EP0686212B1 - Procede de fabrication d'une piece metallique revetue de materiaux mineraux, piece obtenue et son utilisation - Google Patents

Procede de fabrication d'une piece metallique revetue de materiaux mineraux, piece obtenue et son utilisation Download PDF

Info

Publication number
EP0686212B1
EP0686212B1 EP94907607A EP94907607A EP0686212B1 EP 0686212 B1 EP0686212 B1 EP 0686212B1 EP 94907607 A EP94907607 A EP 94907607A EP 94907607 A EP94907607 A EP 94907607A EP 0686212 B1 EP0686212 B1 EP 0686212B1
Authority
EP
European Patent Office
Prior art keywords
coating
layer
less
pipe
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94907607A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0686212A1 (fr
Inventor
Didier Perrin
Stéphane EBALARD
Pierre Genelot
Simone Rey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pont a Mousson SA
Original Assignee
Pont a Mousson SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pont a Mousson SA filed Critical Pont a Mousson SA
Publication of EP0686212A1 publication Critical patent/EP0686212A1/fr
Application granted granted Critical
Publication of EP0686212B1 publication Critical patent/EP0686212B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers

Definitions

  • the present invention relates to the manufacture a metal pipe coated with mineral materials.
  • the invention relates to the manufacture of a metal pipe of ductile iron coated with at least two layers of a mineral coating based on silica and oxide sodium.
  • the mineral coating provides protection effective of the metal part and has good chemical inertia towards a fluid in contact with it.
  • Document DE-A-27 39 919 discloses a process of metallic surface enameling by applying two layers powder enamel.
  • the first layer is deposited at minus 250 ° C on a support previously treated with minus one of the elements nickel, cobalt or manganese. This temperature is not specific to that of a hot metal.
  • this document does not teach thicknesses enamel to achieve the object of the invention.
  • the object of the invention is to obtain a metal pipe whose coating which provides a protective role and a chemical inertness, adheres to the substrate, and has little open pores to form a barrier passive between the fluid and the substrate.
  • the method of manufacturing a metal pipe coated with at least two layers of mineral materials based on silica and sodium oxide is of the type according to which, the metal pipe being a ductile iron pipe , three layers of mineral coating are successively applied to at least part of the surface of said pipe to be treated, this pipe being at a temperature above 700 ° C., the elements of mineral material being present in different proportions depending on the layers, the making the first coating layer by applying the material in powder form, said layer consisting of an enamel having the following composition by weight: SiO 2 50 to 70% CaO + MgO 5 to 20% B 2 O 3 less than 10 % CoO less than 2% Fe 2 O 3 less than 5% Al 2 O 3 less than 10 % Na 2 O + K 2 O 15 to 25% F 2 less than 2% NiO less than 2%, and being produced at a thickness of less than 200 ⁇ m and the production of the second coating layer being carried out, on a hot pipe, by application of the material in powder form, and on a pipe at room temperature, by
  • the first coating layer must be sufficiently covering to form a film antioxidant and said layer should be thin enough to allow degassing and settling of gas bubbles from the reaction between the first layer and the metal.
  • the first layer must be made of a material which has the required fluidity.
  • the fluidity of the mineral material When making the first layer of coating, the fluidity of the mineral material must be adapted to ensure a fusion of the powder, necessary for a coating of the substrate and an adhesion to the substrate, and to limit the chemical reactions between the substrate and the first coating layer.
  • a reducing substrate such as cast iron
  • a first layer of oxidative coating pose a risk oxidation-reduction reaction with degassing and appearance of blisters.
  • Too fluid a composition may cause drainage of the coating, with the defects which would follow, loss of the covering aspect and oxidation of the substrate.
  • An insufficiently fluid composition will not allow not a good melting of the powder, and therefore a lack of adhesion and poor coverage, resulting in risk of substrate oxidation.
  • Oxidation of the substrate is particularly marked during heat treatments at high temperature.
  • the fluidity of the composition largely depends on the silica content and flux content.
  • the mineral material is reduced during its development.
  • the first coating layer In order to allow the powder to melt, for a good coating and good adhesion, we realize the first coating layer with a thickness of 100 ⁇ m.
  • making the second coating layer is carried out by applying the mineral material in the form dry powder.
  • the second coating layer of mineral material by application of said mineral material which is an enamel of the following composition by weight: SiO 2 40 to 60%; CaO + MgO less than 5% Li 2 O less than 5% TiO 2 5 to 15% NiO less than 2% ZnO less than 2% Al 2 O 3 less than 10% Na 2 O + K 2 O 15 to 20% B 2 O 3 5 to 15% CoO less than 2% Sb 2 O 3 less than 2%
  • the second layer of coating with a thickness greater than 100 ⁇ m.
  • the second coating layer is produced at a thickness of 200 ⁇ m.
  • a coating is made on the surface of the part of revolution by application of three layers of mineral materials, the material forming the third layer being applied as a powder or slip.
  • the third layer is produced by applying an enamel having the following composition by weight: SiO 2 40 to 60%; CaO + MgO less than 5% Li 2 O less than 5% TiO 2 5 to 15% NiO less than 2% ZnO less than 2% Al 2 O 3 less than 10% Na 2 O + K 2 O 15 to 20% B 2 O 3 5 to 15% CoO less than 2% Sb 2 O 3 less than 2%
  • This composition which can be the same as that of the second layer or that may vary from this last, allows to cover the previous layers in forming a covering film.
  • the third layer is made at a thickness greater than 100 ⁇ m.
