EP0678159B1 - Einrichtung zur kurbelwellensynchronen erfassung einer sich periodisch ändernden grösse - Google Patents

Einrichtung zur kurbelwellensynchronen erfassung einer sich periodisch ändernden grösse Download PDF

Info

Publication number
EP0678159B1
EP0678159B1 EP94918296A EP94918296A EP0678159B1 EP 0678159 B1 EP0678159 B1 EP 0678159B1 EP 94918296 A EP94918296 A EP 94918296A EP 94918296 A EP94918296 A EP 94918296A EP 0678159 B1 EP0678159 B1 EP 0678159B1
Authority
EP
European Patent Office
Prior art keywords
segment
crankshaft
dependent signal
signal
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94918296A
Other languages
English (en)
French (fr)
Other versions
EP0678159A1 (de
Inventor
Ulrich Koelle
Andreas Lock
Andreas Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0678159A1 publication Critical patent/EP0678159A1/de
Application granted granted Critical
Publication of EP0678159B1 publication Critical patent/EP0678159B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow

Definitions

  • the invention relates to a device crankshaft synchronous detection of a periodically changing size in an internal combustion engine, in particular the burden, according to the genus of the main claim.
  • features of the main claim have the advantage that on the one hand a very precise averaging is possible and on the other hand the exact intake manifold pressure curve or exact course of the intake air quantity can be determined can. So it is also possible to do that per work cycle to determine the intake air mass precisely. Overall is one particularly accurate and reliable load determination possible.
  • FIG. 1 shows a schematic representation of the device according to the invention
  • FIG. 2 are associated Signal sequences shown, based on which the invention is explained.
  • the surface of the disk 12 has a number of markings 13a, 13b, 13c which is matched to the number of cylinders of the internal combustion engine. In the case shown in Figure 1, there are three markings, such a disc is used in a six-cylinder internal combustion engine. An area labeled ⁇ KW forms a so-called segment. This area is defined in FIG. 1 as the angle between the rear flank of the mark 13a and the rear flank of the mark 13b.
  • the disk 12 is scanned by a fixed sensor 14, the output signal of which is fed to the control unit 10 as the input signal E 1 and is further processed there.
  • the intake manifold of the internal combustion engine is designated, 16 schematically represents the throttle valve which is arranged in the intake manifold. 17 shows an area of the intake manifold that acts as a pneumatic filter and 18 is a hot-wire air mass meter HLM that registers the air flowing through and the output signal of which is supplied to control unit 10 as signal U LH .
  • An HFM can also be used instead of an HLM.
  • 19 denotes a pressure sensor which is arranged in the intake manifold, for example at one of the locations shown, and measures the intake manifold pressure. This sensor is also connected to the control unit 10, in which the output signals U LP of the pressure sensor are also processed. The control unit 10 supplies output signals A for regulating the internal combustion engine, in particular the ignition and injection.
  • the output signals of the load sensor i.e. the pressure sensor or the air mass meter are suitably processed, in particular they can be filtered so that a periodic waveform arises, which then is processed further.
  • FIG. 2a shows one obtained from the crankshaft sensor Signal shown, only these signal parts applied as the backs of the brands pass by 13a, 13b, 13c are generated on the crankshaft sensor 14.
  • the Distance between the signal edges is for that Embodiment according to Figure 1 120 ° / KW, so it corresponds just one segment.
  • the course of the load signal U L is shown in FIG. 2c. This is either the signal U LH coming from the hot wire or hot film air mass meter or the signal from the pressure sensor U LP arranged in the intake manifold. This signal fluctuates periodically with a period length that corresponds to a segment length or an angle of ⁇ KW .
  • the output signal of the pressure sensor is set in essentially linearly dependent on the pressure DC voltage signal with a superimposed sinusoidal pulsation in the entire speed range.
  • actual waveform is for understanding the Invention irrelevant, it is therefore only periodic Share shown.
  • the pressure sensor is installed directly in the intake manifold, a additional filters can be used, but it is not absolutely necessary for a reliably evaluable signal be preserved.
