EP0692053B1 - Lightweight metal truss and frame system - Google Patents
Lightweight metal truss and frame system Download PDFInfo
- Publication number
- EP0692053B1 EP0692053B1 EP94914749A EP94914749A EP0692053B1 EP 0692053 B1 EP0692053 B1 EP 0692053B1 EP 94914749 A EP94914749 A EP 94914749A EP 94914749 A EP94914749 A EP 94914749A EP 0692053 B1 EP0692053 B1 EP 0692053B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- beams
- wings
- sides
- lightweight metal
- construction system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 47
- 239000002184 metal Substances 0.000 title claims abstract description 47
- 238000010276 construction Methods 0.000 claims abstract description 39
- 239000004035 construction material Substances 0.000 claims abstract description 36
- 239000002023 wood Substances 0.000 claims description 31
- 238000005304 joining Methods 0.000 claims description 11
- 230000002787 reinforcement Effects 0.000 claims description 10
- 229910000831 Steel Inorganic materials 0.000 abstract description 28
- 239000010959 steel Substances 0.000 abstract description 28
- 239000000463 material Substances 0.000 description 11
- 238000005452 bending Methods 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 210000002105 tongue Anatomy 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000004566 building material Substances 0.000 description 3
- 238000009432 framing Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000011120 plywood Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000009436 residential construction Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000009431 timber framing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C3/11—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with non-parallel upper and lower edges, e.g. roof trusses
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C3/06—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
- E04C3/07—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web at least partly of bent or otherwise deformed strip- or sheet-like material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C3/08—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders
- E04C3/09—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders at least partly of bent or otherwise deformed strip- or sheet-like material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/29—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
- E04C3/292—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being wood and metal
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/30—Columns; Pillars; Struts
- E04C3/32—Columns; Pillars; Struts of metal
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
- E04G23/0218—Increasing or restoring the load-bearing capacity of building construction elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0404—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
- E04C2003/0408—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
- E04C2003/0413—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0404—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
- E04C2003/0408—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
- E04C2003/0413—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
- E04C2003/0417—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts demountable
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0404—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
- E04C2003/0408—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
- E04C2003/0421—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section comprising one single unitary part
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0404—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
- E04C2003/0426—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
- E04C2003/043—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the hollow cross-section comprising at least one enclosed cavity
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0404—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
- E04C2003/0426—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
- E04C2003/0439—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the cross-section comprising open parts and hollow parts
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0404—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
- E04C2003/0443—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
- E04C2003/0452—H- or I-shaped
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0404—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
- E04C2003/0443—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
- E04C2003/0452—H- or I-shaped
- E04C2003/0456—H- or I-shaped hollow flanged, i.e. "dogbone" metal beams
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0404—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
- E04C2003/0443—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
- E04C2003/0469—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section triangular-shaped
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0486—Truss like structures composed of separate truss elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/04—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
- E04C2003/0486—Truss like structures composed of separate truss elements
- E04C2003/0491—Truss like structures composed of separate truss elements the truss elements being located in one single surface or in several parallel surfaces
Definitions
- Pre-fabricated roof and floor trusses, and frame segments are well known in the residential and light commercial construction industries.
- the trusses are most commonly formed from two-by-four studs joined together by steel gussets, while the frame segments are often nailed together.
- the pre-fabricated roof trusses are lifted onto and attached to the top of a structural frame so that the roofing material can be placed on it.
- the pre-fabricated floor trusses are attached to the foundation or the lower portion of the structural frame so that plywood and flooring can be placed on top and attached thereto.
- the pre-fabricated components of a structure provide substantial time savings in the construction process, which can be critical when the climate in some areas permits only limited time windows suitable for construction. In general, the time savings result in cost savings. Nonetheless, the significant increase in the cost of lumber had made even these pre-fab trusses and frames so expensive that an alternative is being sought.
- a lightweight steel beam has been developed by Navon which is described in PCT Application Publication Number WO 9117328, based upon United States Patent Application Numbers 07/518554 (filed May 3, 1990) and 07/674549 (filed March 22, 1991).
- This structural beam is an I-beam of four piece construction, where the two bearing portions (top and bottom) have a "C"-shape and the web and flange portion consists of two pieces of sheet steel which are welded at their centers and bent outward to form the triangular flanges.
- This beam is illustrated in cross-section in Figure 1, labeled "PRIOR ART”. The flanges of the triangles are then welded to the insides of the "C"-shaped bearing portions to create the I-beam.
- Two beams are joined together by flat or angled gussets which are bolted or welded to the outer surface of the web.
- Navon beam provides an improvement upon conventional steel beams since it is over 50% lighter and it is relatively easy to use in erecting a structure, it is not trivial to fabricate.
- Each beam consists of four pieces which must be bent and welded together over the entire length of the beam, making the production process one that requires several specialized pieces of machinery and consumes time.