  • This process makes it possible to deposit the coating during the fabrication of the metal part of revolution and take advantage of the metal's thermal energy to achieve the fusion of the first layer.
  • the invention also relates to a part hollow metal of revolution, coated on the part internal of its surface of mineral materials, this piece being manufactured in accordance with the process described above.
  • This part allows to transport fluids aggressive without the characteristics of these fluids are altered or the hollow part of revolution is deteriorated.
  • the invention also relates to the use of the part obtained according to the process defined above for the transport of aggressive fluids.
  • the cast iron liquid undergoes magnesium treatment then a inoculation. Inoculation of the cast iron is carried out at using an inoculant such as ferro-silicon introduced in liquid iron in powder or wire form, known manner, for example the document FR-A-2 546 783 at name of the Applicant.
  • an inoculant such as ferro-silicon introduced in liquid iron in powder or wire form, known manner, for example the document FR-A-2 546 783 at name of the Applicant.
  • the method includes a centrifugal operation of the cast iron.
  • the first layer 4 of coating 2 is produced at a thickness of 100 ⁇ m, by application of a reduced enamel of the following composition: SiO 2 balance CaO + MgO 10% B 2 O 3 5% CoO 1% Fe 2 O 3 2% Al 2 O 3 5% Na 2 O + K 2 O 22% F 2 1% NiO 1%
  • This enamel is applied as a dry powder.
  • the pipe element 1 is graphitized.
  • the second coating layer 5 2 is produced at a thickness of 200 ⁇ m, by applying an enamel in the form of powder, said enamel being of the following composition by weight: SiO 2 balance CaO + MgO 0.5% Li 2 O 4% TiO 2 6.5% NiO 0.5% ZnO 0.5% Al 2 O 3 6% Na 2 O + K 2 O 19% B 2 O 3 11% CoO 1.5% Sb 2 O 3 1%
  • the second coating layer 5 is applied on the piping element 1 at a temperature included between 800 ° and 700 ° C. Then we ferritize of piping element 1 within a temperature range below 800 ° C, which ensures that the second layer 5 of coating 2. Then the third layer 6 of coating 2 with a thickness of 200 ⁇ m by applying enamel in the form of a composition powder identical to the composition of the enamel of the second coating layer 2 presented above. This powder is deposited on the pipe element 1 at a temperature less than 800 ° C.
  • the cast iron obtained after the centrifugation is a gray perlitic graphite cast iron spheroidal.
  • the process then differs from that described previously in that we do not operate graphitization of piping element 1.
  • the piping element is subsequently subjected to ferritization treatment in a temperature range below 800 ° C, and the baking of the second layer 5 coating 2 takes place simultaneously with the ferritization of the piping element 1.
  • the cast iron obtained after centrifugation is a graphite ferritic gray iron spheroidal.
  • the process then differs from the process of first variant in that one does not operate from ferritization of the pipe element 1 and in that baking of the second layer 5 of coating 2 at temperature between 800 ° and 700 ° C of said element 1 after the laying of the second layer 5 of coating 2.
  • the third layer enamel is deposited in the form of a slip while the piping element 1 is at ambient temperature.
  • the piping element 1 obtainable by the process according to the invention, including the three variants described above, is a ductile iron pipe 3 having on the internal part of its surface a coating 2 of enamel consisting of three layers 4, 5, 6.
  • This pipe has at one end a plain end 8 and at its other end a socket 7 adapted to receive the plain end of a other identical pipe.
  • the micrography of the enamel coating 2 on an area adjoining the cast iron substrate represents the substrate, the interface between substrate 3 and the coating 2, the second layer 5 of coating 2 and the third coating layer 6 2.
  • the substrate 3 is a spheroidal graphite ferritic iron. At the level of the interface between the substrate and the coating, the skin of oxides has been dissolved. The first layer 4 of coating 2 has been absorbed by the second layer 5 of coating 2. The interface between the coating and the cast iron substrate 3 is consistent, and presents little porosities. Localized surface attack of the substrate leads to the formation of anchor sites for the coating 2.
  • the second layer 5 has a limited porosity.
  • the third coating layer 6 2 does not have no decohesion with the second layer 5 of coating 2. It has a very low porosity, forms a smooth surface and achieves a very good closure of the coating.
  • the method according to the invention makes it possible to coat even oxidized metal parts with skin of adherent oxides with a thickness of less than 20 ⁇ m.
  • the invention allows a gain in productivity and in thermal energy.
  • the invention makes it possible to delete one or more several specific steps for firing the enamel.
  • the pipes obtained make it possible to carry out transport lines for aggressive fluids, such as acid solutions, solutions with a high content of dissolved CO 2 , abrasive fluids, industrial discharges, waste water or sewage sludge.
  • aggressive fluids such as acid solutions, solutions with a high content of dissolved CO 2 , abrasive fluids, industrial discharges, waste water or sewage sludge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Glass Compositions (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Laminated Bodies (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Chemically Coating (AREA)
EP94907607A 1993-02-26 1994-02-23 Procede de fabrication d'une piece metallique revetue de materiaux mineraux, piece obtenue et son utilisation Expired - Lifetime EP0686212B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9302419A FR2701963B1 (fr) 1993-02-26 1993-02-26 Procédé de fabrication d'une pièce métallique revêtue de matériaux minéraux, pièce obtenue et son utilisation.
FR9302419 1993-02-26
PCT/FR1994/000197 WO1994019511A1 (fr) 1993-02-26 1994-02-23 Procede de fabrication d'une piece metallique revetue de materiaux mineraux, piece obtenue et son utilisation

