EP0694627A1 - Anstreifbelag für Triebwerksbauteile - Google Patents

Anstreifbelag für Triebwerksbauteile Download PDF

Info

Publication number
EP0694627A1
EP0694627A1 EP95111213A EP95111213A EP0694627A1 EP 0694627 A1 EP0694627 A1 EP 0694627A1 EP 95111213 A EP95111213 A EP 95111213A EP 95111213 A EP95111213 A EP 95111213A EP 0694627 A1 EP0694627 A1 EP 0694627A1
Authority
EP
European Patent Office
Prior art keywords
coating
covering
powder
mixed
abradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95111213A
Other languages
English (en)
French (fr)
Inventor
Joachim Dr. Söhngen
Johannes Dr. Schröder
Bruno Dr. Krismer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
MTU Aero Engines AG
Original Assignee
HC Starck GmbH
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH, MTU Motoren und Turbinen Union Muenchen GmbH filed Critical HC Starck GmbH
Publication of EP0694627A1 publication Critical patent/EP0694627A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material

Definitions

  • the present invention relates to a rub-on coating for engine components with an abradable or an abrasive material component in the form of particles and a material component connecting them.
  • Rubbing surfaces are widely used in engine construction to optimize gap seals.
  • the efficiency of engines depends to a large extent on the gaps between the rotor and stator.
  • a gap seal usually consists of two abradable coverings, a run-in covering that can be rubbed off and is partially rubbed off when it is rubbed, and a run-on covering that has an abrasive effect and is incorporated into the run-in covering when it is rubbed. Consequently, it is known that abradable coverings as inlet coverings usually consist of a material component that can be rubbed off in the form of particles and a connecting material component made of metal.
  • This metal can also be structured as a support matrix in the form of honeycombs or other networks, the interstices being filled with ceramic and / or metal layers.
  • rub-on coverings as run-in coverings in addition to abradable material components and connecting metals or ceramics can still contain plastic materials.
  • Such three-phase run-in coatings have the disadvantage that the production of a wettable powder from these components in preparation for the application of the coating is extremely complex and cost-intensive. In addition, the production of the coverings is very complicated and there is a risk of incorrect coatings. Finally, a metallic support matrix is exposed to the risk of oxidation and damage to the lining at the operating temperatures of turbines and the aggressive media in turbines.
  • Temperatures of 600 ° C are reached in the high-pressure compressor range, with approx. 700 ° C being aimed for in the future.
  • Covering materials based on Ni or NiCrAl are mainly used for the temperature range between approx. 400 ° C and 700 ° C.
  • Brushed rubbers based on pure Ni are characterized by a temperature resistance of up to 450 ° C and show good running-in properties up to these operating temperatures.
  • NiCrAl base materials show somewhat less favorable running-in behavior, but they can be used up to 800 ° C.
  • the support matrix or networks made of metal or ceramic usually show insufficient rubbing behavior, so that it is an object of the invention to avoid such networks.
  • Another object of the invention is to overcome the disadvantages in the prior art and to provide a surface which is capable of being rubbed for high-temperature applications.
  • This solution has the advantage that the covering is much easier and cheaper to manufacture, since there is no need for complex soldering or welding techniques for attaching a supporting network.
  • the rubbing behavior improves at the same time, since no disruptive support matrix hinders the rubbing process. Damage to the abradable coating caused by the oxidation of metallic components is excluded.
  • An adaptation of the layer properties from abrasion to abrasion is possible by adapting the composition of the mixed particles, by adding or replacing components in the mixed particles and / or by changing the manufacturing parameters when applying the coverings. Additional solid lubricants such as plastic can also be dispensed with.
  • the ceramic materials for the brush coating according to the invention are materials based on magnesium oxide, zinc oxide, calcium fluoride, barium fluoride or magnesium fluoride and are present in the brush coating as mixed and / or individual phases. This limited selection has the advantage that the inventory can be kept small. It also contains substances that allow a high degree of heat penetration. Thermal penetration is the square root of the product of thermal conductivity, density and isobaric heat capacity. This parameter should achieve the highest possible value in order to be excellent in addition to high temperature resistance Ensure brushability. In the case of abradable coverings, it has been shown that the rapid degradation and the rapid distribution of local overheating at operating temperatures are decisive for the success of a abradable covering. The above materials show a clear superiority particularly in this regard at the high operating temperatures mentioned above compared to blade base materials such as titanium and Ni, Co and Fe base alloys.
  • the covering has zinc oxide as the connecting material component to form mixed phases with the other components.
  • This material forms mixed phases with the other components such as magnesium oxide in micro areas and at grain boundaries, which advantageously favors the connecting effect.
  • the abradable material component consists of zinc oxide, calcium fluoride, barium fluoride or mixtures thereof, preferably of zinc oxide and calcium fluoride.
  • These fluorides and zinc oxide can be used particularly advantageously as abradable components because, due to their high melting point and their crystalline structure, they do not melt like a metallic support matrix or are kneaded into a doughy mass when they are touched, but instead break down in layers or granules into the finest dust, which the gases in the flow channel of an engine are blown out.
  • the splitting energy that is to be used thereby reduces the frictional or thermal energy that occurs during the rubbing process, so that local overheating can advantageously be avoided and the scraping component can work into the rubbing-on pad, which acts as a running-in pad, without its own abrasive removal.