  • the signal according to Figure 2c is in one in the control unit special grid, for example in a 1 millisecond grid. It is essential that the sampling starts in the same place for each segment. The Synchronization of the scanning takes place depending on the Signal edges according to Figure 2a. Would this synchronization would not be carried out because of the constant Sampling intervals even when the engine is stationary a beat in the load signal.
  • the first scan takes place in the illustrated Embodiment one millisecond after the occurrence of the first edge of the signal according to FIG. 2a.
  • the first scan is designated 1 in Figures 2b and 2c.
  • the second scan occurs a millisecond later and is labeled 2.
  • the fourth scan is the last in the first segment.
  • the fifth scan is not made a millisecond after fourth, but a millisecond after the appearance of the second edge of the signal according to FIG. 2a. So it won't sampled at the point labeled 5, but at the with 5 'designated place.
  • For the sixth to eighth Sampling applies analogously that sampling is carried out at 6 'to 8' and not at 6 to 8 as in the unsynchronized case. This is ensured that the sampling for each segment is synchronized and takes place in the same place.
  • the sampling takes place at 9 "and not 9 or 9 '.
  • the digit 9" follows one Millisecond after the third edge of the signal according to the figure 2a.
  • the averaging takes place over one segment each.
  • the average load signal of the first segment is therefore from the first four sampled load signal values are formed.
  • This Mean corresponds to the mean of the second segment, which is formed from the samples 5 'to 8'.
  • In the third Samples become 9 "to 12" for the segment Averaging used.
  • the load signal (from the HLM or HFM) is integrated over a work cycle, i.e. over a period length, the following applies: where n and n + 1 represents a segment, or between t n and t n + 1 the crankshaft rotates through an angle ⁇ KW .
  • the specified method can be used for both printing and HFM / HLM systems are used.
  • the sensor interface can process the signals Control unit is therefore identical to the hardware by switching over Data records optionally for both data acquisition systems be used.
  • the determined load is used in the control unit to regulate the Internal combustion engine, especially in connection with optimized ignition and injection.
  • Figure 1 shows an embodiment with a segment disc.
  • An incremental disk can also be used, with a large number, for example 60-2 markings, the two missing markings forming a reference mark.
  • the disc can also be used with the Connect camshaft. It is crucial that the Sampling of the periodic signal to be evaluated with a Period of one segment length in each segment on the same place ( Figure 2c).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Stand der Technik
Die Erfindung geht aus von einer Einrichtung zur kurbelwellensynchronen Erfassung einer sich periodisch ändernden Größe bei einer Brennkraftmaschine, insbesondere der Last, nach der Gattung des Hauptanspruchs.
Es ist bekannt, daß der Unterdruck im Saugrohr einer Brennkraftmaschine im Arbeitstakt der Brennkraftmaschine pulsiert. Zur exakten Regelung der Brennkraftmaschine wird jedoch der tatsächlich Luftdurchsatz benötigt. In vielen Fällen wird eine Ersatzgröße wie der Mittelwert des Saugrohrdruckes herangezogen. Es wird deshalb beispielsweise in der DE-OS 38 03 276 vorgeschlagen, den Saugrohrdruck winkelsynchron zweimal pro Periodendauer abzutasten und entweder das erhaltene Signal oder den Saugrohrdruck selbst durch geeignete Filter so zu dämpfen, daß ein quasi sinusförmiger Signalverlauf erhalten wird. Wird dieses Signal zweimal pro Zündabstand abgetastet, kann aus zwei aufeinanderfolgenden Werten direkt der Mittelwert berechnet werden.
Für moderne Brennkraftmaschinen ist diese Mittelwertbildung immer noch zu ungenau. Außerdem läßt sich mit dieser Methode nur der Mittelwert und nicht der genaue Druckverlauf bzw. der genaue Luftdurchsatz bestimmen, gerade dies wird für einige Regelmaßnahmen jedoch gewünscht.
Aus der EP-A-0 92 828 ist eine Einrichtung zur kurbelwellensynchronen Erfassung einer sich periodisch ändernden Größer einer Brennkraftmaschine, beispielsweise der Last bekannt, bei der mit Hilfe eines Kurbelwellensensors der Kurbelwellenwinkel erfaßt wird und mit Hilfe eines Lastsensors das Lastsignal ermittelt wird. Zur Auswertung des Lastsignales wird dieses in festem Kurbelwellenwinkel abgetastet, wobei die Abtastschritte so gewählt sind, daß eine vorgebbare Anzahl von Abtastungen pro Segment erfolgt, wobei jeweils eine Abtastung auf der Segmentgrenze liegt. Die bekannte Vorgehensweise einer winkelfesten Signalabtastung führt dazu, daß die Zeitabstände zwischen zwei Abtastungen drehzahlabhängig schwanken.
