EP0690204B1 - Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses - Google Patents

Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses Download PDF

Info

Publication number
EP0690204B1
EP0690204B1 EP95109678A EP95109678A EP0690204B1 EP 0690204 B1 EP0690204 B1 EP 0690204B1 EP 95109678 A EP95109678 A EP 95109678A EP 95109678 A EP95109678 A EP 95109678A EP 0690204 B1 EP0690204 B1 EP 0690204B1
Authority
EP
European Patent Office
Prior art keywords
seal
turbine
sealing
seals
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95109678A
Other languages
English (en)
French (fr)
Other versions
EP0690204A3 (de
EP0690204A2 (de
Inventor
Karl Urlichs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Publication of EP0690204A2 publication Critical patent/EP0690204A2/de
Publication of EP0690204A3 publication Critical patent/EP0690204A3/de
Application granted granted Critical
Publication of EP0690204B1 publication Critical patent/EP0690204B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • F01D11/06Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages

Definitions

  • the invention relates to a steam turbine according to the Preamble of claim 1 and the siblings Claims 2 and 3.
  • Steam turbines are of one type as back pressure turbines used when the output steam in one Heating network to be used at increased pressure.
  • a condensation turbine the heat content of the steam through its complete Expansion to a negative pressure in relation to the atmosphere exploited.
  • the outer Seals of a condensation turbine must be suitable the penetration of air into the steam-filled one To prevent turbine casing.
  • seals W1 of the turbine housing of a condensation turbine are designed in the form of labyrinths without contact.
  • suitable precautions must be taken to improve the sealing effect. In general, this is done on the fresh and steam side by a further seal W2 which is arranged behind the actual shaft seal W1 from the interior of the housing and by means of an annular chamber S between W1 and W2, which is acted upon with sealing steam S1, S2.
  • the pressure for this steam is chosen to be so great that in all cases there is a flow to the outside and thus the penetration of air is excluded.
  • a leakage vapor L1 flowing through the outer seal must in turn be prevented from escaping into the atmosphere by suitable annular chambers L and labyrinth seals W3. Finally, a chamber W ensures that the remaining leakage vapor / air mixture can be safely extracted.
  • a steam turbine is known from JP 05 231 103 A, at three each on the live steam side and the exhaust steam side Seals, i.e. a total of 6 seals, are required. This turbine uses fresh steam as well On the exhaust side, between two seals, one seal chamber each educated. These two sealing spaces are separated by one Compensating line connected to each other.
  • the object of the invention is to provide a condensation turbine create that without expensive barrier steam equipment, numerous pipelines and condensation devices gets along and still the intrusion of outside air into the Turbine interior having negative pressure prevented.
  • Flow through the mechanical seal from the outer Atmosphere in the housing interior can succeed the construction of a condensation turbine in which both On the fresh steam side as well as on the steam side, at least one each Seal designed as a gas-lubricated mechanical seal is.
  • the fresh steam side and the steam side each outermost mechanical seals are separate Seal rooms assigned by a Equalization line AG with a similar one below the atmospheric pressure are.
  • the construction of the condensation turbine is by the Use of a mechanical seal of the type mentioned considerably simplified because the steam room in all Operating conditions are protected from air ingress. In particular, this also applies to standstill and the so-called Gymnastics operation in which the turbine shaft is slow Turn with a suitable device in front of a Warping is protected by one-sided heating.
  • the device described can be made up of several Labyrinth seals existing outer wave labyrinth on the fresh steam side and on the exhaust steam side, each with a mechanical seal to be replaced in all operating states surely does its job.
  • On expensive barrier steam devices numerous pipelines and Condensation devices can be dispensed with.
  • the Arrangement of a vapor extraction W is done - if required - as with the conventional version according to Fig. 3.
  • the thrust bearing can produce a pressure difference of approx. 1 bar be dimensioned so that these forces can record. It is possible to use the thrust bearing Turbine shaft so for both axial directions too dimension that the thrusts at full load and at Records idle optimally.
  • Another security measure can be that at least one labyrinth seal acting as an emergency seal measured the pressure difference before and after this seal and when a predetermined limit is exceeded the steam turbine is triggered quickly.
  • the mechanical seal has a non-rotating mechanical seal 2, which is movable through a secondary seal 3 with the Turbine housing TG or the seal housing 10 connected is.
  • the slide ring 2 is by springs 4 on the Secondary seal 3 to a rotating counter ring 1 or pressed the turbine shaft TW itself. Between the two Rings 1 and 2 have a sealing gap DS. Because of Shape accuracy can with the turbine shaft TW rotating counter ring 1 also by a Precision intermediate ring can be worn. He's going with one centering element 7 acting elastically and by. a fastener 8 held.
  • a sealing ring 9 prevents leakage between the slide ring 2 and the rotor R.
  • the sealing gap DS the Mechanical seal with a special pattern on the opposing sealing surfaces through which gap-opening pockets with a depth of a few Micrometers arise, a hydrodynamic spread of the sealing gap and with the support of Rotation of the counter ring 1 are small amounts of fluid to be sealed is conveyed through the seal.
  • the passage is so small that it Turbine operation does not interfere. You can by in the capacitor an extraction system can be eliminated.
  • the condensation turbine shown in Fig. 1 enables an almost complete compensation of the axial pressure forces.
  • a rotor R with its blading B is in a turbine casing TG and lies with its turbine shaft TW on both sides in a plain bearing GL. He owns at least an axial bearing AL to catch the rest Axial thrusts.
  • In the schematic representation is continue the supply of live steam FD and the removal indicated by Abdampf AD.
  • the condensation turbine has three mechanical seals Wa, Wb, Wc, of which the two outer Wa, Wb pass the turbine shaft TW through the turbine housing TG caulk. Belonging to these mechanical seals Wa, Wb Sealing spaces DRa, DRb are via an equalization line AG connected to each other and have a negative pressure of about 0.04 bar.
  • This negative pressure means that the mechanical seals, in contrast to the application at other turbomachinery, so to build or arrange that an inflow of the sealing gap DS from the outside inwards causes gas lubrication and the flow medium in in this case is not steam, but air.
  • the mechanical seals Wa, Wb towards their inner to their outer Diameter flows through, so that the aerodynamically acting Sampling must be arranged accordingly. You can do that Mechanical seals Wa, Wb but also different, e.g. as in Fig. 1b shown, install. In all representations the respective flow direction at the sealing gap DS marked an arrow.
  • the efficiency of the Turbine can be increased significantly.
  • the constructive Effort for pipelines and the effort for reintroduction of the steam into the turbine housing TG considerably lower.
  • the condensation turbine according to Figure 2 corresponds in its Basic structure of Fig.1, so that in this regard repetitions can be dispensed with.
  • a crucial difference is that a compensating piston seal Wd also Sealing the fresh steam side shaft passage with takes over, so that the mechanical seal Wa according to Fig.1 saved becomes.
  • this is bought by the lack of one hydrostatic pressure compensation of the condensation part.
  • the thrust bearing AL In order to absorb these pressures, the thrust bearing AL must be used accordingly be dimensioned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Description