- the joints between two beams may be subject to excessive lateral stresses since the gussets merely attach to the outside of the web, without providing any reinforcement of the joint by the beams themselves.
- US 3,129,493 describes a lightweight structural panel comprising at least are triangle cross-section beam or chord which may be connected to another similar beam, or to a surface, by a lattice web of tubing that is crimped so that it may be inserted between flanges of the beams.
- Another advantage of the present invention is to provide a versatile lightweight steel beam system as an alternative to both wood and traditional metal construction materials.
- a lightweight metal construction system having a plurality of beams, each beam formed from a single piece of sheet metal bent lengthwise along four parallel lines to form a triangular cross-section having a base, two sides and two wings, one wing corresponding to each side extending from an apex of the triangular cross-section and having a height less than a length of the each side, the beam having a first length, an inner beam surface and an outer beam surface, each of the outer and inner beam surfaces having five planar segments defined by the base, the two sides and the two wings; a plurality of connectors for connecting a first beam of the plurality of beams to a construction material having a second length and a plurality of exterior planar surfaces, each connector of the plurality of connectors having a connection point with the construction material; and a plurality of fastening means for fastening the plurality of connectors to the construction material at the connection point, the connection point having a connection width much less than each of the first and second length so that
- brackets may be used which are constructed in a similar manner as the beams, with triangular cross-sectional inserts or sleeves which fit within or over the beam, depending on the relative dimensions of the bracket's triangle and the beam's triangle.
- the brackets have a single triangle with an extended wing providing a gusset which is inserted between the two wings of one of the beams to be attached, and fastened in place by screws, bolts, or other fastening means.
- the triangular portion of the bracket is inserted into the end of the second beam, or slid over the end, depending on whether the dimensions of the bracket triangle are less than or greater than those of the beam triangle.
- the brackets have a triangle formed at two or more edges, to create a single wing extending between the triangles. The triangles are inserted into or slid over the ends of the beams to be joined, then fastened.
- a telescoping fitting consisting of a triangle with outer dimensions that are slightly smaller than the inner dimensions of the triangle of the beam is used by inserting the telescoping connector into the end of each of the two beams to be connected and driving fasteners through the beams and the telescoping connector.
- a triangle of slightly larger dimensions can be used as a connector by sliding the connector over the ends of the beams to be joined.
- the assembly procedure i.e., piecing, sizing, cutting, is the same as that for a standard wood truss or frame, except that angle cuts on the ends of the beams are not required to assemble the steel truss according to the present invention.
- the cutting of angles at the ends of the beams is eliminated by using brackets with built-in angles.
- the beams and connectors can also be configured for use as wall studs for framing, door and window headers, and mobile home trusses.
- Modifications to the basic beam can be used to create a number of different brackets for interconnecting multiple beams, to attach the beams to wood studs, or to provide means for suspending other beams, studs or sheets of building materials from a support structure constructed from the lightweight metal construction system.
- the sheet steel of which the beams and brackets are formed can be selected according to weight requirements for a particular structure, with most common construction applications using material ranging from 24 gauge to 8 gauge steel.
- Other materials such as other metals (e.g., aluminum or titanium) or high strength plastics, may be used according to the purpose of the structure.
- Wallboard or plywood can be nailed or screwed to the base of the triangle, which is comparable in width to the edge of a two-by-four. Wood, plastic or other materials may also be inserted into the beam between the wings, to facilitate attachment of other construction materials.
- the wings of the beam and the brackets can be pre-drilled so that the fastener need only be inserted through the appropriate holes to achieve the desired connection.
- components of the inventive lightweight metal construction system are described as having tops, bottoms and sides for reference only. These designations are not intended to limit the construction system to use in such an orientation.
- the basic lightweight steel beam 2 is triangular in shape with a pair of wings 4 and 6 extending from the apex 8 of the triangle 10.
- the triangle 10 is created by bending a sheet of cold formed steel at four places: bottom corners 12 and 14 and shoulders 16 and 18 so that the edges of wings 4 and 6 are generally even.
- the triangle 10 is symmetrical around a line drawn from the apex 8 perpendicular to the base.
- the bottom corners 12 and 14 are slightly rounded to avoid weakening the metal at the bends. No welding or other fastening operation is performed on the beam 2, so the wings 4 and 6 are unattached. Holes may be pre-drilled in the beam to facilitate insertion of fasteners for connecting beams together.
- a first type of brackets for connecting two or more beams together are formed in a procedure similar to that used for the beams.
- the brackets 20 and 30 are formed by bending a sheet of cold formed steel to form a triangle at at least one edge of the sheet. Describing bracket 20, the edges 22 and 24 of bracket are bent inward so that they end at the apex 26 or 27 of the triangle without forming a second wing as in the beams.
- the sheet is pre-cut so that the edges have the desired angles. In this illustration, the sheet steel would be trapezoidal in shape.