  • the abradable covering preferably additionally has an erosion-resistant ceramic material which forms mixed phases at its grain boundaries with the other ceramic components.
  • Magnesium oxide has proven to be the preferred component for this.
  • the magnesium oxide has the further advantage that it forms large-grain mixed phases with zinc oxide, which, with the appropriate composition and thermal treatment, can grow into abrasive, deposit-hardening crystallites.
  • the abradable covering should preferably result in a running-in covering, it is composed at least of an erosion-resistant and connecting ceramic material and an abradable ceramic material. If one starts from the oxides and fluorides disclosed here, magnesium oxide has emerged as the connecting and erosion-resistant component, while all the other ceramics mentioned above can be used as abradable components.
  • the streak is preferably a tarnish, it is composed predominantly (greater than 50% by weight) of magnesium oxide and zinc oxide, since these two components form large-grain and hard to abrasive mixed phases and mixed crystals.
  • These mixed phases can advantageously already be formed during the production of the mixed particles, so that with the production of mixed particles a preselection can be made to form an inlet coating with low growth of mixed phases or a start-up coating with high growth of mixed phases.
  • an inlet coating indicates a high porosity, which decreases towards the component, while a startup coating indicates a consistently lower porosity.
  • the porosity can be adjusted by the parameters during the application of the covering to a component. Therefore, the abradable coating according to the invention is preferably a plasma or flame spraying layer, since in plasma or flame spraying the porosity can be easily controlled via the spraying parameters.
  • a brush-on coating according to the invention on a purely ceramic basis which essentially consists of ZnO, MgO and CaF2, proves to be an ideal solution both for run-in and for run-in coatings at high operating temperatures, the production parameters and the compositions being adapted to the operational requirements of the coatings can.
  • a ceramic powder is mixed in powder form by mixing the components required for the coating. Sintering the powder mixture and crushing the sintered mass produces a mixed powder so that the components of the abradable coating are contained in each powder particle, and then the coating powder is plasma or flame sprayed directly onto the component surface or onto an adhesive layer.
  • the sintered mass is comminuted into coating powder with an average particle size of 5 ⁇ m to 150 ⁇ m.
  • the sintered mass contains all the components involved according to the invention.
  • the following ceramic powders are preferably mixed to produce the coating powder: CaF2 30 to 40% by weight MgO 3 to 20% by weight ZnO rest.
  • the powder mixture is sintered.
  • the hardness and abrasiveness of the subsequent coating is set at the same time.
  • the hardness increases with increasing sintering time and sintering temperature because an increasingly hard mixed phase of magnesium oxide and zinc oxide forms.
  • Calcium fluoride essentially adjusts the abradability of the abradable coating and at the same time provides protection against local overheating.
  • Another preferred mixture for producing the coating powder consists of the following ceramic powders: CaF2 30 to 32% by weight MgO 10 to 20% by weight ZnO rest.
  • the proportion of magnesium oxide is in the upper range, which promotes the formation of an abrasive tarnish.
  • the following composition of the mixed particles is included CaF2 35 to 40% by weight MgO 3 to 10% by weight ZnO rest. suitable for abradable inlet coverings, for which the proportion of magnesium oxide is reduced.
  • magnesium fluoride or barium fluoride or mixtures of these fluorides can also be used instead of the calcium fluoride.
  • the following ceramic powders are mixed to produce a abradable coating for engine components with an abradable or an abrasive material component in the form of particles and a connecting material component: CaF2 30 to 40 wt.%, MgO 3 to 20 wt.% Rest ZnO.
  • This powder mixture is then sintered into a ceramic mass. After cooling to room temperature, this ceramic sintered mass is ground into mixed particles, for example in a drum mill, down to a particle size between 5 and 150 ⁇ m.
  • a high CaF2 content of up to 40% by weight with a low MgO content of 5% by weight is used.
  • a lower CaF2 content below 35% by weight with a high MgO content of up to 20% by weight is used.
  • a brush coating is produced by plasma spraying with a plasma spray gun under a voltage of 50 to 60 V at a current of 300 to 400 A, a primary gas stream of nitrogen of 60 to 80 liters per minute and a secondary gas stream of hydrogen of 70 up to 80 liters per minute.
  • a component gas surface is plasma sprayed with a nitrogen gas flow of 20 to 40 liters per minute until a thickness of several millimeters is reached.
  • the porosity can be varied and adjusted essentially by the spraying distance and by the propellant gas flow.
  • the mixed particles are produced depending on the requirements of the abradable coating and then applied using a flame spraying process.
  • a fuel gas flow of 30 to 40 liters per minute from acetylene with a secondary gas flow from oxygen of 30 to 40 liters per minute is maintained with a flame spray burner.
  • the component surface is flame-sprayed several times with a nitrogen gas flow of 30 to 45 liters per minute until a sufficient covering thickness of several millimeters is reached.
  • the porosity can be varied and adjusted essentially by the spraying distance and by the propellant gas flow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft einen Anstreifbelag für Triebwerksbauteile mit einer abreibbaren oder einer abrasiven Materialkomponente in Form von Partikeln und einer diese verbindenden Materialkomponente und ein Verfahren zu seiner Herstellung. Der Anstreifbelag ist ausschließlich aus keramischen Komponenten aufgebaut, die vor dem Aufbringen des Belages in Mischpartikeln vorliegen, wobei jedes Partikel sämtliche Komponenten für den Anstreifbelag umfaßt. Bei dem Verfahren zur Herstellung des Anstreifbelages wird zunächst ein Keramikpulver hergestellt, das durch Mischen der für den Anstreifbelag erforderlichen Komponenten in Pulverform, Sintern der Pulvermischung und Zerkleinern der gesinterten Masse entsteht. Anschließend wird das entstandene Mischpulver als Beschichtungspulver direkt auf die Bauteiloberfläche oder auf eine Haftschicht plasma- oder flammgespritzt.