Die Erfindung betrifft eine Dampfturbine nach dem Oberbegriff des Anspruchs 1 sowie der nebengeordneten Ansprüche 2 und 3.
Dampfturbinen werden in einer Bauart als Gegendruckturbinen eingesetzt, wenn der ausgangsseitige Dampf in einem Wärmenetz bei erhöhtem Druck genutzt werden soll. In einer anderen als Kondensationsturbine bezeichneten Bauart wird der Wärmeinhalt des Dampfes durch seine vollständige Expansion bis zu einem Unterdruck gegenüber der Atmosphäre ausgenutzt. Dies hat zur Folge, daß sich die äußeren Dichtungen einer Kondensationsturbine dazu eignen müssen, das Eindringen von Luft in das mit Dampf gefüllte Turbinengehäuse zu verhindern.
Fig.3 soll den Stand der Technik verdeutlichen, nach dem Dichtungen W1 des Turbinengehäuses einer Kondensationsturbine berührungslos, in Form von Labyrinthen ausgeführt werden. Bei dieser Dichtungsart müssen geeignete Vorkehrungen getroffen werden, durch die eine Verbesserung der Dichtwirkung erreicht wird. Im allgemeinen geschieht das frisch -und abdampfseitig durch eine weitere Dichtung W2 die vom Gehäuseinnenraum aus hinter der eigentlichen Wellendichtung W1 angeordnet ist und
durch eine zwischen W1 und W2 liegende mit Sperrdampf S1, S2 beaufschlagte Ringkammer S. Der Druck für diesen Dampf wird gerade so groß gewählt, daß in allen Fällen eine Strömung nach außen erfolgt und damit das Eindringen von Luft ausgeschlossen ist. Ein durch die äußere Dichtung strömender Leckdampf L1 muß wiederum durch geeignete Ringkammern L und Labyrinthdichtungen W3 am Austritt in die Atmosphäre gehindert werden. Schließlich sorgt eine Kammer W dafür, daß das restliche Leckdampf/Luft-Gemisch sicher abgesaugt werden kann.
Der Aufwand für die geschilderten Dichtungsmaßnahmen ist außerordentlich hoch, da die austretenden Dampfmengen auch noch in einem Sperrdampfkondensator abgeführt werden müssen und weil die Dampfzustände für den zu verwendenden Sperrdampf S1, S2 an die Temperaturen des heißen Turbineneintritts und des Turbinenaustritts separat angepaßt werden müssen.
Es ist weiterhin bekannt, Gleitringdichtungen im Turbomaschinenbau bei stationären Verdichtern und bei Flugtriebwerken einzusetzen. Ein speziell für den Ausgleichskolben einer Dampfturbine geeigneter Dichtungsaufbau ist aus der DE 35 33 829 A1 bekannt. Beschrieben wird eine Anwendung dieser Dichtung anstelle eines inneren Ausgleichskolbenlabyrinths bei einer Dampfturbine. Eine Abhebevorrichtung soll dabei verhindern, daß während der Aufwarm- und Kondensationsphase des Dampfes im Bereich der Dichtung ein Schaden eintreten kann. Die Abhebevorrichtung ist auch geeignet, den Stillstand und Turnbetrieb einer Turbine abzusichern.
Aus der JP 05 231 103 A ist eine Dampfturbine bekannt, bei der auf der Frischdampfseite und der Abdampfseite je drei Dichtungen, also insgesamt 6 Dichtungen, benötigt werden. Bei dieser Turbine wird sowohl frischdampf- als auch abdampfseitig zwischen zwei Dichtungen je ein Dichtungsraum gebildet. Diese beiden Dichtungsräume werden durch eine Ausgleichsleitung miteinander verbunden.
Aufgabe der Erfindung ist es, eine Kondensationsturbine zu schaffen, die ohne teure Sperrdampfeinrichtungen, zahlreiche Rohrleitungen und Kondensationseinrichtungen auskommt und dennoch den Einbruch von Außenluft in den Unterdruck aufweisenden Turbineninnenraum verhindert.
Diese Aufgabe wird durch die in den Ansprüchen 1 und 2 gekennzeichneten Merkmale gelöst. Zweckmäßige Ausgestaltungen und Weiterbildungen des Erfindungsgegenstandes sind in den Unteransprüchen genannt.