- the dimensions of the bracket's triangles are preferably slightly smaller than those of the beam so that they closely fit within the beam's triangle.
- bracket's triangles may be larger than those of the beam, with the beam being inserted into the bracket.
- a single wing 25 extends between the two triangles 21 and 23, unlike the two wings created in formation of the beams. This allows the brackets to be formed from a single sheet with the fewest number of bends possible, making their manufacture simple and economical. No fastening of the bracket itself is required, the only fasteners being applied when the beams and brackets are assembled.
- the assembly of a bracket 20 with two beams 2 and 2' is illustrated in Figure 4.
- Fasteners 40 are shown as sheet metal screws, but may also be welds, rivets or bolts.
- the brackets may be pre-drilled with holes to facilitate assembly.
- Bracket 30 for forming the peak in a roof or similar angled construction by attaching two beams 2 and 2'. While the angle shown is relatively large, the bracket 30 can be formed to provide virtually any angle required. As described above for bracket 20, the sheet of cold formed steel is pre-cut to the desired angle, in this case forming a hexagon. A notch 33 is made at the apex 35 to allow the triangles to be formed independently of each other. The triangles 31 and 31' are formed by creating three folds parallel to the angle-cut edges 32 and 34, with the edges at the apex 35. The triangles 31 and 31' have sides slightly smaller than the inner dimensions of the triangle of a beam.
- the dimensions of the triangles 31 and 31' can be larger than the outer dimensions of the beams so that the bracket is fined over the outside of the end of the beam to be joined.
- the bracket 30 and beams 2 and 2' are attached as shown in Figure 6, with fasteners being driven through the wings of the respective beams and through single wing 36 of the bracket.
- the pieces may be welded together. Holes may be pre-drilled for the desired fasteners.
- Three beams may be joined together using a bracket of the configuration shown in Figure 7. Edges 42 and 44 of the sheet metal are cut at the desired angles, then folded inward to form triangles 43 and 45. Edge 46 is also folded inward to form triangle 47. As with bracket 30, notches are cut between the individual triangles. The ends of the beams to be joined are slid over the appropriate triangle and fastened as above. The angles may be varied as needed by pre-cutting the sheet metal.
- Two beams may be attached together end-to-end by either inserting a telescoping-type connector bracket into the ends of each beam 2 and 2' or inserting the ends of the beams into the telescoping connector.
- a connection of the former type is shown in Figure 8.
- the telescoping connector bracket 62 consists of a triangular tube formed by bending a single piece of sheet steel along three longitudinal lines into dimensions that are slightly smaller than the interior dimensions of the beam triangle 10. Alternatively, the dimensions of the triangular tube can be larger than the outer dimensions of the beam triangle 10 so that the bracket is fined over the ends of the beams to be joined.
- the bracket 62 should fit closely within the triangle 10 to provide optimal support.
- Fasteners 50 or welds are then used to attach each beam 2 and 2' to the connector 62. As illustrated, the fasteners are driven through the respective wings of the connector and beams. Where the ends of the beams are inserted into the telescoping connector, the triangle of the connector has dimensions slightly larger than the outer dimensions of the beams.
- the connector or end joint illustrated in Figure 9 provides a means for directly attaching a beam to a wood stud (or other construction material) according to an aspect of the present invention.
- the triangular portion 63 can be either a beam itself, or a connector which telescopes with a beam, similar to the embodiment of Figure 8. In either case, the triangular portion 63 is formed in the same manner as the beam of Figure 2. Near the end of the beam, a section of the triangle is cut away by making a lengthwise cut along each of the lower corners 65 of the triangle, leaving only the base of the triangle. This creates an extension 64 which is generally flat (except for curvature at the edges 66 corresponding to the lower corners of the triangle).
- extension 64 For a 2 x 4 stud, the end of extension 64 is bent upward to create a space of 2 inches between the location of the cut 66 and the upwardly bent end 68. The 2 x 4 stud is then fined within the space, and fasteners such as nails or wood screws are used to attach the beam to the stud.
- the extension 64 provides additional support and stability for a composite structure made of beams and other construction material, such as, in this example, wood studs.
- the space may be adapted to fit any construction material by adjusting the location of the cut 66 and the bend 67.
- FIG 10. An alternative embodiment of the end joint of Figure 9 is illustrated in Figure 10. This embodiment differs from that of Figure 9 in that the triangular portion 72 is formed after the extensions are defined.
- a flat sheet of stainless steel is cut with two end sections 73 and 74 width L1 and a center of width L2 which equals L1 plus the outer width of the triangular portion 72 (shown unfolded by the dashed lines).
- a lengthwise cut is made in from the ends along a line that will be the first corner 75 of the triangular section 72, leaving extension 76 and 77 with width L3.
- the metal sheet is then folded lengthwise to create corner 75.