Publications (2)

Publication Number Publication Date
EP0686212A1 EP0686212A1 (fr) 1995-12-13
EP0686212B1 true EP0686212B1 (fr) 2000-06-14

Family

ID=9444591

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94907607A Expired - Lifetime EP0686212B1 (fr) 1993-02-26 1994-02-23 Procede de fabrication d'une piece metallique revetue de materiaux mineraux, piece obtenue et son utilisation

Country Status (22)

Country Link
EP (1) EP0686212B1 (tr)
AT (1) ATE193906T1 (tr)
AU (1) AU678818B2 (tr)
BG (1) BG99883A (tr)
BR (1) BR9406163A (tr)
CA (1) CA2157008A1 (tr)
CZ (1) CZ284752B6 (tr)
DE (1) DE69424933T2 (tr)
EG (1) EG20502A (tr)
ES (1) ES2147572T3 (tr)
FR (1) FR2701963B1 (tr)
HR (1) HRP940138A2 (tr)
HU (1) HUT72451A (tr)
NO (1) NO953355D0 (tr)
PL (1) PL310406A1 (tr)
RU (1) RU2131483C1 (tr)
SI (1) SI9400090A (tr)
SK (1) SK104295A3 (tr)
TN (1) TNSN94019A1 (tr)
TR (1) TR28278A (tr)
WO (1) WO1994019511A1 (tr)
ZA (1) ZA941307B (tr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR583070A (tr) * 1922-11-28 1925-01-06
GB228529A (en) * 1924-02-01 1925-11-12 Gelsenkirchener Bergwerks Ag Improvements in or relating to the coating of hollow bodies
US3484266A (en) * 1966-07-05 1969-12-16 Smith Corp A O Method of internally coating tubular members with glass
FR2297817A1 (fr) * 1975-01-16 1976-08-13 Pont A Mousson Procede et installation de fabrication d'objets tubulaires en fonte revetus interieurement de ver
CA1075270A (en) * 1976-03-26 1980-04-08 Eagle-Picher Industries Method and composition for preparing a ferrous surface for porcelain enameling
GR59196B (en) * 1976-09-08 1977-11-25 Bisch Andre Process producing glassy coverings and several objects
EP0036558A1 (de) * 1980-03-22 1981-09-30 Bayer Ag Beschichteter Metallgegenstand und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
CZ213495A3 (en) 1997-04-16
HRP940138A2 (en) 1996-08-31
DE69424933D1 (de) 2000-07-20
RU2131483C1 (ru) 1999-06-10
WO1994019511A1 (fr) 1994-09-01
ZA941307B (en) 1994-09-30
NO953355L (no) 1995-08-25
BG99883A (en) 1996-02-29
PL310406A1 (en) 1995-12-11
AU678818B2 (en) 1997-06-12
FR2701963B1 (fr) 1995-04-21
SK104295A3 (en) 1996-03-06
CZ284752B6 (cs) 1999-02-17
ES2147572T3 (es) 2000-09-16
DE69424933T2 (de) 2000-10-19
AU6111394A (en) 1994-09-14
SI9400090A (en) 1994-12-31
ATE193906T1 (de) 2000-06-15
EP0686212A1 (fr) 1995-12-13
EG20502A (en) 1999-06-30
HUT72451A (en) 1996-04-29
HU9502510D0 (en) 1995-10-30
TNSN94019A1 (fr) 1995-04-25
FR2701963A1 (fr) 1994-09-02
BR9406163A (pt) 1996-01-09
TR28278A (tr) 1996-04-05
CA2157008A1 (fr) 1994-09-01
NO953355D0 (no) 1995-08-25