Durch eine Gleitringdichtung, die so ausgeführt oder eingebaut ist, daß die zur Gasschmierung erforderliche Durchströmung der Gleitringdichtung von der äußeren Atmosphäre in den Gehäuseinnenraum erfolgen kann, gelingt der Aufbau einer Kondensationsturbine, bei der sowohl frischdampfseitig als auch abdampfseitig mindestens je eine Dichtung als gasgeschmierte Gleitringdichtung ausgeführt ist. Die frischdampfseitig und abdampfseitig jeweils äußersten Gleitringdichtungen sind dabei getrennten Dichtungsräumen zugeordnet, die durch eine Ausgleichsleitung AG mit einem gleichen unterhalb des atmosphärischen Außendrucks liegenden Druck beaufschlagt sind.
Die Konstruktion der Kondensationsturbine wird durch die Verwendung einer Gleitringdichtung der genannten Art erheblich vereinfacht, da der Dampfraum in allen Betriebsbedingungen vor Lufteinbruch geschützt ist. Insbesondere gilt dies auch für den Stillstand und den sog. Turnbetrieb, bei dem die Turbinenwelle durch langsames Drehen mit einer geeigneten Vorrichtung vor einer Verkrümmung durch einseitige Erwärmung geschützt wird. Mit der beschriebenen Einrichtung kann das aus mehreren Labyrinthdichtungen bestehende äußere Wellenlabyrinth frischdampf- und abdampfseitig durch je eine Gleitringdichtung ersetzt werden, die in allen Betriebszustanden sicher ihre Aufgaben erfüllt. Auf teuere Sperrdampfeinrichtungen, zahlreiche Rohrleitungen und Kondensationseinrichtungen kann verzichtet werden. Die Anordnung einer Wrasendampfabsaugung W erfolgt - falls erforderlich - wie bei der konventionellen Ausführung gemäß Fig. 3.
In einer Weiterbildung des Erfindungsgegenstandes kann die Gleitringdichtung so in die Kondensationsturbine eingebaut werden, daß ihr Dichtspalt entweder vom inneren zum äußeren Durchmesser dieser Gleitringdichtung oder auch umgekehrt durchströmt wird. Demgemäß ist vorgesehen, daß bei den Gleitringdichtungen in ihre Dichtflächen eine aerodynamisch wirksame Bemusterung integriert ist, deren Wirkrichtung mit der vorgesehenen Durchströmung der Gleitringdichtungen von der äußeren Atmosphäre in den Gehäuseinnenraum korrespondiert.
Zur Entlastung des Axiallagers werden im Hauptstrom einflutig aufgebaute Dampfturbinen normalerweise mit einem Ausgleichskolben versehen, der den Einsatz einer weiteren Dichtung erfordert. In einer Weiterbildung des Erfindungsgegenstandes ist deshalb vorgesehen, daß frischdampfseitig hinter der äußersten Gleitringdichtung eine Ausgleichskolbendichtung eingefügt ist, die ebenfalls als Gleitringdichtung aufgebaut ist.
Auf mindestens ebenso vorteilhafte Weise wie mit dem bereits geschilderten Aufbau nach Anspruch 1 kann die erfindungsgemäße Aufgabe auch durch die Merkmale des Anspruchs 6 gelöst werden. Dadurch, daß frischdampfseitig eine als Ausgleichskolbendichtung wirkende Gleitringdichtung auch eine Abdichtung des Wellendurchtritts durch das Turbinengehäuse übernimmt, wird eine Gleitringdichtung und damit ein teures Bauteil eingespart. Bei Turbinen, bei denen der verbleibende Restschub nur aus einer in den Turbinenstufen verarbeiteten
Druckdifferenz von ca. 1 bar herrührt, kann das Axiallager durchaus so dimensioniert werden, daß es diese Kräfte aufnehmen kann. Dabei ist es möglich, das Axiallager der Turbinenwelle so für beide axiale Richtungen zu dimensionieren, daß es die Schübe bei Vollast und bei Leerlauf optimal aufnimmt.
Bei der Gleitringdichtung besteht ein wesentliches Problem darin, daß bei sehr niedrigen Drehzahlen des Turbinenrotors, wie sie im Anfahrbetrieb oder bisweilen auch im Turnbetrieb auftreten, das aerodynamische Spreizen des Dichtungsspaltes nicht oder nicht ausreichend erfolgt und dadurch die Dichtflächen einem erhöhten Abrieb unterliegen. Es ist deshalb vorteilhaft, Hilfmittel vorzusehen, die im Anfahrbetrieb oder im Turnbetrieb für eine ausreichende Speizung des Dichtspaltes sorgen.