Description

  • Die vorliegende Erfindung betrifft einen Anstreifbelag für Triebwerksbauteile mit einer abreibbaren oder einer abrasiven Materialkomponente in Form von Partikeln und einer diese verbindenden Materialkomponente.
  • Anstreifbeläge sind im Triebwerksbau weit verbreitet, um Spaltdichtungen zu optimieren. Der Wirkungsgrad von Triebwerken hängt in hohem Maße von den Spalten zwischen Rotor und Stator ab. Dabei besteht eine Spaltdichtung üblicherweise aus zwei Anstreifbelägen, einem Einlaufbelag, der abreibbar ist und beim Anstreifen teilweise abgerieben wird und einem Anlaufbelag, der abrasiv wirkt und sich beim Anstreifen in den Einlaufbelag einarbeitet. Folglich ist bekannt, daß Anstreifbeläge als Einlaufbeläge aus einer abreibbaren Materialkomponente in Form von Partikeln und einer verbindenden Materialkomponente üblicherweise aus Metall bestehen. Dieses Metall kann auch struturiert als Stützmatrix in Form von Waben oder anderen Netzwerken vorliegen, wobei die Zwischenräume mit Keramik- und/oder Metallschichten aufgefüllt sind. Aus EP-PS-0 487 273 ist darüberhinaus bekannt, daß Anstreifbeläge als Einlaufbeläge neben abreibbaren Materialkomponenten und verbindenden Metallen oder Keramiken zusätzlich noch Kunststoffmaterialien enthalten können. Derartige dreiphasige Einlaufbeläge haben den Nachteil, daß die Herstellung eines Spritzpulvers aus diesen Komponenten zur Vorbereitung der Aufbringung des Belages äußerst aufwendig und kostenintensiv ist. Außerdem ist die Fertigung der Beläge sehr kompliziert, und es besteht die Gefahr von Fehlbeschichtungen. Schließlich ist eine metallische Stützmatrix bei den Betriebstemperaturen von Turbinen und den aggressiven Medien in Turbinen der Oxidationsgefahr und der Schädigung des Belages ausgesetzt.
  • Im Hochdruckverdichterbereich werden Temperaturen von 600 °C erreicht, wobei für die Zukunft ca. 700 °C angestrebt werden. Für den Temperaturbereich zwischen ca. 400 °C und 700 °C sind im wesentlichen Belagwerkstoffe auf Ni- oder NiCrAl-Basis im Einsatz. Anstreifbeläge auf der Basis von reinem Ni sind durch eine Temperaturbeständigkeit von bis zu 450 °C gekennzeichnet und zeigen bis zu diesen Betriebstemperaturen gute Einlaufeigenschaften. Ein etwas ungünstigeres Einlaufverhalten zeigen dagegen NiCrAl-Basiswerkstoffe, die aber bis 800 °C einsetzbar sind.
  • Die Stützmatrix oder Netzwerke aus Metall oder Keramik zeigen üblicherweise ein ungenügendes Anstreifverhalten, so daß es eine Aufgabe der Erfindung ist, derartige Netzwerke zu vermeiden.
  • Eine weitere Aufgabe der Erfindung ist es, die Nachteile im Stand der Technik zu überwinden und einen anstreiffähigen Belag für Hochtemperaturanwendungen anzugeben.
  • Gelöst wir diese Aufgabe dadurch, daß der Anstreifbelag ausschließlich aus keramischen Komponenten aufgebaut ist, und damit sowohl die Partikel als auch die verbindende Materialkomponente aus Keramik bestehen, die vor dem Aufbringen des Belages in Mischpartikeln vorliegen, wobei jedes Partikel sämtliche Komponenten für den Anstreifbelag umfaßt.
  • Diese Lösung hat den Vorteil, daß der Belag wesentlich einfacher und kostengünstiger herzustellen ist, da aufwendige Löt- oder Schweißtechniken zur Anbringung eines stützenden Netzwerkes entfallen. Durch den Wegfall der Stützmatrix verbessert sich gleichzeitig das Anstreifverhalten, da keine störende Stützmatrix den Anstreifvorgang behindert. Schäden des Anstreifbelages, die durch Oxidation metallischer Komponenten verursacht werden, sind ausgeschlossen. Eine Anpassung der Schichteigenschaften von der Abreibbarkeit bis hin zur Abrasion ist durch Anpassung der Zusammensetzung der Mischpartikel, durch Zugabe oder Ersatz von Komponenten in den Mischpartikeln und/oder durch Änderung der Herstellungsparameter beim Aufbringen der Beläge möglich. Auf zusätzliche Festschmierstoffe wie Plastik kann ebenfalls verzichtet werden.
  • Die keramischen Materialien für den erfindungsgemäßen Anstreifbelag sind Werkstoffe auf der Basis Magnesiumoxid, Zinkoxid, Kalziumfluorid, Bariumfluorid oder Magnesiumfluorid und liegen im Anstreifbelag als Misch- und/oder Einzelphasen vor. Diese begrenzte Auswahl hat den Vorteil, daß die Lagerbevorratung klein gehalten werden kann. Außerdem enthält sie Stoffe, die eine hohe Wärmeeindringfähigkeit zulassen. Unter Wärmeeindringfähigkeit wird die Quadratwurzel aus dem Produkt von Wärmeleitfähigkeit, Dichte und isobarer Wärmekapazität verstanden. Diese Kenngröße soll einen möglichst hohen Wert erreichen, um neben einer hohen Temperaturbeständigkeit eine hervorragende Anstreiffähigkeit zu gewährleisten. Bei Anstreifbelägen hat es sich nämlich gezeigt, daß der schnelle Abbau und die schnelle Verteilung lokaler Überhitzungen bei Betriebstemperaturen entscheidend für den Erfolg eines Anstreifbelages ist. Die obigen Materialien zeigen besonders in dieser Hinsicht bei den oben erwähnten hohen Betriebstemperaturen gegenüber Schaufelgrundwerkstoffen wie Titan und Ni-, Co- und Fe-Basislegierungen eine eindeutige Überlegenheit.