Similar Documents

Publication Publication Date Title
CH661287A5 (fr) Procede de preparation par diffusion d'une couche protectrice sur des alliages a base de nickel, cobalt et fer.
CH660028A5 (fr) Procede de preparation par diffusion d'une couche protectrice sur des alliages a base de nickel, cobalt et fer.
CA2230016A1 (fr) Procede de fabrication d'un feuillard en acier inoxydable ferritique a haute teneur en aluminium utilisable notamment pour un support de catalyseur d'echappement de vehicule automobile
FR2499593A1 (fr) Procede pour realiser des couches d'oxydes protectrices
JPH0341955B2 (tr)
EP0169765A1 (fr) Cage froide pour creuset à fusion par induction électromagnétique à fréquence élevée
EP0686212B1 (fr) Procede de fabrication d'une piece metallique revetue de materiaux mineraux, piece obtenue et son utilisation
FR2692284A1 (fr) Tôle revêtue et procédé de fabrication de cette tôle.
EP0711392B1 (fr) Element de tuyauterie pour canalisation, canalisation correspondante, et procede de fabrication d'un tel element de tuyauterie
EP2364278B1 (fr) Procede de revetement d'un element de creuset metallique par un melange de verre et de ceramique
EP0670190B1 (fr) Moule de fonderie et son procédé de réalisation
EP1060818A1 (fr) Structures tridimensionnelles à haute porosité en alliages contenant du chrome
FR2721241A1 (fr) Busette de coulée comportant une chemise interne apte à former une couche imperméable au gaz et procédé de mise en Óoeuvre.
JP2006307322A (ja) クロムめっき部材
JP4392087B2 (ja) ダイカスト用金型の表面処理方法およびその金型
US1043579A (en) Chemical vessel.
JP3795661B2 (ja) シンクロール
JPH06248472A (ja) 耐食・耐摩耗多層金属被膜及びその製造方法
GB2076432A (en) Cu-Ni coatings on ferrous substrates
JP3167653B2 (ja) 可溶性ガラス質材料溶射被覆部材およびその製造方法
EP1348505A1 (fr) Pièce de coulée résistant au choc thermique et son procédé de fabrication
JP2017226865A (ja) 溶射膜を有する基材
JPH03264154A (ja) 冷却能に優れた熱交換体鋳物及びその製造方法
WO1991009991A1 (fr) Procede de revetement de surface multicouche et procede de collage des pieces ainsi traitees
JPH0557470B2 (tr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19960425

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000614

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000614

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000614

REF Corresponds to:

Ref document number: 193906

Country of ref document: AT

Date of ref document: 20000615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000615

REF Corresponds to:

Ref document number: 69424933

Country of ref document: DE

Date of ref document: 20000720

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000914

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000914

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000914

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2147572

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: S.A. PONT-A-MOUSSON

Effective date: 20010228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120215

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120218

Year of fee payment: 19

Ref country code: GB

Payment date: 20120222

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120307

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69424933

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130223

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130224