Bei einer Übernahme der Ideen aus der DE 35 33 829 A1 können die zur Spreizung erforderlichen Hilfsmittel aus mechanisch wirkenden Elementen aufgebaut werden, und dann im Anfahr- oder Turnbetrieb ein öffnen des Dichtspaltes auf die erforderliche Breite ermöglichen.
Alternativ dazu können die zur Spreizung erforderlichen Hilfsmittel jedoch auch aerodynamisch wirkend aufgebaut werden, wobei in einen die Ausgleichskolbendichtung umschliessenden Dichtungsraum eine Dampfzuführung erfolgt, die über ein Ventil steuerbar ist und damit im Normalbetrieb, wenn der Dichtungsraum einen ausreichenden Überdruck aufweist, abgeschaltet werden kann. Dies ist insbesondere bei Kondensationsturbinen erforderlich, bei denen die Dichtung im Unterdruckbetrieb nicht ausreichend zur eigenen Kühlung durchströmt würde.
Den bei einem Bruch einer frischdampfseitigen Gleitringdichtung auftretenden Gefahren kann man dadurch begegnen, daß mindestens eine konventionelle Labyrinthdichtung als Notdichtung vorgeschaltet wird. Eine der frischdampfseitigen Gleitringdichtung nachgeschaltete konventionelle Labyrinthdichtung erfüllt den gleichen Zweck als Notdichtung.
Eine weitere Sicherheitsmaßnahme kann darin bestehen, daß an mindestens einer als Notdichtung wirkenden Labyrinthdichtung die Druckdifferenz vor und hinter dieser Dichtung gemessen wird und bei Überschreiten eines vorgegebenen Grenzwertes eine Schnellschlußauslösung der Dampfturbine erfolgt.
Die Dichtwirkung der Gleitringdichtung beeinträchtigende Verformungen lassen sich dadurch vermeiden, daß die Gleitringdichtung und ein sie aufnehmendes Dichtungsgehäuse nicht geteilt sind, sondern bei der Montage als geschlossene Ringteile auf den Turbinenrotor aufgeschoben werden.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Es zeigen:
  • Fig. 1: eine Kondensationsturbine mit fast vollständigem Ausgleich der axialen Druckkräfte,
  • Fig. 2: eine Kondensationsturbine ohne hydrostatischen Ausgleich des Kondensationsteils und
  • Fig. 3: eine Kondensationsturbine nach dem Stand der Technik.
  • In den Fig. 1 und 2 ist der Aufbau einer Gleitringdichtung Wa,Wb,Wc mit ihren wesentlichen Teilen, wie sie bei den erfindungsgemäßen Beispielen zur Anwendung kommen, dargestellt. Die für hohe Temperaturen geeignete Gleitringdichtung besitzt einen nicht rotierenden Gleitring 2, der beweglich durch eine Sekundärdichtung 3 mit dem Turbinengehäuse TG bzw. dem Dichtungsgehäuse 10 verbunden ist. Der Gleitring 2 wird durch Federn 4 über die Sekundärdichtung 3 an einen rotierenden Gegenring 1 oder die Turbinenwelle TW selbst angedrückt. Zwischen beiden Ringen 1 und 2 liegt ein Dichtspalt DS. Aus Gründen der Formgenauigkeit kann der mit der Turbinenwelle TW rotierende Gegenring 1 auch durch einen Präzisionszwischenring getragen werden. Er wird mit einem elastisch wirkenden Zentrierelement 7 zentriert und durch. ein Befestigungselement 8 gehalten. Ein Dichtring 9 verhindert eine Leckströmung zwischen dem Gleitring 2 und dem Rotor R.
    Durch eine Gestaltung des Dichtspaltes DS der Gleitringdichtung mit einer speziellen Bemusterung an den sich gegenüberliegenden Dichtflächen, durch welche spaltöffnende Taschen mit einer Tiefe von wenigen Mikrometern entstehen, wird eine hydrodynamische Spreizung des Dichtspaltes erreicht und mit Unterstützung durch die Rotation des Gegenrings 1 werden dabei geringe Mengen des abzudichtendes Fluids durch die Dichtung gefördert. Im Vergleich zu üblichen berührungslosen Labyrinthdichtungen ist die Durchtrittsmenge so gering, daß sie den Turbinenbetrieb nicht stört. Sie kann im Kondensator durch ein Absaugesystem beseitigt werden.