Vorteile der Erfindung
Die erfindungsgemäße Einrichtung mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß einerseits eine sehr genaue Mittelwertbildung möglich ist und andererseits der genaue Saugrohrdruckverlauf bzw. der genaue Verlauf der angesaugten Luftmenge bestimmt werden kann. Es ist also auch möglich, die pro Arbeitstakt angesaugte Luftmasse genau zu ermitteln. Insgesamt ist eine besonders genaue und zuverlässige Lastermittlung möglich.
Es ist weiterhin vorteilhaft, daß die erzielten Meßwerte von Segment zu Segment und damit von Arbeitstakt zu Arbeitstakt miteinander vergleichbar sind, es lassen sich dabei zu den einzelnen Segmenten gehörende Mittelwerte bilden, die dann auch für die Regelung der Brennkraftmaschine zur Verfügung stehen.
Erzielt werden diese Vorteile, indem der Signalverlauf mit einer hohen Abtastrate abgetastet wird, wobei der Beginn der Abtastung kurbelwellenbezogen synchronisiert ist, es wird also für jedes Segment an der selben Stelle mit der Abtastung begonnen. Dies ermöglicht eine Synchronisation auf das periodisch oszillierende Lastsignal. Durch Integration über einen Arbeitstakt wird die zugehörige angesaugte Luftmenge berechnet.
Eine geeignete Filterung des periodisch oszillierenden Signales kann vor der Abtastung durchgeführt werden, ist aber im Gegensatz zu der aus der DE-OS 38 03 276 bekannten Lösung nicht unbedingt erforderlich.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen der im Hauptanspruch angegebenen Einrichtung möglich.
Zeichnung
Die Erfindung ist in der Zeichnung dargetellt und wird in der nachfolgenden Beschreibung näher erläutert. Im einzelnen zeigt Figur 1 eine schematische Darstellung der erfindungsgemäßen Einrichtung, in Figur 2 sind zugehörige Signalabläufe dargestellt, anhand derer die Erfindung erläutert wird.
Beschreibung der Ausführungsbeispiele
In Figur 1 sind die erfindungswesentlichen Teile einer Brennkraftmaschine schematisch dargestellt. Dabei ist mit 10 das Steuergerät bezeichnet, mit 11 die Kurbelwelle und mit 12 eine Scheibe, die mit der Kurbelwelle 11 verbunden ist und sich mit dieser dreht.
Die Oberfläche der Scheibe 12 weist eine Anzahl von Markierungen 13a, 13b, 13c auf, die auf die Zahl der Zylinder der Brennkraftmaschine abgestimmt ist. Im in Figur 1 dargestellten Fall sind es drei Markierungen, eine solche Scheibe findet Verwendung bei einer Sechszylinderbrennkraftmaschine. Ein Bereich, der mit αKW bezeichnet ist, bildet ein sogenanntes Segment. Dieser Bereich ist in Figur 1 definiert als Winkel zwischen der Rückflanke der Marke 13a und der Rückflanke der Marke 13b.
Die Scheibe 12 wird von einem feststehenden Sensor 14 abgetastet, dessen Ausgangsignal dem Steuergerät 10 als Eingangssignal E1 zugeführt wird und dort weiterverarbeitet wird.
Mit 15 ist das Saugrohr der Brennkraftmaschine bezeichnet, 16 stellt schematisch die Drosselklappe dar, die im Saugrohr angeordnet ist. Mit 17 ist ein Bereich des Saugrohres dargestellt, der als pneumatisches Filter wirkt und 18 ist ein Hitzdraht-Luftmassenmesser HLM, der die durchströmende Luft registriert und dessen Ausgangssignal dem Steuergerät 10 als Signal ULH zugeführt wird.
An Stelle eines HLM kann auch ein HFM eingesetzt werden. 19 bezeichnet einen Drucksensor, der im Saugrohr, beispielsweise an einer der gezeigten Stellen angeordnet ist und den Saugrohrdruck mißt. Dieser Sensor ist ebenfalls mit dem Steuergerät 10 verbunden, in dem auch die Ausgangssignale ULP des Drucksensors verarbeitet werden. Das Steuergerät 10 liefert Ausgangssignale A zur Regelung der Brennkraftmaschine, insbesonders der Zündung und Einspritzung.
Die Ausgangssignale des Lastsensors, also des Drucksensors oder des Luftmassenmessers werden in geeigneter Weise aufbereitet, insbesondere können sie so gefiltert werden, daß ein periodischer Signalverlauf entsteht, der dann weiterverarbeitet wird.
In Figur 2a ist ein aus dem Kurbelwellensensor erhaltenes Signal dargestellt, dabei sind nur diese Signalteile aufgetragen, die beim Vorbeilaufen der Rückseiten der Marken 13a, 13b, 13c am Kurbelwellensensor 14 erzeugt werden. Der Abstand zwischen den Signalflanken beträgt für das Ausführungsbeispiel nach Figur 1 120 °/KW, er entspricht also gerade einem Segment.
In Figur 2c ist der Verlauf des Lastsignales UL dargestellt. Dieses ist entweder des vom Hitzdraht- bzw. Heißfilm-Luftmassenmesser stammende Signal ULH oder das Signal des im Saugrohr angeordneten Drucksensors ULP. Dieses Signal ist periodisch schwankend mit einer Periodenlänge, die einer Segmentlänge bzw. einem Winkel von αKW entspricht.