  • In einer bevorzugten Ausführungsform der Erfindung weist der Belag als verbindende Materialkomponente Zinkoxid zur Bildung von Mischphasen mit den übrigen Komponenten auf. Dieses Material bildet mit den übrigen Komponenten wie Magnesiumoxid in Mikrobereichen und an Korngrenzen Mischphasen aus, was vorteilhaft den verbindenden Effekt begünstigt.
  • Bei einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung besteht die abreibbare Materialkomponente aus Zinkoxid, Kalziumfluorid, Bariumfluorid oder Mischungen derselben, vorzugsweise aus Zinkoxid und Kalziumfluorid. Diese Fluoride und das Zinkoxid sind besonders vorteilhaft als abreibbare Komponenten einsetzbar, weil sie aufgrund ihres hohen Schmelzpunktes und ihrer kristallinen Struktur nicht wie eine metallische Stützmatrix angeschmolzen oder zu einer teigigen Masse beim Anstreifen geknetet werden, sondern schichtweise oder körnchenweise zu feinstem Staub spalten, der mit den Gasen im Strömungskanal eines Triebwerks ausgeblasen wird. Die Spalternergie, die dabei aufzuwenden ist, vermindert die beim Anstreifvorgang auftretende Reib- oder Wärmeenergie, so daß vorteilhaft lokale Überhitzungen vermieden werden und sich das anstreifende Bauteil ohne eigenen abrasiven Abtrag in den als Einlaufbelag wirkenden Anstreifbelag einarbeiten kann.
  • Die Erosionsbeständigkeit dieser Fluoride ist entsprechend ihrer leichten Spaltbarkeit gering. Deshalb weist der Anstreifbelag vorzugsweise zusätzlich ein erosionsbeständiges keramisches Material auf, das an seinen Korngrenzen mit den übrigen keramischen Komponenten Mischphasen bildet. Als bevorzugte Komponente hat sich dafür Magnesiumoxid bewährt. Das Magnesiumoxid hat weiterhin den Vorteil, daß es mit Zinkoxid großkörnige Mischphasen bildet, die bei entsprechender Zusammensetzung und thermischer Behandlung zu abrasiven, den Belag härtenden Kristalliten anwachsen können.
  • Soll der Anstreifbelag vorzugsweise einen Einlaufbelag ergeben, so setzt er sich mindestens aus einem erosionsbeständigen und verbindenden keramischen Material und einem abreibbaren keramischen Material zusammen. Wird von den hier offenbarten Oxiden und Fluoriden ausgegangen, so hat sich als verbindende und erosionsbeständige Komponente das Magnesiumoxid herausgestellt, während alle übrigen oben genannten Keramiken als abreibbare Komponenten einsetzbar sind.
  • Soll der Antreifbelag vorzugsweise einen Anlaufbelag ergeben, so setzt er sich zum überwiegenden Teil (größer 50 Gew.%) aus Magnesiumoxid und Zinkoxid zusammen, da diese beiden Komponenten großkörnige und harte bis abrasive Mischphasen und Mischkristalle bilden. Diese Mischphasen können vorteilhaft schon bei der Herstellung der Mischpartikel ausgebildet werden, so daß mit der Herstellung von Mischpartikeln eine Vorauswahl zur Bildung eines Einlaufbelages mit geringem Wachstum von Mischphasen oder eines Anlaufbelages mit hohem Wachstum von Mischphasen erfolgen kann.
  • Neben der Einstellung der Härte des erfindungsgemäßen Anstreifbelages über die obige Magnesiumoxid-Zinkoxid-Mischphasenbildung kennzeichnet einen Einlaufbelag eine hohe Porosität, die zum Bauteil hin abnimmt, während einen Anlaufbelag eine durchgehend geringere Porosität kennzeichnet. Die Porosität ist dabei durch die Parameter während der Aufbringung des Belages auf ein Bauteil einstellbar. Deshalb ist der erfindungsgemäße Anstreifbelag vorzugsweise eine Plasma- oder Flammspritzschicht, da beim Plasma- oder Flammspritzen die Porosität über die Spritzparameter leicht steuerbar ist.
  • Ein erfindungsgemäßer Anstreifbelag auf rein keramischer Basis, der im wesentlichen aus ZnO, MgO und CaF2 besteht, erweist sich als eine ideale Lösung sowohl für Einlauf als auch für Anlaufbeläge bei hohen Betriebstemperaturen, wobei die Herstellungsparameter und die Zusammensetzungen den betrieblichen Anforderungen an die Beläge angepaßt werden können.