    Die in Fig 1 dargestellte Kondensationsturbine ermöglicht einen fast vollständigen Ausgleich der axialen Druckkräfte. Ein Rotor R mit seiner Beschaufelung B befindet sich in einem Turbinengehäuse TG und liegt mit seiner Turbinenwelle TW beidseitig in einem Gleitlager GL. Er besitzt mindestens ein Axiallager AL zum Auffangen von restlichen Axialschüben. In der schematischen Darstellung ist weiterhin die Zufuhr von Frischdampf FD und das Wegfuhren von Abdampf AD angedeutet.
    Die Kondensationsturbine besitzt drei Gleitringdichtungen Wa,Wb,Wc, von denen die beiden äußeren Wa,Wb den Durchtritt der Turbinenwelle TW durch das Turbinengehäuse TG abdichten. Zu diesen Gleitringdichtungen Wa,Wb gehörige Dichtungsräume DRa,DRb sind über eine Ausgleichsleitung AG miteinander verbunden und weisen einen Unterdruck von etwa 0,04 bar auf. Durch diesen Unterdruck ist es erforderlich, die Gleitringdichtungen, im Unterschied zur Anwendung bei anderen Turbomaschinen, so aufzubauen oder anzuordnen, daß eine Anströmung des Dichtspaltes DS von außen nach innen eine Gasschmierung bewirkt und das Strömungsmedium in diesem Fall nicht Dampf, sondern Luft ist. Bei der dargestellten Anordnung werden die Gleitringdichtungen Wa,Wb in Richtung von ihrem inneren zu ihrem äußeren Durchmesser durchströmt, so daß die aerodynamisch wirkende Bemusterung entsprechend angeordnet sein muß. Man kann die Gleitringdichtungen Wa,Wb aber auch anders, z.B. wie in Fig. 1b dargestellt, einbauen. Bei allen Darstellungen ist die jeweilige Strömungsrichtung am Dichtspalt DS durch einen Pfeil gekennzeichnet.
    Die beschriebene Kondensationsturbine ist zum Druckausgleich mit einem Ausgleichskolben versehen, dessen Wirkung durch eine dritte als Ausgleichskolbendichtung Wc wirkende Gleitringdichtung gewährleistet wird. Ihr Aufbau entspricht dem der beiden anderen Gleitringdichtungen Wa,Wb, doch ihr Einbau stimmt mit einer üblichen Anordnung überein, bei der eine Durchströmung von innen nach außen erfolgt. Unter normalen Betriebsbedingungen herrscht in dem zugehörigen Dichtungsraum DRc ein Überdruck, der jedoch im Turnbetrieb bis auf Unterdruck absinken kann. Für diesen Fall ist eine Dampfzufuhr K1 vorgesehen, mit deren Hilfe wieder ein zur Anströmung ausreichender Überdruck hergestellt werden kann. Ein Ventil V ermöglicht eine Steuerung des Dampfdruckes bzw. ein Abschalten der Dampfzufuhr im Normalbetrieb.
    Durch die Anwendung der Ausgleichskolbendichtung Wc am Ausgleichskolben einer Dampfturbine, kann der Wirkungsgrad der Turbine erheblich gesteigert werden. Außerdem wird der konstruktive Aufwand für Rohrleitungen und der Aufwand zur Wiedereinleitung des Dampfes in das Turbinengehäuse TG erheblich geringer.
    Damit es bei einem Bruch der frischdampfseitigen Gleitringdichtungen Wa,Wc nicht zu einem unerwünschten Dampfaustritt kommt, sind eine gegenüber der Ausgleichskolbendichtung Wc vorgeschaltete Notdichtung 5 und eine nachgeschaltete Notdichtung 6 vorgesehen. Ebenfalls zur Erhöhung der Sicherheit werden Druckdifferenzen der Drücke Pw und Pk vor und hinter den Notdichtungen 5,6 erfaßt, die bei Überschreiten zulässiger Grenzwerte einen Schnellschluß der Turbine auslösen können.
    Die Kondensationsturbine nach Fig.2 entspricht in ihrem Grundaufbau der Fig.1, so daß auf diesbezügliche Wiederholungen verzichtet werden kann. Ein entscheidender Unterschied besteht darin, daß eine Ausgleichskolbendichtung Wd auch die Abdichtung des frischdampfseitigen Wellendurchtritts mit übernimmt, so daß die Gleitringdichtung Wa nach Fig.1 eingespart wird. Erkauft wird dies allerdings durch das Fehlen eines hydrostatischen Druckausgleichs des Kondensationsteils. Um diese Drücke aufzufangen, muß das Axiallager AL entsprechend dimensioniert werden.
    Zur Vermeidung von Verformungen im Bereich der Ringe 1 und 2 werden ungeteilte Dichtungsgehäuse 10 verwendet, die sich ohne Öffnen des Turbinengehäuses montieren lassen.