Der Lastverlauf nach Figur 2c ist im übrigen nur schematisch dargestellt, dies ist für das Verständnis der Erfindung jedoch nicht wesentlich. Genaugenommen liefert der Hitzdrahtluftmassenmesser ein im wesentlichen vom Luftmassenstrom abhängiges Gleichspannungssignal mit einer sinusartigen Pulsation, deren Amplitude zu höheren Drehzahlen hin kleiner wird. Im Rückströmbereich bei ca. 800 bis 1400 U/min, je nach Motor entspricht das Ausgangssignal bei Pulsation dem Absolutbetrag einer Sinusschwingung.
Das Ausgangssignal des Drucksensors stellt ein im wesentlichen vom Druck linear abhängiges Gleichspannungssignal dar mit einer überlagerten sinusförmigen Pulsation im gesamten Drehzahlbereich. Der tatsächliche Signalverlauf ist jedoch für das Verständnis der Erfindung unerheblich, es ist deshalb nur der periodische Anteil dargestellt.
Wird der Drucksensor direkt im Saugrohr angebracht, kann ein zusätzliches Filter eingesetzt werden, es ist aber nicht unbedingt erforderlich um ein zuverlässig auswertbares Signal erhalten werden.
Das Signal nach Figur 2c wird im Steuergerät in einem speziellen Raster abgetastet, beispielsweise in einem 1-Millisekunden-Raster. Dabei ist wesentlich, daß die Abtastung für jedes Segment an der gleichen Stelle beginnt. Die Synchronisation der Abtastung erfolgt in Abhängigkeit von den Signalflanken nach Figur 2a. Würde diese Synchronisation nicht durchgeführt werden, so würde aufgrund der konstanten Abtastintervalle auch im stationärem Motorbetriebszustand eine Schwebung im Lastsignal auftreten.
Die erste Abtastung erfolgt beim dargestellten Ausführungsbeispiel eine Millisekunde nach dem Auftreten der ersten Flanke des Signales nach Figur 2a. Die erste Abtastung ist in Figur 2b und 2c mit 1 bezeichnet. Die zweite Abtastung erfolgt eine Millisekunde später und ist mit 2 bezeichnet. Die vierte Abtastung ist die letzte im ersten Segment.
Die fünfte Abtastung erfolgt nicht eine Millisekunde nach der vierten, sondern eine Millisekunde nach dem Auftreten der zweiten Flanke des Signales nach Figur 2a. Es wird also nicht an der mit 5 bezeichneten Stelle abgetastet, sondern an der mit 5' bezeichneten Stelle. Für die sechste bis achte Abtastung gilt analog, daß bei 6' bis 8' abgetastet wird und nicht bei 6 bis 8 wie im unsynchronisierten Fall. Dadurch ist sichergestellt, daß die Abtastung für jedes Segment synchronisiert ist und an derselben Stelle erfolgt.
Beim Übergang ins dritte Segment erfolgt die Abtastung bei 9" und nicht bei 9 oder 9'. Dabei folgt die Stelle 9" eine Millisekunde nach der dritten Flanke des Signales nach Figur 2a.
Die Mittelwertbildung erfolgt über je ein Segment. Das mittlere Lastsignal des ersten Segmentes wir also aus den erste vier abgetasteten Lastsignalwerten gebildet. Dieser Mittelwert entspricht dem Mittelwert des zweiten Segmentes, der aus den Abtastwerten 5' bis 8' gebildet wird. Im dritten Segment werden die Abtastwerte 9" bis 12" zur Mittelwertbildung verwendet.
Zur Bestimmung der pro Arbeitstakt angesaugten Luftmenge wird das Lastsignal (vom HLM oder HFM) über einen Arbeitstakt, also über eine Periodenlänge aufintegriert, es gilt:
Figure 00080001
wobei n und n+1 ein Segment darstellt, bzw. zwischen tn und tn+1 die Kurbelwelle sich um einen Winkel αKW dreht.
Bei einer Brennkraftmaschine mit wahlweise einem Drucksensor oder einem Luftmassenmesser ist eine Kombination der beiden Erfassungssysteme denkbar, wenn beide Signale so aufbereitet werden, daß die Filter-Zeitkonstanten in der gleichen Größenordnung liegen. Eine kurbelwellen- bzw. drehzahlsynchronisierte Abtastung im 1ms-Raster ermöglicht dann eine einheitliche Lasterfassung.
Das angegebene Verfahren kann sowohl für Druckals auch für HFM/HLM-Systeme eingesetzt werden. Bei kompatibler Sensorschnittstelle kann ein die Signale verarbeitendes Steuergerät somit hardwareidentisch durch Umschalten von Datensätzen wahlweise für beide Datenerfassungssysteme eingesetzt werden.
Die ermittelte Last wird im Steuergerät zur Regelung der Brennkraftmaschine verwertet, insbesondere im Zusammenhang mit einer optimierten Zündung und Einspritzung.
Figur 1 zeigt ein Ausführungsbeispiel mit einer Segmentscheibe. Es kann ebenso eine Inkrementscheibe verwendet werden, mit einer Vielzahl, z.B. 60-2 Markierungen, wobei die beiden fehlenden Markierungen eine Bezugsmarke bilden. Die Inkrementscheibe ist dann so auszugestalten, daß eine bestimmte Zahl von Markierungen, z.B. zehn eine Segmentscheibe bilden, sich also über einen Winkel von αKW = 60° bei einem Sechszylindermotor erstrecken.
Mit entsprechender Anpassung kann die Scheibe auch mit der Nockenwelle in Verbindung stehen. Entscheidend ist, daß die Abtastung des auszuwertenden periodischen Signales mit einer Periodendauer von einer Segmentlänge in jedem Segment an der gleichen Stelle erfolgt (Figur 2c).

Claims (10)

  1. Einrichtung zur kurbelwellensynchronen Erfassung einer sich periodisch ändernden Größe einer Brennkraftmaschine, insbesonders der Last, mit einem Sensor, der ein kurbelwellenwinkelabhängiges Signal abgibt, das wenigstens eine Flanke pro Segment aufweist, wobei ein Segment einem wählbaren Kurbelwellenwinkelbereich entspricht, mit einem weiteren Sensor, der ein lastabhängiges Signal abgibt, wobei das lastabhängige Signal in einem wählbaren Raster abgetastet wird und der Beginn der Abtastung in jedem Segment im gleichen Abstand von der entsprechenden Flanke des kurbelwellenwinkelabhängigen Signales erfolgt, dadurch gekennzeichnet, daß das wählbare Raster ein Zeitraster ist, daß die Synchronisation der Abtastung jeweils in Abhängigkeit von den Flanken des kurbelwellenwinkelabhängigen Signales erfolgt, so daß die Abtastung in jedem Segment im gleichen Zeitabstand von der zugehörigen Flanke des kurbelwellenwinkelabhängigen Signales beginnt.
  2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß aus den abgetasteten Werten ein Mittelwert gebildet wird, wobei über jeweils ein Segment gemittelt wird.
  3. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Kurbelwellenwinkelbereich, der eine Segmentlänge bildet, von der Zahl der Zylinder der Brennkraftmaschine abhängt und so festgelegt wird, daß er einer Periodenlänge der sich periodisch ändernden Größe entspricht.
  4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß zur Bildung des kurbelwellenwinkelabhängigen Signales eine mit der Kurbelwelle verbundene Scheibe mit einer der halben Anzahl der Zylinder entsprechenden Zahl von Markierungen von einem Aufnehmer abgetastet wird.
  5. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Abtastung der sich periodisch ändernden Größe im Millisekundenabstand erfolgt.
  6. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die sich periodisch ändernde Größe der Luftstrom im Saugrohr der Brennkraftmaschine ist und als Sensor ein Luftmassen- oder Luftmengenmesser, insbesondere ein HFM oder HLM eingesetzt wird und/oder daß die sich periodisch ändernde Größe der Druck im Saugrohr der Brennkraftmaschine ist und als Sensor ein Drucksensor eingesetzt wird.
  7. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Abtastung und die Auswertung der Signale mit Hilfe des Steuergerätes der Brennkraftmaschine erfolgt.
  8. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das lastabhängige Signal so gefiltert wird, daß ein periodischer Signalverlauf entsteht.
  9. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Lastsignal über ein Segment integriert wird, zur Ermittlung der pro Arbeitstakt angesaugten Luftmenge.
  10. Einrichtung nach einem der vorhergehenden Ansprüche 1 bis 3 oder 5 bis 9, dadurch gekennzeichnet, daß zur Bildung des kurbelwellenwinkelabhängigen Signales eine Inkrementscheibe, die mit der Kurbel- oder Nockenwelle in Verbindung steht, abgetastet wird und die Scheibe eine Vielzahl von Markierungen aufweist, wobei eine vorgebbare Zahl von Markierungen sich über einen Winkelbereich αKW erstreckt, der einer Segmentlänge entspricht.
EP94918296A 1993-07-05 1994-06-22 Einrichtung zur kurbelwellensynchronen erfassung einer sich periodisch ändernden grösse Expired - Lifetime EP0678159B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4322311 1993-07-05
DE4322311A DE4322311A1 (de) 1993-07-05 1993-07-05 Einrichtung zur kurbelwellensynchronen Erfassung einer sich periodisch ändernden Größe
PCT/DE1994/000716 WO1995002122A1 (de) 1993-07-05 1994-06-22 Einrichtung zur kurbelwellensynchronen erfassung einer sich periodisch ändernden grösse

Publications (2)

Publication Number Publication Date
EP0678159A1 EP0678159A1 (de) 1995-10-25
EP0678159B1 true EP0678159B1 (de) 1998-12-02

Family

ID=6491980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94918296A Expired - Lifetime EP0678159B1 (de) 1993-07-05 1994-06-22 Einrichtung zur kurbelwellensynchronen erfassung einer sich periodisch ändernden grösse

Country Status (6)

Country Link
US (1) US5520043A (de)
EP (1) EP0678159B1 (de)
JP (1) JP3882026B2 (de)
KR (1) KR100327078B1 (de)
DE (2) DE4322311A1 (de)
WO (1) WO1995002122A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317705B (en) * 1996-09-30 2000-10-04 Cummins Engine Co Inc A control system,an internal combustion engine system,and a tone wheel
US5965806A (en) * 1997-09-30 1999-10-12 Cummins Engine Company, Inc. Engine crankshaft sensing system
US6131547A (en) * 1998-02-27 2000-10-17 Cummins Engine Company, Inc. Electronic engine speed and position apparatus for camshaft gear applications
US6138504A (en) * 1998-06-04 2000-10-31 Ford Global Technologies, Inc. Air/fuel ratio control system
DE19933664A1 (de) * 1999-07-17 2001-01-18 Bosch Gmbh Robert Vorrichtung zur analogen oder digitalen Signalverarbeitung
DE10021644C2 (de) * 2000-05-04 2002-08-01 Bosch Gmbh Robert Betriebszustandabhängiges Umschalten eines Abtastverfahrens eines Drucksensors
DE10064651A1 (de) * 2000-12-22 2002-07-04 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Gasfüllung von Zylindern einer Brennkraftmaschine
US8670894B2 (en) * 2009-04-28 2014-03-11 GM Global Technology Operations LLC Control system and method for sensor signal out of range detection
DE102014225176A1 (de) * 2014-12-08 2016-06-23 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bereitstellen einer gefilterten Luftsystemzustandsgröße in einem Steuergerät eines Verbrennungsmotors
JP6553497B2 (ja) * 2015-12-14 2019-07-31 日立オートモティブシステムズ株式会社 内燃機関の制御装置及びシステム
KR102199901B1 (ko) * 2017-01-23 2021-01-08 현대자동차주식회사 엔진의 흡기계의 압력 센서 감지 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886817A (en) * 1973-05-31 1975-06-03 Borg Warner Engine torque sensor device
JPS55139937A (en) * 1979-04-19 1980-11-01 Japan Electronic Control Syst Co Ltd Suction air amount computing method of internal combustion engine
DE2932336A1 (de) * 1979-08-09 1981-02-26 Bosch Gmbh Robert Steuereinrichtung zur zuendzeitpunktbestimmung und kraftstoffzumessung fuer eine brennkraftmaschine
JPS5658616A (en) * 1979-10-19 1981-05-21 Japan Electronic Control Syst Co Ltd Computing unit for intake quantity of internal combustion engine
JPS5780538A (en) * 1980-11-07 1982-05-20 Nippon Soken Inc Detector for firing limit for internal combustion engine
JPS58185948A (ja) * 1982-04-26 1983-10-29 Hitachi Ltd 燃料噴射制御装置
US4424709A (en) * 1982-07-06 1984-01-10 Ford Motor Company Frequency domain engine defect signal analysis
