Profils und der Dicke über die Bandlänge unter 2 %) ist. Gleichzeitig gewährleistet dieses Verfahren eine durchgehend sichere Verschweißung der anhaftenden Schicht mit dem Mutterblech. Durch die Möglichkeit einer kontrollierten Abkühlung läßt sich ein Bandmaterial mit hervorragenden Werkstoffeigenschaften erzielen.

Claims (14)

  1. Verfahren zur Erzeugung von Halbzeug in Form dünner Metallstränge` insbesondere aus Stahl, mit Dicken unter 20 mm, bei dem ein ungekühltes, gereinigtes Metallprofil (12) niedrigen Wärmeinhalts kontinuierlich von unten nach oben durch ein Schmelzbad (3) artgleichen Werkstoffs hindurchgeführt wird, wobei die Geschwindigkeit des Metallstrangs (12) in Abhängigkeit von der Höhe des Schmelzbads (3) so eingestellt wird, daß durch Ablagern von Kristallen und Schmelze auf dem Metallprofil (12) eine Strangdicke entsteht, die mindestens dem Dreifachen der ursprünglichen Dicke des Metallprofils (12) entspricht und wobei ferner während der Erzeugung des Metallstrangs eine inerte Atmosphäre aufrechterhalten wird, dadurch gekennzeichnet,
    daß zur Erzeugung von Halbzeug mit einem Breite/Dicke-Verhältnis von über 60 und einer Schwankung der Strangdicke von maximal 2 % dar Metallstrang nach Verlassen des Schmelzbades einem Glättstich unterzogen wird, wenn die Durchschnittstemperatur in der ankristallisierten Schicht des Metallstrangs Tgl die Beziehung erfüllt: T gl = T sol + a x (T liq - T sol )
    Figure imgb0003
       mit a = 0,1 - 0,8
       Tsol = Solidustemperatur
       Tliq = Liquidustemperatur.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß der Faktor a im Wertebereich von 0,2 - 0,4 liegt.
  3. Verfahren nach einem der Ansprüche 1 bis 2,
    dadurch gekennzeichnet,
    daß die Dickenabnahme beim Glättstich im Bereich von 5 - 15 % liegt.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß bei der Erzeugung von Stahlsträngen die Geschwindigkeit bei der Hindurchführung des Metallprofils durch das Schmelzbad (3) so eingestellt wird, daß das Verhältnis der Strangdicke zur ursprünglichen Stahlprofildicke im Bereich von 3 - 7 liegt.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß die Abkühlung des Metallstrangs bis zum Glättstich durch Beeinflussung der Wandtemperatur einer Einhausung (5) der Umgebung des Schmelzbades (3) und des herausgeführten Metallstrangs gesteuert wird.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    daß die Steuerung im Sinne einer Verlangsamung der natürlichen Abkühlung erfolgt.
  7. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    daß die Steuerung im Sinne einer Beschleunigung der natürlichen Abkühlung erfolgt.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    daß der Metallstrang nach Durchführung des Glättstichs einer kontrollierten Abkühlung unterworfen wird.
  9. Vorrichtung, insbesondere zur Durchführung des Verfahrens nach Anspruch 1, mit einem Schmelzenbehälter (1), in dessen Boden eine mit einer den Austritt von Schmelze verhindernden Dichteinrichtung versehene öffnung für die Einführung eines Metallprofils angeordnet ist, ferner mit einer Transporteinrichtung (2) zum kontinuierlichen Hindurchführen des Metallprofils durch die Vorrichtung und mit einer Einhausung (5), die den Austrittsbereich des Metallprofils aus der Schmelze (3) und eine daran anschließende Kühlzone (8) für den Metallstrang überdeckt und mit einer inerten Atmosphäre füllbar ist,
    dadurch gekennzeichnet,
    daß innerhalb der Einhausung (5) in einem Abstand von 0,5 - 5 m von dem Badspiegel der Schmelze (3) eine Glättwalzeinrichtung (4) angeordnet ist und daß der Abstand der Glättwalzeinrichtung (4) vom Badspiegel veränderlich ist.
  10. Vorrichtung nach Anspruch 9,
    dadurch gekennzeichnet,
    daß die Öffnung schlitzartig ausgeführt ist für die Einführung eines bandförmigen Blechs mit einem Breite/Dicke-Verhältnis von mindestens 60 und daß die Glättwalzeinrichtung (4) als nebeneinander angeordnetes Glättwalzenpaar ausgeführt ist.
  11. Vorrichtung nach einem der Ansprüche 9 bis 10,
    dadurch gekennzeichnet,
    daß die Höhenlage der Glättwalzeinrichtung (4) elektromechanisch oder hydraulisch verstellbar ist.
  12. Vorrichtung nach einem der Ansprüche 9 bis 11,
    dadurch gekennzeichnet,
    daß die Einhausung (5) im Bereich der Höhenverstellzone der Glättwalzeinrichtung (4) zumindest teilweise mit thermisch isolierenden Wänden ausgeführt ist.
  13. Vorrichtung nach einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet,
    daß die Wände der Einhausung (5) zumindest in Teilbereichen als fluidgekühlte Kühlwände ausgeführt sind.
  14. Vorrichtung nach einem der Ansprüche 9 bis 13,
    dadurch gekennzeichnet,
    daß im Bereich der Höhenverstellzone der Glättwalzeinrichtung (4) mindestens eine Einrichtung zur Messung der Oberflächentemperatur des Metallstrangs angeordnet ist.
EP94916903A 1993-06-08 1994-06-03 Verfahren und vorrichtung zur erzeugung von halbzeug Expired - Lifetime EP0702608B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4319569 1993-06-08
DE4319569A DE4319569C1 (de) 1993-06-08 1993-06-08 Verfahren und Vorrichtung zur Erzeugung von Halbzeug
PCT/DE1994/000656 WO1994029048A1 (de) 1993-06-08 1994-06-03 Verfahren und vorrichtung zur erzeugung von halbzeug

Publications (2)

Publication Number Publication Date
EP0702608A1 EP0702608A1 (de) 1996-03-27
EP0702608B1 true EP0702608B1 (de) 1996-12-11

Family

ID=6490242

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94916903A Expired - Lifetime EP0702608B1 (de) 1993-06-08 1994-06-03 Verfahren und vorrichtung zur erzeugung von halbzeug

Country Status (11)

Country Link
US (2) US5722151A (de)
EP (1) EP0702608B1 (de)
JP (1) JP3199382B2 (de)
KR (1) KR960702778A (de)
CN (1) CN1043317C (de)
AT (1) ATE146106T1 (de)
CZ (1) CZ282978B6 (de)
DE (2) DE4319569C1 (de)
ES (1) ES2095769T3 (de)
RU (1) RU2126733C1 (de)
WO (1) WO1994029048A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19509681C1 (de) * 1995-03-07 1996-05-02 Mannesmann Ag Verfahren und Anlage zur kontinuierlichen Erzeugung bandförmiger Bleche
DE19638906C1 (de) * 1996-09-23 1998-01-02 Schloemann Siemag Ag Verfahren und Vorrichtung zur Erzeugung von beschichteten Strängen aus Metall, insbesondere von Bändern aus Stahl
DE19731124C1 (de) * 1997-07-19 1999-01-21 Schloemann Siemag Ag Verfahren und Vorrichtung zur Erzeugung von beschichtetem Warm- und Kaltband
DE19902066A1 (de) * 1999-01-20 2000-08-03 Sms Demag Ag Verfahren und Vorrichtung zur Erzeugung von beschichteten Strängen aus Metall, insbesondere von Bändern aus Stahl
DE10243457B3 (de) * 2002-09-19 2004-04-29 Sms Demag Ag Verfahren zum Herstellen von Flachstahl-Produkten mit hoher Magnetisierungsfähigkeit
US10765071B2 (en) 2016-09-29 2020-09-08 Mariplast North America, Inc. Enclosing vegetative sheath
JP6477667B2 (ja) * 2016-11-08 2019-03-06 トヨタ自動車株式会社 成形体製造方法、及び、成形体製造装置
US11384419B2 (en) * 2019-08-30 2022-07-12 Micromaierials Llc Apparatus and methods for depositing molten metal onto a foil substrate

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483030A (en) * 1966-12-19 1969-12-09 Texas Instruments Inc Chill cladding method and apparatus
US3484280A (en) * 1967-04-04 1969-12-16 Gen Electric Atmosphere control in dip-forming process
US3511686A (en) * 1968-01-11 1970-05-12 Production Machinery Corp Method for annealing and coating metal strip
US3598085A (en) * 1968-10-11 1971-08-10 Gen Electric Dip forming apparatus
US3792684A (en) * 1973-03-19 1974-02-19 Dolan T Treatment of continuous lengths of metal by electrical resistive heating
FR2228755B1 (de) * 1973-05-11 1975-11-21 Rhone Poulenc Ind
US4081296A (en) * 1973-09-26 1978-03-28 Valjim Corporation Direct-current electrical heat-treatment of continuous metal sheets in a protective atmosphere
BE814046A (fr) * 1974-04-22 1974-08-16 Procede et installation pour l'application en continu d'un revetement metallique sur une tole en bande.
US3978815A (en) * 1975-12-22 1976-09-07 General Electric Company Continuous casting apparatus with an articulative sealing connection
US4082868A (en) * 1976-03-18 1978-04-04 Armco Steel Corporation Method for continuously contact-coating one side only of a ferrous base metal strip with a molten coating metal
US4154432A (en) * 1976-09-26 1979-05-15 Valjim Corporation Direct-current electrical heat-treatment of continuous metal sheets in a protective atmosphere
DE2937188A1 (de) * 1979-09-14 1981-03-19 Norddeutsche Affinerie, 2000 Hamburg Plattierverfahren
GB2093486B (en) * 1981-02-24 1985-06-26 Kloeckner Werke Ag Plant for the continuous treatment of thin plate or strip
US4370357A (en) * 1981-03-11 1983-01-25 Cleveland Gear Company Process of continuous metal coating
US4408561A (en) * 1981-08-24 1983-10-11 Nippon Steel Corporation Dual-purpose plant for producing cold rolled steel sheet and hot-dip galvanized steel sheet
US4444814A (en) * 1982-06-11 1984-04-24 Armco Inc. Finishing method and means for conventional hot-dip coating of a ferrous base metal strip with a molten coating metal using conventional finishing rolls
DE3231981C2 (de) * 1982-08-27 1986-08-14 Ra-Shipping Ltd. Oy, Espoo Verfahren zur Herstellung von beschichtetem, hochfestem, niedriglegiertem Stahl
DE3313218C2 (de) * 1983-04-13 1985-11-14 Mannesmann AG, 4000 Düsseldorf Vorrichtung zum wahlweisen ein- und beidseitigen Verzinken von endlos durchlaufendem Stahlband
CH660755A5 (en) * 1984-02-22 1987-06-15 Daiichi Denko Kk Device for cooling a metal wire coated with a layer of molten metal
JPS627840A (ja) * 1985-07-03 1987-01-14 Shinko Kosen Kogyo Kk 溶融めつき装置
WO1987007192A1 (en) * 1986-05-27 1987-12-03 Mannesmann Aktiengesellschaft Process and device for producing thin metal bar
US4807559A (en) * 1987-09-02 1989-02-28 Ajax Magnethermic Corporation Apparatus for alloying of coatings
AU600391B2 (en) * 1987-10-27 1990-08-09 John Lysaght (Australia) Limited Production of coated metal strip
FI882657A (fi) * 1988-06-25 1989-12-07 Spetsialnoe Proektno-Konstruktorskoe/I Tekhnologicheskoe Bjuro Çenergostalproektç Anordning foer aostadkommande av ett skyddande skikt fraon smaelta metaller.
US5156683A (en) * 1990-04-26 1992-10-20 Ajax Magnethermic Corporation Apparatus for magnetic induction edge heaters with frequency modulation
US5174822A (en) * 1991-01-03 1992-12-29 National Steel Corporation Steel strip annealing and coating apparatus
DE4208578A1 (de) * 1992-03-13 1993-09-16 Mannesmann Ag Verfahren zum beschichten der oberflaeche von strangfoermigem gut

Also Published As

Publication number Publication date
EP0702608A1 (de) 1996-03-27
RU2126733C1 (ru) 1999-02-27
DE59401278D1 (de) 1997-01-23
WO1994029048A1 (de) 1994-12-22
JP3199382B2 (ja) 2001-08-20
CN1124936A (zh) 1996-06-19
DE4319569C1 (de) 1994-06-16
US5722151A (en) 1998-03-03
ES2095769T3 (es) 1997-02-16
KR960702778A (ko) 1996-05-23
ATE146106T1 (de) 1996-12-15
CN1043317C (zh) 1999-05-12
JPH08510962A (ja) 1996-11-19
US5881441A (en) 1999-03-16
CZ325595A3 (en) 1996-04-17
CZ282978B6 (cs) 1997-12-17

Similar Documents

Publication Publication Date Title
DE69730750T2 (de) Verfahren zur herstellung eines stahlbandes
EP2627464B1 (de) Verfahren und anlage zur energieeffizienten erzeugung von stahlwarmband
DE69730154T2 (de) Verfahren zur herstellung von stahlband oder stahlblech
EP2627465B1 (de) Energie- und ausbringungsoptimiertes verfahren und anlage zur erzeugung von stahlwarmband
DE69819773T2 (de) Verfahren und vorrichtung zur herstellung von ferritisch gewalztem stahlband
EP0286862A1 (de) Verfahren zum Herstellen eines Stahlbandes
CH641496A5 (de) Verfahren zur herstellung eines zipfelarmen bandes aus einem warmgewalzten band aus aluminium oder einer aluminiumlegierung.
DE3332656C2 (de) Verfahren zum kontinuierlichen Plattieren eines Aluminiumbandes
DE1452117B2 (de) Verfahren und walzenstrasse zum warmwalzen von brammen
EP3495086B1 (de) Verfahren und vorrichtung zur herstellung eines bandförmigen verbundmaterials
EP0702608B1 (de) Verfahren und vorrichtung zur erzeugung von halbzeug
DE2855804C2 (de) Vorrichtung und Verfahren zum Plattieren von Strangguß-Bändern
DE4420697C2 (de) Stranggießkokille zum Gießen eines Verbundmetallstranges mit einem Trennkörper zum Trennen der eingegossenen Schmelzen der Teilstränge
DE3146417C2 (de)
WO2018158420A1 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung von stahlband
DE2548939C2 (de) Verfahren und Vorrichtung zum Stranggießen von Bändern
WO1999059750A1 (de) Verfahren und vorrichtung zum endabmessungsnahen giessen von metall
DE60316568T3 (de) Bandtemperaturregelvorrichtung in einer kontinuierlichen bandgiessanlage
DE19638906C1 (de) Verfahren und Vorrichtung zur Erzeugung von beschichteten Strängen aus Metall, insbesondere von Bändern aus Stahl
DD239546A5 (de) Verfahren zur einstellung der hoehe der beruehrungslinie der freien metalloberflaeche mit der kokille beim senkrechtguss
DE2146227A1 (de) Verfahren zur Erzeugung von dreischichtigen Walzprodukten
DE2406252A1 (de) Verfahren zum kontinuierlichen giessen von metall
DE3816541C1 (en) Process for producing laminated metal composites, and use thereof
EP1144705B1 (de) Verfahren und vorrichtung zur erzeugung von beschichteten strängen aus metall, insbesondere von bändern aus stahl
EP0423233B1 (de) Verfahren und vorrichtung zum kontinuierlichen giessen von metallbändern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MENNE, ULRICH

Inventor name: VON HAGEN, INGO

Inventor name: HAMACHER, PETER LORENZ

Inventor name: VONDERBANK, MICHAEL

Inventor name: EL GAMMAL, TAREK

Inventor name: STALLEICKEN, DIETER

Inventor name: PARSCHAT, LOTHAR

Inventor name: PLESCHIUTSCHNIGG, FRITZ P.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960507

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 146106

Country of ref document: AT

Date of ref document: 19961215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

REF Corresponds to:

Ref document number: 59401278

Country of ref document: DE

Date of ref document: 19970123

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2095769

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020517

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020531

Year of fee payment: 9

Ref country code: NL

Payment date: 20020531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020606

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020611

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020612

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020613

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030604

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

BERE Be: lapsed

Owner name: *MANNESMANN A.G.

Effective date: 20030630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040101

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040227

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040528

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040603

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040604

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050603

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050603

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050603