  • Die Aufgabe, ein Verfahren zur Herstellung eines Anstreifbelages für Triebwerksbauteile mit einer abreibbaren oder einer abrasiven Materialkomponente in Form von Partikeln und einer diese verbindenden Materialkomponente anzugeben wird mit den folgenden Verfahrensschritten gelöst: zunächst wird ein Keramikpulver durch Mischen der für den Anstreifbelag erforderlichen Komponenten in Pulverform, Sintern der Pulvermischung und Zerkleinern der gesinterten Masse ein Mischpulver hergestellt, so daß in jedem Pulverpartikel die Komponenten des Anstreifbelages enthalten sind, und anschließend wird das Beschichtungspulver direkt auf die Bauteiloberfläche oder auf eine Haftschicht plasma- oder flammgespritzt.
  • Bei einer bevorzugten Durchführung des Verfahrens wird die Sintermasse zu Beschichtungspulver mit einer mittleren Teilchengröße von 5 µm bis 150 µm zerkleinert. Die Sintermasse enthält alle beteiligten erfindungsgemäßen Komponenten. Bevorzugt werden zur Herstellung des Beschichtungspulvers folgende Keramikpulver gemischt:
       CaF₂ 30 bis 40 Gew.%
       MgO 3 bis 20 Gew.%
       ZnO Rest.
  • Nach der Mischung wird die Pulvermischung gesintert. Mit der Sinterzeit und Sintertemperatur wird gleichzeitig die Härte und Abrasivität des späteren Belages eingestellt. Wobei mit zunehmender Sinterzeit und Sintertemperatur die Härte steigt, weil sich zunehmend eine harte Mischphase aus Magnesiumoxid und Zinkoxid ausbildet. Mit dem Kalziumfluorid wird im wesentlichen eine Abreibbarkeit des Anstreifbelages eingestellt und gleichzeitig ein Schutz gegen örtliche Überhitzungen geschaffen.
  • Eine weitere bevorzugte Mischung zur Herstellung des Beschichtungspulvers besteht aus folgenden Keramikpulvern:
       CaF₂ 30 bis 32 Gew.%
       MgO 10 bis 20 Gew.%
       ZnO Rest.
  • Dabei ist der Anteil an Magnesiumoxid im oberen Bereich, was die Ausbildung eines abrasiven Anlaufbelages fördert. Im Gegensatz dazu ist die folgende Zusammensetzung der Mischpartikel mit
       CaF₂ 35 bis 40 Gew.%
       MgO 3 bis 10 Gew.%
       ZnO Rest.
    für abreibbare Einlaufbeläge geeignet, wozu der Anteil an Magnesiumoxid erniedrigt wird. In diesem Fall können anstelle des Kalziumfluorids auch Magnesiumfluorid oder Bariumfluorid oder Mischungen dieser Fluoride eingesetzt werden.
  • Die folgenden Ausführungsbeispiele sollen die Erfindung erläutern.
  • Beispiel 1
  • Zur Herstellung eines Anstreifbelags für Triebwerksbauteile mit einer abreibbaren oder einer abrasiven Materialkomponente in Form von Partikeln und einer verbindenden Materialkomponente werden folgende keramische Pulver gemischt: CaF₂ 30 bis 40 Gew.%, MgO 3 bis 20 Gew.% Rest ZnO. Diese Pulvermischung wird anschließend zu einer keramischen Masse gesintert. Diese keramische Sintermasse wird nach Abkühlung auf Raumtemperatur in Mischpartikel zermahlen, beispielsweise in einer Trommelmühle, bis auf eine Teilchengröße zwischen 5 und 150 µm.
  • Für Anstreifbeläge, die vorzugsweise als Einlaufbeläge eingesetzt werden, wird dabei ein hoher CaF₂-Anteil bis 40 Gew. % bei niedrigem MgO-Anteil um 5 Gew. % gefahren. Für Anstreifbeläge, die vorzugsweise als Anlaufbeläge eingesetzt werden, wird dabei ein geringerer CaF₂-Anteil unter 35 Gew. % bei hohem MgO-Anteil bis 20 Gew. % gefahren.
  • Aus den derartig hergestellten Mischpartikeln wird ein Anstreifbelag durch Plasmaspritzen mit einem Plasmaspritzbrenner unter einer Spannung von 50 bis 60 V bei einem Strom von 300 bis 400 A hergestellt, wobei ein Primärgasstrom aus Stickstoff von 60 bis 80 Liter pro Minute und ein Sekundärgasstrom aus Wasserstoff von 70 bis 80 Liter pro Minute eingehalten wird. Bei einem Spritzabstand von 75 bis 225 mm wird mit einem Treibgasstrom aus Stickstoff von 20 bis 40 Liter pro Minute eine Bauteiloberfläche plasmagespritzt, bis eine Dicke von mehreren Millimetern erreicht ist. Die Porosität kann dabei im wesentlichen durch den Spritzabstand und durch den Treibgasstrom variiert und eingestellt werden.
  • Beispiel 2
  • Wie in Beispiel 1 werden je nach Anforderung an den Anstreifbelag die Mischpartikel hergestellt und anschließend mit einem Flammspritzverfahren aufgebracht. Dazu wird mit einem Flammspritzbrenner ein Brenngasstrom von 30 bis 40 Liter pro Minute aus Azetylen mit einem Sekundärgasstrom aus Sauerstoff von 30 bis 40 Liter pro Minute eingehalten. Bei einem Spritzabstand von 75 bis 225 mm wird mit einem Treibgasstrom aus Stickstoff von 30 bis 45 Liter pro Minute die Bauteiloberfläche mehrfach flammgespritzt bis eine ausreichende Belagdicke von mehreren Millimetern erreicht ist. Die Porosität kann dabei im wesentlichen durch den Spritzabstand und durch den Treibgasstrom variiert und eingestellt werden.