- the center portion is folded lengthwise again to form corner 78 and bent at line 79 to form a lip 80.
- End tabs 81 and 82 are folded inward, against the ends of triangular section 72 to provide additional strength and to provide means for attachment to one side of a 2 x 4 stud or other construction materials.
- tab 82 is shown with wood screws through it for attachment to stud 84 (shown in dashed lines). Stud 84 fits within a space between tab 82 and extension end 86, which is bent upward to be parallel to tab 82.
- Fasteners may be driven through the outside of end 86 into stud 84. (As in other components, holes may be pre-drilled in the metal to facilitate assembly.)
- Extension 76 is shown without an upwardly bent end. In this configuration, attachment to a wood stud (not shown) can be accomplished by driving fasteners upwardly through extension 76 and outwardly through tab 81. By not bending up the end, connection can be made to a large beam or other large dimension structure, e.g., the edge of a concrete block.
- the combination of tab 81 and extension 76 can also be bent to create a curved contact surface for attachment to pipes or other rounded surfaces.
- An end joint configured as that shown in Figure 10 retains the advantages of high strength and simple manufacture of the triangular beam while providing versatility for adaptation to other building surfaces.
- the bracket 90 illustrated in Figure 11, is formed from a strip of sheet steel and may be of any length for use in connecting two neighboring beams.
- the metal is bent laterally to conform to the outer shape and dimensions of the beams to be joined.
- both beams 92 and 94 are oriented in the same direction, with bases 96 and 97 facing downward.
- the ends of bracket 90 are bent to conform with the sides of the beams 92 and 93 and then bent downward at the center to wrap around the wings 98 and 99 of the beams.
- Fasteners, here, machine screws 100 are driven through the bracket and wings of each beam.
- bracket 90 It is possible to join a string of beams by continuing the extension 93 of bracket 90 for whatever length is needed, bending the bracket to conform to the upper profiles of the beams for each beam to be joined. For example, if a third beam were to be attached between beams 92 and 94, three lateral bends would be made in the center of extension 90 to conform to the wings and sides of the third beam.
- Bracket 102 is used to join two beams which have their wings 104 pointed toward each other (only one beam is shown). Similar to previous brackets, bracket 102 is formed by making lateral bends in a strip of sheet steel. Each of the ends 106 and 107 of bracket 102 wrap around the side 108 and base 109 of the beam 103 with a lip 110 extending partially up side 111, so that each end 106 and 107 will cradle the beam.
- a fastener 112 here, a sheet metal screw, may be driven through the bracket 102 and wings 104 to secure their relative positions.
- the extension 105 between the two triangular sections may be whatever length is needed to span the two beams.
- FIG 13 a means of reinforcing a lengthy beam according to an aspect of the present invention is illustrated.
- forces on the ends of the beam may cause the beam to gape at the canter.
- This gaping can be alleviated by cutting a section 112 in one wing 114 and folding to over the other wing 116, thereby providing means for holding the wings together without requiring additional fasteners.
- wing 114 is longer than wing 116 to facilitate this reinforcement procedure.
- a notch can be made in wing 116 to allow section 112 to be folded over when wings 114 and 116 are the same length.
- FIG. 22 and 23 Another means for reinforcing a lengthy beam according to an aspect of the present invention is illustrated in Figures 22 and 23.
- a generally U-shaped cut 204 is made through both wings 200 and 201 of the beam to form a tongue 202.
- the tongues 202 from each wing are pressed together through both cut-outs and bent back around the outer side of the wing, as shown in Figure 23.
- the inner tongue (as illustrated, the tongue on the right wing) can be cut off and the remaining tongue bent across as shown.
- the shape of the cut-out is not limited to a U-shape, but can be any cut which creates a tongue-like protrusion in one wing which may be bent through the cut-out in the adjacent wing to hold the two wings together.
- FIG. 24 A third means for longitudinally reinforcing the beam according to an aspect of the present invention is shown in Figure 24.
- grooves 210 are formed in the sides 212 and base 214 of the triangle to provide additional strength against bending or gaping. By pressing or bending the metal surfaces. For ease of manufacture, the grooves are formed before the triangle itself is created. This way, large sheets of corrugated metal can be formed, then cut as needed to make the triangular beams.
- Bracket 118 is a strip of sheet steel which is bent laterally five times to form a generally triangular cross-section at its upper portion, including an open slot 124 into which the wings 126 of beam 122 fit.
- the two extensions 128 of bracket 122 can be as long or as short as needed to permit proper spacing between the stud 120 and beam 122.
- Screws 130, or other fastening means are used to fix the stud 120 within the bracket 118. Stud 120 need not actually be suspended from beam 122, but can merely be supported at its upper end by the beam 122 and bracket 118.
- Bracket 132 shown in Figure 15 is used for attaching construction materials (not shown) within space 134 to a beam (not shown), the top of which fits within generally triangular section 136, similar to the relationship between the beam and connector shown in Figure 14.