    Claims (12)

    1. Kondensationsturbine mit einem Frischdampfeingang (FD) und einem Abdampfausgang (AD) und mindestens zwei Dichtungen (Wa,Wb) zur Abdichtung des Turbinengehäuses (TG) im Bereich einer den Turbinenrotor tragenden Turbinenwelle (TW), von denen mindestens eine Dichtung (Wa) frischdampfseitig und eine Dichtung (Wb) abdampfseitig angeordnet ist, wobei die Dichtungen getrennte Dichtungsräume (DRa,DRb) abdichten, die durch eine Ausgleichsleitung (AG) miteinander in Verbindung stehen, dadurch gekennzeichnet, daß sowohl frischdampfseitig als auch abdampfseitig mindestens je eine Dichtung (Wa,Wb) als gasgeschmierte Gleitringdichtung ausgeführt ist, daß die Dichtungsräume (DRa, DRb) mit einem gleichen unterhalb des atmosphärischen Außendrucks liegenden Druck beaufschlagt sind, und daß diese Gleitringdichtungen (Wa,Wb) so ausgeführt und eingebaut sind, daß eine zur Gasschmierung erforderliche Durchströmung der Gleitringdichtungen (Wa,Wb) von der äußeren Atmosphäre in den Gehäuseinnenraum erfolgen kann.
    2. Kondensationsturbine mit einem Frischdampfeingang (FD) und einem Abdampfausgang (AD) und mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses im Bereich einer den Turbinenrotor tragenden Turbinenwelle (TW), von denen mindestens eine Dichtung (Wd) frischdampfseitig und eine Dichtung (Wb) abdampfseitig angeordnet ist, dadurch gekennzeichnet, daß sowohl frischdampfseitig als auch abdampfseitig mindestens je eine Dichtung (Wb,Wd) als gasgeschmierte Gleitringdichtung ausgeführt ist, daß die Dichtung (Wd) als Ausgleichskolbendichtung wirkt, daß die Dichtung auch eine Abdichtung des Wellendurchtritts durch das Turbinengehäuse übernimmt, und daß das Axiallager (AL) der Turbinenwelle (TW) so dimensioniert ist, daß es auf die Turbinenwelle (TW) wirkende, nicht kompensierte Schübe aufnehmen kann.
    3. Kondensationsturbine nach Anspruch 2, dadurch gekennzeichnet, daß bei den Gleitringdichtungen (Wa,Wb) in ihre Dichtflächen eine aerodynamisch wirksame Bemusterung integriert ist, deren Wirkrichtung mit der vorgesehenen Durchströmung der Gleitringdichtungen (Wa,Wb) von der äußeren Atmosphäre in den Gehäuseinnenraum korrespondiert.
    4. Kondensationsturbine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß frischdampfseitig hinter der äußersten Gleitringdichtung (Wa) eine Ausgleichskolbendichtung (Wc) eingefügt ist, die ebenfalls als Gleitringdichtung aufgebaut ist.
    5. Kondensationsturbine nach einem der vorhandenen Ansprüche, dadurch gekennzeichnet, daß das Axiallager (AL) der Turbinenwelle (TW) so dimensioniert ist, daß es auf die Welle wirkende Restschübe der Beschaufelung, die von einem Ausgleichskolben nicht ausgeglichen werden, aufnehmen kann.
    6. Kondensationsturbine nach einem der vorhandenen Ansprüche, dadurch gekennzeichnet, daß das Axiallager (AL) der Turbinenwelle (TW) so dimensioniert ist, daß es in beiden Axialrichtungen die bei Leerlauf und bei Vollast auf die Welle wirkenden Schübe aufnehmen kann.
    7. Kondensationsturbine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Hilfsmittel vorgesehen sind, die eine Spreizung des Dichtspaltes der Ausgleichskolbendichtung (Wd) im Anfahr- und im Turnbetrieb ermöglichen.
    8. Kondensationsturbine nach Anspruch 7, dadurch gekennzeichnet, daß die zur Spreizung erforderlichen Hilfsmittel aus mechanisch wirkenden Elementen aufgebaut sind, die im Anfahr- und im Turnbetrieb ein Öffnen des Dichtspaltes auf die erforderliche Breite ermöglichen.
    9. Kondensationsturbine nach Anspruch 7, dadurch gekennzeichnet, daß die zur Spreizung erforderlichen Hilfsmittel aerodynamisch wirken, wobei in einen die Ausgleichskolbendichtung (Wc) umschließenden Dichtungsraum (DRc) eine Dampfzuführung (K1) erfolgt, die im Turnbetrieb einen Überdruck erzeugt und im Normalbetrieb durch ein Ventil (V) abschaltbar ist.
    10. Kondensationsturbine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Ausgleichskolbendichtung (Wc) mindestens eine konventionelle Labyrinthdichtung (5, 6) als Notdichtung vor geschaltet und/oder nachgeschaltet ist.
    11. Kondensationsturbine nach Anspruch 10, dadurch gekennzeichnet, daß an mindestens einer als Notdichtung wirkenden Labyrinthdichtung (5, 6) die Druckdifferenz vor und hinter dieser Dichtung gemessen wird und bei Überschreiten eines vorgegebenen Grenzwertes eine Schnellschlußauslösung der Dampfturbine erfolgt.
    12. Kondensationsturbine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Gleitringdichtung (Wa, Wb, Wc, Wd) und/oder ein sie aufnehmendes Dichtungsgehäuse (10) nicht geteilt sind, sondern bei der Montage als geschlossene Ringteile auf den Turbinenrotor (R) aufgeschoben werden.
    EP95109678A 1994-06-28 1995-06-22 Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses Expired - Lifetime EP0690204B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4422594 1994-06-28
    DE4422594A DE4422594A1 (de) 1994-06-28 1994-06-28 Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses

    Publications (3)

    Publication Number Publication Date
    EP0690204A2 EP0690204A2 (de) 1996-01-03
    EP0690204A3 EP0690204A3 (de) 1997-11-19
    EP0690204B1 true EP0690204B1 (de) 2002-10-23

    Family

    ID=6521707

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95109678A Expired - Lifetime EP0690204B1 (de) 1994-06-28 1995-06-22 Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses

    Country Status (6)

    Country Link
    US (1) US5577885A (de)
    EP (1) EP0690204B1 (de)
    JP (1) JP3696657B2 (de)
    DE (2) DE4422594A1 (de)
    DK (1) DK0690204T3 (de)
    FI (1) FI112108B (de)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE29806905U1 (de) * 1998-04-16 1998-07-09 Feodor Burgmann Dichtungswerke GmbH & Co, 82515 Wolfratshausen Gleitringdichtungsanordnung, insbesondere für die Flüssiggasabdichtung
    DE19831988A1 (de) * 1998-07-16 2000-01-20 Abb Patent Gmbh Turbomaschine mit Gleitringdichtungen
    DE19951570A1 (de) * 1999-10-27 2001-05-03 Abb Patent Gmbh Einrichtung zur Kompensierung des Axialschubs bei Turbomaschinen
    US9363481B2 (en) * 2005-04-22 2016-06-07 Microsoft Technology Licensing, Llc Protected media pipeline
    US8146922B2 (en) * 2008-06-25 2012-04-03 Dresser-Rand Company Shaft isolation seal
    EP2262101A1 (de) * 2009-06-12 2010-12-15 Siemens Aktiengesellschaft Verfahren und Anordnung zum Turnbetrieb eines Turbosatzes
    US20110164965A1 (en) * 2010-01-06 2011-07-07 General Electric Company Steam turbine stationary component seal
    US9790863B2 (en) 2013-04-05 2017-10-17 Honeywell International Inc. Fluid transfer seal assemblies, fluid transfer systems, and methods for transferring process fluid between stationary and rotating components using the same
    US11209009B2 (en) * 2017-02-02 2021-12-28 Mitsubishi Heavy Industries Compressor Corporation Rotating machine