Claims (13)

  1. Anstreifbelag für Triebwerksbauteile mit einer abreibbaren oder einer abrasiven Materialkomponente in Form von Partikeln und einer diese verbindenden Materialkomponente, dadurch gekennzeichnet, daß der Anstreifbelag ausschließlich aus keramischen Komponenten aufgebaut ist und damit sowohl die Partikel als auch die verbindende Materialkomponente aus Keramik bestehen, die vor dem Aufbringen des Belages in Mischpartikeln vorliegen, wobei jedes Partikel sämtliche Komponenten umfaßt.
  2. Anstreifbelag nach Anspruch 1, dadurch gekennzeichnet, daß der Belag als verbindende Materialkomponente Zinkoxid zur Bildung von Mischphasen mit den übrigen Komponenten aufweist.
  3. Anstreifbelag nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die abreibbare Materialkomponente Zinkoxid, Kalziumfluorid, Bariumfluorid oder Mischungen derselben aufweist, vorzugsweise aus Zinkoxid und Kalziumfluorid besteht.
  4. Anstreifbelag nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Anstreifbelag ein erosionsbeständiges keramische Material, vorzugsweise Magnesiumoxid aufweist.
  5. Antreifbelag nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Belag ein Einlaufbelag ist und aus mindestens einem erosionsbeständigen und verbindenden keramischen Material und einem abreibbaren keramischen Material besteht.
  6. Anstreifbelag nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Belag ein Anlaufbelag ist, der als abrasive Partikel Mischkristalle aus Magnesiumoxid und Zinkoxid aufweist.
  7. Anstreifbelag nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Belag als Einlaufbelag eine hohe Porosität aufweist, die zum Bauteil hin abnimmt und als Anlaufbelag eine durchgehend geringere Porosität aufweist.
  8. Anstreifbelag nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Anstreifbelag eine Plasma- oder Flammspritzschicht ist.
  9. Verfahren zur Herstellung eines Anstreifbelages für Triebwerksbauteile mit einer abreibbaren oder einer abrasiven Materialkomponente in Form von Partikeln und einer diese verbindenden Materialkomponente, dadurch gekennzeichnet, daß zunächst ein Keramikpulver durch Mischen der für den Anstreifbelag erforderlichen Komponenten in Pulverform, Sintern der Pulvermischung und Zerkleinern der gesinterten Masse ein Mischpulver hergestellt wird, so daß in jedem Pulverpartikel die Komponenten des Anstreifbelages enthalten sind, und anschließend das entstandene Mischpulver als Beschichtungspulver direkt auf die Bauteiloberfläche oder auf eine Haftschicht plasma- oder flammgespritzt wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Sintermasse zu Beschichtungspulver mit einer mittleren Teilchengröße von 5 µm bis 150 µm zerkleinert wird.
  11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß zur Herstellung des Beschichtungspulvers folgende Keramikpulver gemischt werden
       CaF₂ 30 bis 40 Gew.%
       MgO 3 bis 20 Gew.%
       ZnO Rest.
  12. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß zur Herstellung des Beschichtungspulvers folgende Keramikpulver gemischt werden
       CaF₂ 30 bis 32 Gew.%
       MgO 10 bis 20 Gew.%
       ZnO Rest.
  13. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß zur Herstellung des Beschichtungspulvers folgende Keramikpulver gemischt werden
       CaF₂ 35 bis 40 Gew.%
       MgO 3 bis 10 Gew.%
       ZnO Rest.
EP95111213A 1994-07-30 1995-07-18 Anstreifbelag für Triebwerksbauteile Withdrawn EP0694627A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4427264 1994-07-30
DE4427264A DE4427264C2 (de) 1994-07-30 1994-07-30 Anstreifbelag für Triebwerksbauteile und Verfahren zu seiner Herstellung

Publications (1)

Publication Number Publication Date
EP0694627A1 true EP0694627A1 (de) 1996-01-31

Family

ID=6524685

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95111213A Withdrawn EP0694627A1 (de) 1994-07-30 1995-07-18 Anstreifbelag für Triebwerksbauteile

Country Status (3)

Country Link
EP (1) EP0694627A1 (de)
JP (1) JPH08114150A (de)
DE (1) DE4427264C2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375696A2 (de) * 2002-06-10 2004-01-02 MTU Aero Engines GmbH Schichtsystem für die Rotor-/Statordichtung einer Strömungsmaschine
DE102012217617A1 (de) * 2012-09-27 2014-03-27 Siemens Aktiengesellschaft Bauteil mit einer Schicht sowie Verfahren zu dessen Herstellung
EP2752393A1 (de) * 2013-01-02 2014-07-09 IPGR International Partners in Glass Research Vorrichtung zum Handhaben von heißgeschmolzenem Glas und Herstellungsverfahren für die Vorrichtung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019476A1 (de) 2007-04-25 2008-11-06 Mtu Aero Engines Gmbh Verfahren zum Herstellen eines Anstreifbelags
EP2330228B1 (de) * 2009-12-03 2017-09-27 Oerlikon Metco AG, Wohlen Spritzwerkstoff, eine thermische Spritzschicht, sowie Zylinder mit einer thermischen Spritzschicht
DE102014008922A1 (de) * 2014-06-17 2015-12-17 Mtu Friedrichshafen Gmbh Verfahren zum Behandeln einer Oberfläche

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3121643A (en) * 1955-03-23 1964-02-18 Eisenberg Marvin Flame spraying of oxidation-resistant, adherent coatings
US3157529A (en) * 1961-10-13 1964-11-17 Harold E Sliney Bonded solid lubricant coating
FR1587621A (de) * 1968-06-27 1970-03-27
US3679459A (en) * 1971-04-07 1972-07-25 Ford Motor Co Bearing member for high temperature applications
US3711171A (en) * 1969-12-08 1973-01-16 Kacarb Products Corp Ceramic bearings
JPS57140871A (en) * 1981-02-24 1982-08-31 Matsushita Electric Ind Co Ltd Solid fuel burner
EP0167723A1 (de) * 1984-05-02 1986-01-15 The Perkin-Elmer Corporation Zirkonoxydpulver mit Gehalt an Ceriumoxyd und Yttriumoxyd
JPS6134169A (ja) * 1984-07-25 1986-02-18 Onoda Cement Co Ltd 金属アルミニウム被覆用溶射材
JPH02217482A (ja) * 1989-12-16 1990-08-30 Yoshikawa Kogyo Co Ltd ガラス質皮膜成形物
EP0415851A1 (de) * 1989-08-31 1991-03-06 Regie Nationale Des Usines Renault Keramische Beschichtung für einen reibungsunterworfenen Maschinenteil und Verfahren zu ihrer Herstellung
EP0487273A1 (de) 1990-11-19 1992-05-27 Sulzer Plasma Technik, Inc. Thermisches Sprühpulver

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1341534A (en) * 1918-04-27 1920-05-25 Baumgartner Henry Howell Coin-collector
US3481715A (en) * 1967-02-03 1969-12-02 Ford Motor Co Sealing member for high temperature applications and a process of producing the same
GB2081817B (en) * 1980-08-08 1984-02-15 Rolls Royce Turbine blade shrouding
US4936745A (en) * 1988-12-16 1990-06-26 United Technologies Corporation Thin abradable ceramic air seal

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3121643A (en) * 1955-03-23 1964-02-18 Eisenberg Marvin Flame spraying of oxidation-resistant, adherent coatings
US3157529A (en) * 1961-10-13 1964-11-17 Harold E Sliney Bonded solid lubricant coating
FR1587621A (de) * 1968-06-27 1970-03-27
US3711171A (en) * 1969-12-08 1973-01-16 Kacarb Products Corp Ceramic bearings
US3679459A (en) * 1971-04-07 1972-07-25 Ford Motor Co Bearing member for high temperature applications
JPS57140871A (en) * 1981-02-24 1982-08-31 Matsushita Electric Ind Co Ltd Solid fuel burner
EP0167723A1 (de) * 1984-05-02 1986-01-15 The Perkin-Elmer Corporation Zirkonoxydpulver mit Gehalt an Ceriumoxyd und Yttriumoxyd
JPS6134169A (ja) * 1984-07-25 1986-02-18 Onoda Cement Co Ltd 金属アルミニウム被覆用溶射材
EP0415851A1 (de) * 1989-08-31 1991-03-06 Regie Nationale Des Usines Renault Keramische Beschichtung für einen reibungsunterworfenen Maschinenteil und Verfahren zu ihrer Herstellung
JPH02217482A (ja) * 1989-12-16 1990-08-30 Yoshikawa Kogyo Co Ltd ガラス質皮膜成形物
EP0487273A1 (de) 1990-11-19 1992-05-27 Sulzer Plasma Technik, Inc. Thermisches Sprühpulver

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 10, no. 185 (C - 357) 27 June 1986 (1986-06-27) *
PATENT ABSTRACTS OF JAPAN vol. 14, no. 522 (C - 0778) 15 November 1990 (1990-11-15) *
PATENT ABSTRACTS OF JAPAN vol. 6, no. 239 (C - 137) 26 November 1982 (1982-11-26) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375696A2 (de) * 2002-06-10 2004-01-02 MTU Aero Engines GmbH Schichtsystem für die Rotor-/Statordichtung einer Strömungsmaschine
EP1375696A3 (de) * 2002-06-10 2005-04-27 MTU Aero Engines GmbH Schichtsystem für die Rotor-/Statordichtung einer Strömungsmaschine
US7178808B2 (en) 2002-06-10 2007-02-20 Mtu Aero Engines Gmbh Layer system for the rotor/stator seal of a turbomachine
DE102012217617A1 (de) * 2012-09-27 2014-03-27 Siemens Aktiengesellschaft Bauteil mit einer Schicht sowie Verfahren zu dessen Herstellung
EP2752393A1 (de) * 2013-01-02 2014-07-09 IPGR International Partners in Glass Research Vorrichtung zum Handhaben von heißgeschmolzenem Glas und Herstellungsverfahren für die Vorrichtung
WO2014106613A1 (en) * 2013-01-02 2014-07-10 Ipgr International Partners In Glass Research Device for handling hot melted glass and method for making such a device

Also Published As

Publication number Publication date
DE4427264A1 (de) 1996-02-01
DE4427264C2 (de) 1996-09-26
JPH08114150A (ja) 1996-05-07

Similar Documents

Publication Publication Date Title
DE69837619T2 (de) Elektrodenstab für funkenbeschichtung, verfahren zu dessen herstellung und verfahren zur beschichtung mit supraschleif-enthaltender schicht
DE69732397T2 (de) Beschichtungsverfahren, beschichtungsmittel und damit beschichtete artikel
DE69926838T2 (de) Gegenstand mit einer abriebsfesten Beschichtung sowie mit einer örtlich abreibbaren Beschichtung
EP1509631B1 (de) Thermische sprühbeschichtungszusammensetzungen für abschleifbare dichtungen
DE60021178T2 (de) Abrasions- und hochtemperaturbeständige, abschleifbare wärmedämmende verbundbeschichtung
DE3326535A1 (de) Vorrichtung mit einem gasweg-adichtsystem zwischen sich relativ zueinander bewegenden teilen
DE3103129A1 (de) Thermisch belastbares maschinenteil und verfahren zu dessen herstellung
DE60315550T2 (de) Abreibbarer metallischer oder keramischer Werkstoff; Formkörper, Gehäuse die dieses Material enthalten sowie seine Herstellung
EP2326742B1 (de) Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets
CH710176A2 (de) Eine Einlaufdichtung und Verfahren zur Herstellung einer Einlaufdichtung.
EP0694627A1 (de) Anstreifbelag für Triebwerksbauteile
EP1741980A1 (de) Keramisches Bauteil mit heissgasresistenter Oberfläche und Verfahren zu seiner Herstellung
EP0812930B1 (de) Keramische Verdampfermaterialien
DE60203455T2 (de) Verfahren zur Herstellung von Zungen einer Labyrinthdichtung für bewegliche Teile einer Turbine
DE102019200682A1 (de) Schneidwerkzeug mit räumlich strukturierter Beschichtung
DE102018208815A1 (de) Verfahren zur Erzeugung von Wärmedämmschichten mit Vertikalrissen
DE19827620C2 (de) Verfahren zum Herstellen einer Panzerung für ein metallisches Bauteil und dessen Verwendung
DE10356953B4 (de) Einlaufbelag für Gasturbinen sowie Verfahren zur Herstellung desselben
EP1548144B1 (de) Strömungsmaschine mit einer keramischen Anstreifschicht
DE69912386T2 (de) Abschleifbares Material
EP1900708B1 (de) Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit
EP0719594A1 (de) Verfahren zum Aufbringen einer Beschichtung auf einem Gegenstand, insbesondere einem Küchengegenstand, sowie derart beschichteter Gegenstand
DE2350694C3 (de) Verfahren zum Beschichten eines Werkstückes aus einer Superlegierung zum Schutz gegen Korrosion und Reaktionsgemisch
EP1670964A2 (de) Ventilsitzringe aus co oder co/mo-basislegierungen und deren herstellung
WO1989001231A1 (en) Contact material for vacuum switches and process for manufacturing same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19960731

17Q First examination report despatched

Effective date: 19970422

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19970610