- Bracket 132 is formed in the same general manner as other brackets.
- Space 134 may be expanded to accept a wood stud or other materials, a fastener (not shown) may be driven through extensions 138 to affix the material to the connector 132, similar to that shown in Figure 14.
- the end joint 140 may be a separate connecting piece or may be a modified end of a full beam which allows one beam to be directly attached perpendicular to a second beam.
- End joint 14 is of the same construction as is the basic beam (as in Figure 2). Lengthwise cuts are made along the lower corners 142, 143 of the triangle and the wing portions above the triangle are removed.
- the side flaps 144, 145 are bent away from the extended base 146 at the same angle as the side of a beam.
- beam 148 shown in dotted lines, illustrates the relationship between the bent-back side flaps and the side of the beam to which the end joint 140 attaches.
- Extended base 146 supports the bottom (base) of beam 148, while the side flaps 144 and 145 contact the side 150 of the beam 148.
- Fasteners (not shown) may be driven through the base 146 and the side flaps 144 and 145 into beam 148 to firmly attach the end joint 140 perpendicular to the side of the beam 148.
- no beam is shown, but the flaps 144' and 145' and base extension 146 are ready to be attached to another beam which will then be parallel to beam 148.
- the end joint shown in Figure 17 may be formed either in a separate connector or at the end of a beam.
- the joint is shown formed at the end of beam 152 which is to be attached perpendicular to beam 154.
- a basic beam is cut with a lengthwise cut 158 into the centor of the base 156 for a distance approximately equal to the height of beam 154. Adjacent the lower part of the cut, the corners 157 are bent away from the base 156 to create a triangular opening corresponding to the cross-section of beam 154, with flaps 153 abutting sides 161 of beam 154.
- a second cut 159 is made laterally across both wings 160 and the lower corners 162 are bent outward to create a triangular opening corresponding to the cross-section of beam 154 with flaps 163 abutting sides 161 of beam 154.
- the beam 152 is fitted down over beam 154 making sure that the wings 164 are fully seated within cut 158.
- Fasteners 165 may be driven through the flaps 153 and 163 and into sides 161.
- Figures 18 and 19 illustrate an alternate joint for attaching the end of one beam to the top of another.
- This joint differs from that of Figure 17 in that the wings of the two beams do not meet. Instead, the wings of the beam to which the beam 170 is to be joined are inserted into slots 174. Slots 174 are formed by cutting lengthwise in from the beam end into sides 170 and bending the corners of the slots 174 back to create flaps 176 and 178. The flaps 176 and 178 are bent back to create a triangular opening with dimensions corresponding to the triangular cross-section of a basic beam, such as shown in Figure 2.
- fasteners may be driven through flaps 176 and 178 into the sides of the adjoining beam to provide a strong connection between the beams.
- Figures 20 and 21 show a support brace 180 which may be used to add strength to a structure which has extended lengths of beams.
- Brace 180 is a strip of metal with L-shaped ends 182 which wrap around the beams 184 and 186 and are fastened to each of the beams, generally located about half between the ends of the beams.
- Figure 20 illustrates a section of frame in which the inventive beams provide the vertically running portions (beams 184 and 186) attached to a 2 x 4 wood stud 188 at the base by the end joint 192, as in Figure 9.
- a third metal beam 190 which is attached using the end joint 194 as in Figure 17.
- the width of the base of triangle 10 of a beam is comparable to that of a two-by-four stud, so that anything that would have required support from the edge of a stud, such as wallboard, plywood or roofing material, will be similarly supported by the beam 2.
- the inventive beams may be substituted for the stud. Nails or other fasteners may be driven through any side of the triangle 3 to attach material which is to be supported. Other building materials may also be inserted between the wings 4 and 6 and into a beam. For example, a two-by-four stud can be inserted by spreading the triangle to provide a wood surface for nails. Similarly, plastics or composite building materials may also inserted into the beams. Where appropriate, different size beams can be used which are larger than or smaller than the dimensions of a typical 2 x 4.
- the combination of beams illustrated in Figure 25 is an alternative to a 2 x 4 wood stud (or other standard wood construction beam), possessing the features that will allow other construction materials to be directly attached.
- This "metal 2 x 4" is formed from two asymmetrically bent triangular beams 220 and 222 which have legs 221 and 223 extending from the apexes to form a flat surface 226 comparable to the 2 inch edges of a 2 x 4 wood stud into which fasteners may be driven to support other construction materials.
- the two beams 220 and 222 are joined together by a generally L-shaped connector 228 which is attached to the inside wing 230 of each beam by welding or some other fastening means (welds are shown but not labeled).
- fasteners may be driven through the bases 232 and 234 of the two triangles.
- this "metal 2 x 4" it may be used to replace the wood stud 84 illustrated in Figure 10.