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE706180C (de) * 1938-12-30 1941-05-20 I G Farbenindustrie Akt Ges Stopfbuechse
    US3392983A (en) * 1965-10-22 1968-07-16 Atomic Energy Commission Usa Safety control device for use with mechanical seals
    DE3119467C2 (de) * 1981-05-15 1983-09-01 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Gleitringdichtung mit gasdynamischer Schmierung für hochtourige Strömungsmaschinen, insbesondere Gasturbinentriebwerke
    US4557664A (en) * 1983-04-13 1985-12-10 Dresser Industries, Inc. Control of steam turbine shaft thrust loads
    JPS59192803A (ja) * 1983-04-14 1984-11-01 Mitsubishi Heavy Ind Ltd 蒸気タ−ビンのグランドシ−リング装置
    JPS59226206A (ja) * 1983-06-06 1984-12-19 Hitachi Ltd 蒸気タ−ビンの保護装置
    DE3533829A1 (de) 1985-09-23 1987-04-02 Aeg Kanis Turbinen Dichtungsvorrichtung mit einer gasgeschmierten gleitringdichtung
    DE3815679A1 (de) * 1988-05-07 1989-11-16 Kuehnle Kopp Kausch Ag Radialturbine
    CA1326476C (en) * 1988-09-30 1994-01-25 Vaclav Kulle Gas compressor having dry gas seals for balancing end thrust
    JPH04187897A (ja) * 1990-11-21 1992-07-06 Hitachi Ltd ドライガスシールの異常時のバックアップシステム
    JPH05231103A (ja) * 1992-02-24 1993-09-07 Fuji Electric Co Ltd 復水タービンの軸封圧力制御装置
    DE4216006C1 (de) * 1992-05-12 1993-04-29 Mannesmann Ag, 4000 Duesseldorf, De
    CH686525A5 (de) * 1992-07-02 1996-04-15 Escher Wyss Ag Turbomaschine .
    US5375853B1 (en) * 1992-09-18 1998-05-05 Crane John Inc Gas lubricated barrier seal

    Also Published As

    Publication number Publication date
    DE4422594A1 (de) 1996-01-04
    DE59510430D1 (de) 2002-11-28
    JPH0849503A (ja) 1996-02-20
    DK0690204T3 (da) 2002-12-02
    FI112108B (fi) 2003-10-31
    EP0690204A3 (de) 1997-11-19
    US5577885A (en) 1996-11-26
    FI953171A (fi) 1995-12-29
    EP0690204A2 (de) 1996-01-03
    JP3696657B2 (ja) 2005-09-21
    FI953171A0 (fi) 1995-06-27

    Similar Documents

    Publication Publication Date Title
    EP1103706B1 (de) Lagerkammer für ein Gasturbinen-Triebwerk
    DE3219127C2 (de) Dichtungsvorrichtung für Strömungsmaschinen
    DE102008048942B4 (de) Anordnung mit einer Wellendichtung
    DE60116455T2 (de) Dichtungseinrichtung
    DE69407801T2 (de) Gleitringdichtung
    EP2148977B1 (de) Gasturbine
    DE3407218C2 (de) Gasturbine
    EP3159490B1 (de) Strahltriebwerk mit mehreren kammern und einem lagerkammerträger
    DE69714536T2 (de) Gasturbinen-Triebwerk mit Dichtung für Lagerkammern
    DE2507182A1 (de) Axialgasturbinenanlage
    DE102005025244A1 (de) Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks
    DE3039678A1 (de) Gasdichtungsbuchse
    CH708854A2 (de) Ansaugflächendichtung einer Rotationsmaschine und Verfahren zur Montage derselben.
    EP2564091B1 (de) Anordnung mit einer wellendichtung
    DE102016111855A1 (de) Ölverteilungssystem und Turbomaschine mit einem Ölverteilungssystem
    DE112014001084T5 (de) Variable Düseneinheit und Lader mit variabler Kapazität
    EP0690204B1 (de) Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses
    EP2440747B1 (de) Turbomaschine
    WO1998013584A1 (de) Kompensation des druckverlustes einer kühlluftführung in einer gasturbinenanlage
    DE69618355T2 (de) Wellendichtung
    EP2816263A2 (de) Dichtungsvorrichtung
    DE1942346A1 (de) Vorrichtung zur Abdichtung des Rotors gegenueber dem Stator bei einer zu einem Gasturbinentriebwerk gehoerigen Turbine
    DE102012207019B4 (de) Strömungsmaschine sowie Verfahren zur Kühlen einer solchen
    DE102014218937A1 (de) Wellendichtung, Verfahren zum Betrieb
    EP1222399A1 (de) Verfahren und vorrichtung zur kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): DE DK FR GB NL SE

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): DE DK FR GB NL SE

    17P Request for examination filed

    Effective date: 19971210

    17Q First examination report despatched

    Effective date: 20000929

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE DK FR GB NL SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20021023

    REF Corresponds to:

    Ref document number: 59510430

    Country of ref document: DE

    Date of ref document: 20021128

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030724

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20110428 AND 20110504

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: SD

    Effective date: 20110606

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140609

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20140605

    Year of fee payment: 20

    Ref country code: NL

    Payment date: 20140603

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20140618

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140819

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20140617

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59510430

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EUP

    Effective date: 20150622

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V4

    Effective date: 20150622

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20150621

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20150621

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG