EP0695813B1 - Procédé pour la carburation de pièces carburables par des impulsions à plasma - Google Patents

Procédé pour la carburation de pièces carburables par des impulsions à plasma Download PDF

Info

Publication number
EP0695813B1
EP0695813B1 EP95109082A EP95109082A EP0695813B1 EP 0695813 B1 EP0695813 B1 EP 0695813B1 EP 95109082 A EP95109082 A EP 95109082A EP 95109082 A EP95109082 A EP 95109082A EP 0695813 B1 EP0695813 B1 EP 0695813B1
Authority
EP
European Patent Office
Prior art keywords
voltage
plasma
pulse
process according
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95109082A
Other languages
German (de)
English (en)
Other versions
EP0695813A2 (fr
EP0695813A3 (fr
Inventor
Frank Dr. Schnatbaum
Albrecht Dr. Melber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALD Vacuum Technologies GmbH
Original Assignee
ALD Vacuum Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALD Vacuum Technologies GmbH filed Critical ALD Vacuum Technologies GmbH
Publication of EP0695813A2 publication Critical patent/EP0695813A2/fr
Publication of EP0695813A3 publication Critical patent/EP0695813A3/fr
Application granted granted Critical
Publication of EP0695813B1 publication Critical patent/EP0695813B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Definitions

  • the invention relates to a method for carburizing components carbonizable materials, especially steel, by means of a pulsed plasma discharge in a carbon-containing Atmosphere at pressures between 0.1 and 30 mbar and at Pulse voltages between 200 and 2000 volts, preferably between 300 and 1000 volts.
  • EP 0 552 460 A1 is at the electrodes, which consists of at least one device-side electrode on the one hand and from the components or the Bracket for the components on the other hand exist, applied voltage in the so-called zero pulse pauses, i.e. the procedure is without one so-called basic voltage operated.
  • the carbonizable materials include non-ferrous ones Materials also non-ferrous materials such as titanium.
  • the carbon flow depends on the plasma parameters: In order to generate a high carbon flow, a correspondingly high plasma power must be introduced into the plasma.
  • the electrical current which arises in the plasma during a pulse depends on the size of the surface of the components to be treated and usually reaches orders of magnitude of 25 A / m 2 surface. For the treatment of large batches, it is therefore necessary to use generators with pulse powers of more than 200 A at voltages between 500 and 1000 volts. The corresponding power must be switched in the range between approximately 10 and 100 ⁇ s. Generators with such performances are not available as standard; they are complex special constructions.
  • US-PS 4 490 190 it is when using a conventional Additional heating of the workpieces is known, due to a correspondingly high level Frequency of short-term impulses and long pauses a cold plasma to generate and thereby the heating effect of the plasma from its to decouple thermochemical action on the workpieces. Thereby thermal damage to the workpieces should be avoided. Measures to maintain part of the ionization state in the Pulse pauses are not given, however, so a longer one Exposure time and / or a lower penetration depth of the gases can be assumed. The size of the workpieces or even the batch, the current density or the total current are also not specified.
  • a base voltage is applied to the workpiece, which alone causes a gas discharge.
  • An additional voltage is superimposed on this base voltage by means of an external discharge, for example by a plasma torch, in order to increase the ionization of the gas.
  • pulse operation it is a matter of individual interference pulses which serve for pre-ionization or for further amplification of the ionization.
  • a periodic interruption of the glow discharge is not disclosed.
  • the invention is therefore based on the object of higher carbon flows to generate using smaller generators and thereby the Investment and operating costs of a plant for the implementation of the Reduce process.
  • the task is solved at the beginning described method according to the invention in that the Pulse voltage is superimposed on a constant basic voltage, which is below the breakdown voltage.
  • the breakdown voltage is the voltage at which the given parameters in the device, a plasma can be ignited can. Compliance with the condition according to the invention can therefore be achieved check that when applying the basic voltage to the Electrodes just did not ignite a plasma.
  • values for the basic voltage between 2% and 35% of the pulse voltage can be selected, especially if as a basic voltage a DC voltage with values between 10 and 150 Volts, preferably between 20 and 100 volts, is selected.
  • the pulse frequency is not an overly critical limit; beneficial Results came at a pulse frequency of 15 kHz.
  • the ratio of pulse duration t 1 to pause duration t 2 is also not very critical; it can be chosen between 4: 1 and 1: 100 with particular advantage.
  • the pulse duration between 50 and 200 microseconds and the pause duration between 500 and 2000 microseconds are selected in a particularly expedient manner.
  • FIG. 1 shows a vertical section through a device for implementation of the inventive method, the essential part of which Vacuum furnace 1 is with a furnace chamber 2, which with a Thermal insulation device 3 is lined.
  • a grounded electrode which serves as an anode 4 of a circuit.
  • a vertical support rod 6 by means of an insulating bushing 5 passed through, which at its lower end a plate-shaped, horizontal workpiece holder, which also has an electrode function and serves as cathode 7.
  • insulating bushing 5 passed through, which at its lower end a plate-shaped, horizontal workpiece holder, which also has an electrode function and serves as cathode 7.
  • Workpieces 8 are shown only one.
  • the anode 4 and the cathode 7 are connected to a power supply 9 connected to the generation of voltage pulses for education of the plasma.
  • the power supply 9 is a control device 10 assigned with which the electrical process parameters for the Influencing the plasma are adjustable.
  • the Power supply 9 in addition to the pulses also a constantly pending Basic voltage that is superimposed on the pulses. Both the amount of The control unit generates pulses as well as the level of the basic voltage 10 influenceable.
  • Cathode 7 and workpieces 8 are concentric of one Resistor heating element 11 surrounded by a controllable current source 12th connected.
  • the energy balance of the furnace and thus the Workpiece temperature is affected by the losses on the one hand and by the Sum of the energy contributions of the plasma and the radiation of the Resistance radiator determined on the other hand.
  • a supply line 13 opens, which with a controllable gas source 14 is connected and through which the desired Process gases or gas mixtures are supplied.
  • the gas balance will by the gas supply, the consumption by the workpieces and loss sinks, if necessary, but not least due to the influence of the Vacuum pump 15 determines which via a suction line 16 with the Oven chamber 2 is connected and can also be designed as a pump set can.
  • FIG. 3 shows the time t is plotted on the abscissa, namely, t 1 denotes the pulse duration and t 2 the pulse pause.
  • t 1 denotes the pulse duration
  • t 2 the pulse pause.
  • Each diagram contains the respective pulse voltage U, the current I flowing during a pulse, and a curve that symbolizes the state of excitation by ionization and dissociation and the excitation by recombination.
  • FIG. 3 also shows the basic voltage, which lies below the so-called breakdown voltage, which is shown by a dash-dotted line 21.
  • hydrocarbon molecules are excited during a voltage pulse and are supplied via the supply line 13. These hydrocarbon molecules are dissociated and ionized.
  • the level of excitation and the extent of the dissociation and ionization of the particles are influenced, and a corresponding current I flows, which is indicated by the middle curve in FIG. 2.
  • the pulse pause ie in the period when there is no voltage, recombination processes predominate, and the excited species fall back to energy levels in which they contribute little or no longer to the carburization process or to a layer formation process. This can be seen from the upper curve of FIG. 2, in which the curve sections that coincide almost with the pulse pauses t 2 have the value 0.
  • FIG. 3 shows, based on the lower curve, the superimposition according to the invention of a constant basic voltage U g , which is below a breakdown voltage dependent on the given process parameters, as indicated by line 21, and a pulsed DC voltage of multiple levels. This influences the excitation, dissociation and ionization as well as the de-excitation and recombination. Since the constant basic voltage U g is below the breakdown voltage, no current flows during the pulse pause of the pulsed direct voltage, as can be seen from the curve I in FIG. 3.
  • the distance "T” from the component surface is shown on the abscissa, which is designated by 0.0.
  • the carbon content "C” is given in percent on the ordinate.
  • the lower curve 22 reproduces the conditions in the case of a pulsed DC voltage without superimposing a basic voltage, while the curve 23 shows the conditions in the event of a pulsed DC voltage being superimposed with a constantly present basic voltage. A significantly higher carbon content is thus achieved both on the surface and to a depth of 0.5 mm.
  • the following ratios were selected: the pulsed DC voltage was 600 volts, the ratio of pulse duration t 1 to pause duration t 2 was 1:10, and the level of the constant base voltage was 100 volts.
  • a number of cylindrical bolts with a length of 150 mm and a diameter of 16 mm were made of the alloy 16MnCr5 for a period of 120 minutes of a pulsed DC voltage of 600 volts and a basic voltage of 100 volts.
  • the composition of the gas mixture supplied via the supply line 13 was 10 volume percent argon, 10 volume percent methane and 80 volume percent hydrogen. Under these conditions, the result according to curve 23 in FIG. 4 was achieved. If one does not want to achieve a higher carbon content, the process according to the invention leads to a much faster carburization both on the surface and in depth. Nevertheless, smaller voltage or current sources can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Arc Welding In General (AREA)

Claims (7)

  1. Procédé pour la carburation de pièces en matériaux carburables, en particulier en aciers, au moyen d'une décharge à plasma exploitée sous forme d'impulsions dans une atmosphère contenant du carbone à des pressions comprises entre 0,1 et 30mbar et à des tensions d'impulsion comprises entre 200 et 2000 volts, de préférence entre 300 et 1000 volts, caractérisé en ce qu'à la tension d'impulsion est superposée une tension de base appliquée constamment qui est située sous la tension disruptive.
  2. Procédé selon la revendication 1, caractérisé en ce que l'on choisit pour la tension de base des valeurs comprises entre 2 % et 35 % de la tension d'impulsion.
  3. Procédé selon la revendication 1, caractérisé en ce que l'on choisit comme tension de base une tension continue ayant des valeurs comprises entre 10 et 150 volts, de préférence entre 20 et 100 volts.
  4. Procédé selon la revendication 1, caractérisé en ce que l'on choisit le rapport de la durée d'une impulsion t1 à la durée d'une pause t2 entre 4:1 et 1:100.
  5. Procédé selon la revendication 3, caractérisé en ce que l'on choisit la durée d'une impulsion entre 50 et 200 µs et la durée d'une pause entre 500 et 2000 µs.
  6. Procédé selon la revendication 1, caractérisé en ce que la décharge à plasma est réalisée dans une atmosphère qui contient 2 à 50 % d'argon, 3 à 50 % d'hydrocarbure gazeux, le reste étant de l'hydrogène, à chaque fois en pourcentages volumiques.
  7. Procédé selon la revendication 1 caractérisé en ce que la décharge à plasma est réalisée dans une atmosphère qui contient 10 à 30 % d'argon, 10 à 30 % d'hydrocarbure gazeux, le reste étant de l'hydrogène, à chaque fois en pourcentages volumiques.
EP95109082A 1994-08-06 1995-06-13 Procédé pour la carburation de pièces carburables par des impulsions à plasma Expired - Lifetime EP0695813B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4427902A DE4427902C1 (de) 1994-08-06 1994-08-06 Verfahren zum Aufkohlen von Bauteilen aus kohlungsfähigen Werkstoffen mittels einer impulsförmig betriebenen Plasmaentladung
DE4427902 1994-08-06

Publications (3)

Publication Number Publication Date
EP0695813A2 EP0695813A2 (fr) 1996-02-07
EP0695813A3 EP0695813A3 (fr) 1997-02-12
EP0695813B1 true EP0695813B1 (fr) 1999-09-08

Family

ID=6525098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95109082A Expired - Lifetime EP0695813B1 (fr) 1994-08-06 1995-06-13 Procédé pour la carburation de pièces carburables par des impulsions à plasma

Country Status (5)

Country Link
US (1) US5558725A (fr)
EP (1) EP0695813B1 (fr)
JP (1) JPH08170162A (fr)
AT (1) ATE184329T1 (fr)
DE (2) DE4427902C1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776854B2 (en) 2001-02-28 2004-08-17 Vacuheat Gmbh Process and apparatus for the partial thermochemical vacuum treatment of metallic workpieces

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547131A1 (de) * 1995-12-16 1997-06-19 Ipsen Ind Int Gmbh Verfahren zur Plasmaaufkohlung metallischer Werkstücke
JP4588213B2 (ja) * 1997-12-15 2010-11-24 フオルクスワーゲン・アクチエンゲゼルシヤフト プラズマ硼化処理
GB2336603A (en) * 1998-04-23 1999-10-27 Metaltech Limited A method and apparatus for plasma boronising
IT1309928B1 (it) * 1999-12-01 2002-02-05 Bundy S P A Tubo per impianti di alimentazione di fluidi a pressione, inparticolare per l'alimentazione di carburante nei motori diesel,
DE10021583A1 (de) * 2000-05-04 2001-11-15 Ald Vacuum Techn Ag Verfahren und Vorrichtung zum Aufkohlen und Härten von Werkstückchargen
JP4744019B2 (ja) * 2000-07-12 2011-08-10 大阪府 チタン金属の表面処理方法
KR100614288B1 (ko) * 2005-01-17 2006-08-21 한국에너지기술연구원 주기적 주입방식의 저압식 진공 침탄 제어방법
DE102013006589A1 (de) * 2013-04-17 2014-10-23 Ald Vacuum Technologies Gmbh Verfahren und Vorrichtung für das thermochemische Härten von Werkstücken
JP7421373B2 (ja) * 2020-03-02 2024-01-24 日立Astemo株式会社 浸炭方法及び被処理基材

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE601847C (de) * 1933-04-01 1934-08-25 Siemens Schuckertwerke Akt Ges Verfahren zum Einbringen eines Stoffes in ein Metall
CH342980A (de) * 1950-11-09 1959-12-15 Berghaus Elektrophysik Anst Verfahren zur Diffusionsbehandlung von Rohren aus Eisen und Stahl oder deren Legierungen
DE2842407C2 (de) * 1978-09-29 1984-01-12 Norbert 7122 Besigheim Stauder Vorrichtung zur Oberflächenbehandlung von Werkstücken durch Entladung ionisierter Gase und Verfahren zum Betrieb der Vorrichtung
JPS56105627A (en) * 1980-01-28 1981-08-22 Fuji Photo Film Co Ltd Manufacture of amorphous semiconductor
FR2501727A1 (fr) * 1981-03-13 1982-09-17 Vide Traitement Procede de traitements thermochimiques de metaux par bombardement ionique
US5127967A (en) * 1987-09-04 1992-07-07 Surface Combustion, Inc. Ion carburizing
JP2724850B2 (ja) * 1988-11-04 1998-03-09 新電元工業株式会社 金属などの熱化学処理装置
DE4003623A1 (de) * 1990-02-07 1991-08-08 Kloeckner Ionon Verfahren zur steuerung einer anlage zur plasmabehandlung von werkstuecken
US5383980A (en) * 1992-01-20 1995-01-24 Leybold Durferrit Gmbh Process for hardening workpieces in a pulsed plasma discharge
DE4238993C1 (fr) * 1992-01-20 1993-07-01 Leybold Durferrit Gmbh, 5000 Koeln, De
FR2708624A1 (fr) * 1993-07-30 1995-02-10 Neuville Stephane Procédé de dépôt d'un revêtement protecteur à base de pseudo carbone diamant amorphe ou de carbure de silicium modifié.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776854B2 (en) 2001-02-28 2004-08-17 Vacuheat Gmbh Process and apparatus for the partial thermochemical vacuum treatment of metallic workpieces

Also Published As

Publication number Publication date
EP0695813A2 (fr) 1996-02-07
DE59506771D1 (de) 1999-10-14
JPH08170162A (ja) 1996-07-02
US5558725A (en) 1996-09-24
ATE184329T1 (de) 1999-09-15
EP0695813A3 (fr) 1997-02-12
DE4427902C1 (de) 1995-03-30

Similar Documents

Publication Publication Date Title
DE10018143C5 (de) DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
DE102006023018A1 (de) Plasmaverfahren zur Oberflächenbehandlung von Werkstücken
DE3513014C2 (de) Verfahren zur Behandlung der Oberfläche von Werkstücken
EP0695813B1 (fr) Procédé pour la carburation de pièces carburables par des impulsions à plasma
DE4029268A1 (de) Verfahren und anordnung zur gleichspannungs-bogenentladungs-unterstuetzten, reaktiven behandlung von gut
CH631743A5 (de) Verfahren zum aufdampfen von material in einer vakuumaufdampfanlage.
DE4336681A1 (de) Verfahren und Einrichtung zum plasmaaktivierten Elektronenstrahlverdampfen
AT514555A4 (de) Verfahren und Vorrichtung zur Erzeugung eines Plasmastrahls
DE69407839T2 (de) Verfahren zur Herstellung von Disilan aus Monosilan durch elektrische Entladung und Benützung einer Kühlfalle, sowie Reaktor zu seiner Durchführung
DE4228499C1 (de) Verfahren und Einrichtung zur plasmagestützten Beschichtung von Substraten
DE10104615A1 (de) Verfahren zur Erzeugung einer Funktionsbeschichtung mit einer HF-ICP-Plasmastrahlquelle
EP0867036B1 (fr) Procede et dispositif pour le pretraitement de substrats
EP3430864B1 (fr) Buse plasma et procede d'utilisation de la buse plasma
DE10104614A1 (de) Plasmaanlage und Verfahren zur Erzeugung einer Funktionsbeschichtung
DE2842407C2 (de) Vorrichtung zur Oberflächenbehandlung von Werkstücken durch Entladung ionisierter Gase und Verfahren zum Betrieb der Vorrichtung
EP1044289B1 (fr) Boruration au plasma
EP0552460B1 (fr) Procédé de traitement thermochimique de pièces par des impulsions à plasma
EP1371271B1 (fr) Installation de plasma et procede de production d'un revetement fonctionnel
DE10010126A1 (de) Verfahren und Vorrichtung zum Plasmabehandeln der Oberfläche von Substraten durch Ionenbeschuß
DE2624005C2 (de) Verfahren und Vorrichtung zum Aufbringen von dünnen Schichten auf ein Substrat nach dem "Ion-plating"-Verfahren.
DE2949121A1 (de) Verfahren und vorrichtung zur teilchenstromionisierung und hochratebeschichtung
DE19815019A1 (de) Verfahren zur Herstellung von Aluminiumnitridschichten auf Bauteilen aus Aluminiumwerkstoffen auf der Grundlage des Plasmanitrierens
DE102022211045A1 (de) Vorrichtung und Verfahren zur Durchführung plasmagestützter thermochemischer Diffusionsprozesse an metallischen Bauteilen
DE69421250T2 (de) Verfahren und Vorrichtung zur Trockenbehandlung von metallischen Oberflächen
DE19727882A1 (de) Verfahren und Vorrichtung zur Erzeugung hochangeregter Plasmen mittels gepulster Funkenentladung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19970510

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981023

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 184329

Country of ref document: AT

Date of ref document: 19990915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KEMENY AG PATENTANWALTBUERO

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990910

REF Corresponds to:

Ref document number: 59506771

Country of ref document: DE

Date of ref document: 19991014

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALD VACUUM TECHNOLOGIES AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050512

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050516

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050519

Year of fee payment: 11

Ref country code: CH

Payment date: 20050519

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060613

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140611

Year of fee payment: 20

Ref country code: DE

Payment date: 20140619

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59506771

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 184329

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150613