- Leg 221 of the "metal 2 x 4" would be attached by fasteners to extension 77, and screw can be driven through end tab 82 into base 232.
- the material of which the beams and various brackets are made can be adapted to fit the demands of the construction project.
- Cold formed steel ranging from 24 gauge to 8 gauge can be used, as well as other metals such as aluminum, titanium and numerous steel alloys. For most common construction purposes, steel will likely be the material of choice.
- brackets described above permit the formation of virtually any angle required for building a structure without requiring angle cuts to be made in the ends of the beams. This is of particular importance where the training level of the construction personnel is such that angle cuts are a frequent source of errors.
- the inventive beams, brackets and assembly method can be substituted for traditional two-by-four framing studs, door and window headers, and any number of other applications for which wood framing is traditionally used.
- Actual I-beams can be formed by joining two beams together along their entire length using a long gusset, allowing the inventive system to be used as a substitute for traditional metal framing as well.
- the lightweight steel beam system is inexpensive to manufacture and is as easy to assemble and handle as traditional wood construction.
- the use of steel beams as an alternative to wood addresses an issue that has had significant impact on the construction industry, providing a high quality, environmentally safe material. Further, the steel beams are immune to many of the problems of wood construction, since insect damage and wood rot are not of concern.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Wood Science & Technology (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Rod-Shaped Construction Members (AREA)
- Joining Of Building Structures In Genera (AREA)
- Radiation-Therapy Devices (AREA)
- Body Structure For Vehicles (AREA)
- Meat, Egg Or Seafood Products (AREA)
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
- Tents Or Canopies (AREA)
- Aerials With Secondary Devices (AREA)
- Greenhouses (AREA)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4049493A | 1993-03-31 | 1993-03-31 | |
US40494 | 1993-03-31 | ||
US8298993A | 1993-06-25 | 1993-06-25 | |
US08/190,643 US5499480A (en) | 1993-03-31 | 1994-02-02 | Lightweight metal truss and frame system |
US190643 | 1994-02-02 | ||
PCT/US1994/003508 WO1994023149A1 (en) | 1993-03-31 | 1994-03-30 | Lightweight metal truss and frame system |
US82989 | 2002-02-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0692053A1 EP0692053A1 (en) | 1996-01-17 |
EP0692053B1 true EP0692053B1 (en) | 2000-10-04 |
Family
ID=26717108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94914749A Expired - Lifetime EP0692053B1 (en) | 1993-03-31 | 1994-03-30 | Lightweight metal truss and frame system |
Country Status (17)
Country | Link |
---|---|
EP (1) | EP0692053B1 (pt) |
JP (1) | JPH08508798A (pt) |
AT (1) | ATE196787T1 (pt) |
AU (1) | AU685117B2 (pt) |
BR (1) | BR9405803A (pt) |
CA (1) | CA2159492A1 (pt) |
CZ (1) | CZ251395A3 (pt) |
DE (1) | DE69426073T2 (pt) |
DK (1) | DK0692053T3 (pt) |
ES (1) | ES2152978T3 (pt) |
GR (1) | GR3035186T3 (pt) |
HU (1) | HUT72379A (pt) |
NZ (1) | NZ265766A (pt) |
PL (1) | PL320748A1 (pt) |
PT (1) | PT692053E (pt) |
SK (1) | SK122095A3 (pt) |
WO (1) | WO1994023149A1 (pt) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2641333C1 (ru) * | 2017-03-21 | 2018-01-17 | Александр Суренович Марутян | Гнутозамкнутый профиль |
RU2645317C1 (ru) * | 2017-05-26 | 2018-02-20 | Александр Суренович Марутян | Полукруглый гнутозамкнутый профиль |
RU2645318C1 (ru) * | 2017-06-06 | 2018-02-20 | Александр Суренович Марутян | Пятиугольный гнутозамкнутый профиль |
RU2651741C1 (ru) * | 2017-05-15 | 2018-04-23 | Александр Суренович Марутян | Треугольный гнутозамкнутый профиль |
RU2653209C1 (ru) * | 2017-05-02 | 2018-05-07 | Александр Суренович Марутян | Плоскоовальный гнутозамкнутый профиль |
RU2655056C1 (ru) * | 2017-07-06 | 2018-05-23 | Александр Суренович Марутян | Трапециевидный гнутозамкнутый профиль |
RU2656297C1 (ru) * | 2017-08-31 | 2018-06-04 | Александр Суренович Марутян | Клиновидный гнутозамкнутый профиль |
RU2686762C1 (ru) * | 2018-07-23 | 2019-04-30 | Александр Суренович Марутян | Двутавровый гнутосварной профиль |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5692353A (en) * | 1993-03-31 | 1997-12-02 | Bass, Deceased; Kenneth R. | Lumber-compatible lightweight metal construction system |
US5852908A (en) * | 1994-08-12 | 1998-12-29 | Techtruss Holdings Pty. Ltd. | Structural beam and web |
US5678384A (en) * | 1995-08-31 | 1997-10-21 | World Wide Homes Ltd. | Rapid assembly secure prefabricated building |
ZA200510240B (en) * | 2003-06-23 | 2007-03-28 | Smorgon Steel Litesteel Prod | An improved beam |
JP7291539B2 (ja) * | 2019-05-23 | 2023-06-15 | 日本製鉄株式会社 | 壁構造 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR675888A (fr) * | 1929-05-29 | 1930-02-15 | Procédé d'établissement de profilés métalliques et produits industriels nouveaux en résultant | |
US2029645A (en) * | 1933-12-18 | 1936-02-04 | Stran Steel Corp | Structural element |
US2167835A (en) * | 1937-12-29 | 1939-08-01 | Gerald G Greulich | Structural joist or nailer stud |
US3129493A (en) * | 1961-06-20 | 1964-04-21 | Charles Davis Ltd | Methods for the manufacture of lightweight structural members |
US3541749A (en) * | 1968-09-20 | 1970-11-24 | Arthur L Troutner | Metal truss |
FR2063545A5 (pt) * | 1969-10-17 | 1971-07-09 | Belle Daniel | |
IT1014086B (it) * | 1974-05-02 | 1977-04-20 | Saip Spa | Profilato di lamiera metallica per solai |
US4069638A (en) * | 1974-06-05 | 1978-01-24 | Scanovator Ab | Structure of lightweight bars and connector means therefore |
US4168596A (en) * | 1977-05-06 | 1979-09-25 | The Ceco Corporation | Standing seam metal roof structure and method of assembly |
JPH051154Y2 (pt) * | 1987-05-13 | 1993-01-13 | ||
WO1989001549A1 (en) * | 1987-08-13 | 1989-02-23 | El Barador Holdings Pty. Ltd. | Methods of building construction |
AU6383390A (en) * | 1989-10-11 | 1991-04-18 | Maxi-Span Holdings Pty. Limited | Purlin |
DE4023902C2 (de) * | 1990-07-27 | 1995-04-27 | Mueller Franz | Montagewinkel |
-
1994
- 1994-03-30 ES ES94914749T patent/ES2152978T3/es not_active Expired - Lifetime
- 1994-03-30 DE DE69426073T patent/DE69426073T2/de not_active Expired - Fee Related
- 1994-03-30 BR BR9405803A patent/BR9405803A/pt not_active Application Discontinuation
- 1994-03-30 AT AT94914749T patent/ATE196787T1/de active
- 1994-03-30 JP JP6522352A patent/JPH08508798A/ja active Pending
- 1994-03-30 PT PT94914749T patent/PT692053E/pt unknown
- 1994-03-30 AU AU66992/94A patent/AU685117B2/en not_active Ceased
- 1994-03-30 WO PCT/US1994/003508 patent/WO1994023149A1/en not_active Application Discontinuation
- 1994-03-30 DK DK94914749T patent/DK0692053T3/da active
- 1994-03-30 CA CA002159492A patent/CA2159492A1/en not_active Abandoned
- 1994-03-30 SK SK1220-95A patent/SK122095A3/sk unknown
- 1994-03-30 NZ NZ265766A patent/NZ265766A/en unknown
- 1994-03-30 EP EP94914749A patent/EP0692053B1/en not_active Expired - Lifetime
- 1994-03-30 CZ CZ952513A patent/CZ251395A3/cs unknown
- 1994-03-30 HU HU9502853A patent/HUT72379A/hu active IP Right Revival
- 1994-03-30 PL PL94320748A patent/PL320748A1/xx unknown
-
2001
- 2001-01-03 GR GR20010400005T patent/GR3035186T3/el unknown
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2641333C1 (ru) * | 2017-03-21 | 2018-01-17 | Александр Суренович Марутян | Гнутозамкнутый профиль |
RU2653209C1 (ru) * | 2017-05-02 | 2018-05-07 | Александр Суренович Марутян | Плоскоовальный гнутозамкнутый профиль |
RU2651741C1 (ru) * | 2017-05-15 | 2018-04-23 | Александр Суренович Марутян | Треугольный гнутозамкнутый профиль |
RU2645317C1 (ru) * | 2017-05-26 | 2018-02-20 | Александр Суренович Марутян | Полукруглый гнутозамкнутый профиль |
RU2645318C1 (ru) * | 2017-06-06 | 2018-02-20 | Александр Суренович Марутян | Пятиугольный гнутозамкнутый профиль |
RU2655056C1 (ru) * | 2017-07-06 | 2018-05-23 | Александр Суренович Марутян | Трапециевидный гнутозамкнутый профиль |
RU2656297C1 (ru) * | 2017-08-31 | 2018-06-04 | Александр Суренович Марутян | Клиновидный гнутозамкнутый профиль |
RU2686762C1 (ru) * | 2018-07-23 | 2019-04-30 | Александр Суренович Марутян | Двутавровый гнутосварной профиль |
Also Published As
Publication number | Publication date |
---|---|
AU6699294A (en) | 1994-10-24 |
BR9405803A (pt) | 1995-12-12 |
HU9502853D0 (en) | 1995-11-28 |
EP0692053A1 (en) | 1996-01-17 |
SK122095A3 (en) | 1997-09-10 |
PT692053E (pt) | 2001-01-31 |
ES2152978T3 (es) | 2001-02-16 |
DK0692053T3 (da) | 2001-01-29 |
JPH08508798A (ja) | 1996-09-17 |
CA2159492A1 (en) | 1994-10-13 |
DE69426073T2 (de) | 2001-05-10 |
GR3035186T3 (en) | 2001-04-30 |
NZ265766A (en) | 1997-09-22 |
CZ251395A3 (en) | 1996-05-15 |
ATE196787T1 (de) | 2000-10-15 |
HUT72379A (en) | 1996-04-29 |
PL320748A1 (en) | 1997-10-27 |
DE69426073D1 (de) | 2000-11-09 |
WO1994023149A1 (en) | 1994-10-13 |
AU685117B2 (en) | 1998-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5499480A (en) | Lightweight metal truss and frame system | |
US5692353A (en) | Lumber-compatible lightweight metal construction system | |
US5664388A (en) | Structural shear resisting member and method employed therein | |
US6332299B1 (en) | Connector for multiple member frame systems | |
EP0637656B1 (en) | Truss | |
EP0692053B1 (en) | Lightweight metal truss and frame system | |
CA2144664C (en) | Collapsible building truss | |
CA1168827A (en) | Single element slope and skewed hanger | |
KR20060032961A (ko) | 향상된 비임 | |
US7367168B2 (en) | Skewed girder tie | |
WO1999019577A1 (en) | Structural shape for use in frame construction | |
CA2860342A1 (en) | Modular wall stud brace | |
US6199341B1 (en) | Connection for a lightweight steel frame system | |
SG176712A1 (en) | Concrete forming panel | |
JP4352582B2 (ja) | 鋼製トラスの接合部構造 | |
AU693165B2 (en) | Connectors for dog-bone beams | |
WO2001086088A1 (en) | A method of forming a web for a structural member | |
AU2004284104B2 (en) | Connector strip | |
AU749109B2 (en) | Lintel | |
JP3579575B2 (ja) | ボルト接合によるトラス構造 | |
US20070056244A1 (en) | Connector strip | |
JPH1030302A (ja) | 壁用骨組み用部材、該部材を用いた壁用骨組みシステム、及び該システムを組み立てる方法 | |
NZ501684A (en) | A framing system for buildings comprising square-tooth framing members | |
MXPA06006461A (es) | Armadura de cubierta de techo. | |
JP2002527032A (ja) | 建築物用フレームシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19951016 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19970505 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: PACIFIC STUD COMPANY, LLC. |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
REF | Corresponds to: |
Ref document number: 196787 Country of ref document: AT Date of ref document: 20001015 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69426073 Country of ref document: DE Date of ref document: 20001109 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20001030 Ref country code: CH Ref legal event code: NV Representative=s name: TROESCH SCHEIDEGGER WERNER AG |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2152978 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010330 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010330 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010330 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010331 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010331 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
BERE | Be: lapsed |
Owner name: PACIFIC STUD CY LLC. Effective date: 20010331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011001 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20011001 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20011031 Year of fee payment: 8 |
|
EUG | Se: european patent has lapsed |
Ref document number: 94914749.0 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010330 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20011123 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20011127 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20011129 Year of fee payment: 8 Ref country code: AT Payment date: 20011129 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20011001 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20011203 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: LE BREVET A ETE REACTIVE SELON LA DEMANDE DE POURSUITE DE LA PROCEDURE DU 22.11.2001 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 728V |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020326 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020330 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020331 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020331 |
|
NLXE | Nl: other communications concerning ep-patents (part 3 heading xe) |
Free format text: A REQUEST FOR RESTORATION TO THE PRIOR STATE (ART. 23 OF THE PATENTS ACT) HAS BEEN FILED ON 14.02.2002. |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 7281 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020930 |
|
NLXE | Nl: other communications concerning ep-patents (part 3 heading xe) |
Free format text: THE REQUEST FOR RESTORATION TO THE PRIOR STATE AS PROVIDED FOR IN ARTICLE 23 OF THE PATENTS ACT 1995 (SEE PUBLICATION IN HEADING XE OF THE PATENT BULLETIN OF 01.05.02/05) HAS BEEN WITHDRAWN. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021001 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20020930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: IC |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050330 |