JPH06100150B2 (ja) * 1985-09-05 1994-12-12 マツダ株式会社 エンジンの吸気量検出装置
DE3803276A1 (de) * 1988-02-04 1989-08-17 Bosch Gmbh Robert Einrichtung zur saugrohrdruckerfassung bei einer brennkraftmaschine
DE4009285A1 (de) * 1989-08-23 1990-12-20 Audi Ag Verfahren zur zylinderselektiven ueberwachung des energieumsatzes bei einer mehrzylinder-brennkraftmaschine
US5076098A (en) * 1990-02-21 1991-12-31 Nissan Motor Company, Limited System for detecting combustion state in internal combustion engine
DE4006273A1 (de) * 1990-02-28 1991-09-26 Forsch Kraftfahrwesen Und Fahr Verfahren und vorrichtung zur ermittlung des verlaufs des innendrucks eines zylinders einer kolbenmaschine
JP2611502B2 (ja) * 1990-06-13 1997-05-21 三菱電機株式会社 内燃機関の失火検出装置
JP2556176B2 (ja) * 1990-06-20 1996-11-20 三菱電機株式会社 内燃機関の故障診断装置
FR2681426B1 (fr) * 1991-09-12 1993-11-26 Renault Regie Nale Usines Procede et dispositif de mesure du couple d'un moteur thermique a combustion interne tenant compte, notamment, de la recirculation des gaz d'echappement et des gaz brules residuels et de l'exces de comburant.
US5321979A (en) * 1993-03-15 1994-06-21 General Motors Corporation Engine position detection using manifold pressure

Also Published As

Publication number Publication date
DE4322311A1 (de) 1995-01-12
KR950703118A (ko) 1995-08-23
KR100327078B1 (ko) 2002-06-29
WO1995002122A1 (de) 1995-01-19
US5520043A (en) 1996-05-28
EP0678159A1 (de) 1995-10-25
JP3882026B2 (ja) 2007-02-14
JPH08501369A (ja) 1996-02-13
DE59407393D1 (de) 1999-01-14

Similar Documents

Publication Publication Date Title
EP0563347B1 (de) Verfahren zur adaption von mechanischen toleranzen eines geberrades
DE10237221B4 (de) Verfahren und Vorrichtung zum Bereitstellen eines kurbelwinkelbasierten Signalverfahrens
EP0929794B1 (de) Verfahren und vorrichtung zur korrektur von toleranzen eines geberrades
EP1272858B1 (de) Verfahren zur kompensation der drehunförmigkeit bei der drehzahlerfassung
EP0678159B1 (de) Einrichtung zur kurbelwellensynchronen erfassung einer sich periodisch ändernden grösse
WO1994023192A1 (de) Geberanordnung zur schnellen zylindererkennung bei einer mehrzylindrigen brennkraftmaschine
DE3301144A1 (de) Verfahren zum ermitteln der oeffnung eines drosselventils in einer vollstaendig geschlossenen stellung in einer brennkraftmaschine
EP0831224B1 (de) Geberanordnung zur schnellen Zylindererkennung bei einer Brennkraftmaschine
DE4232879C2 (de) Kurbelwinkel- und Zylinderzahl-Ermittlungsvorrichtung und -Verfahren für eine Brennkraftmaschine
DE3143191C2 (de) Datenabtastsystem für eine elektronische Steuerung für eine Brennkraftmaschine
DE3721010A1 (de) Verfahren und vorrichtung zum detektieren des maximalzylinderdruckwinkels bei einer brennkraftmaschine
DE3513086A1 (de) Vorrichtung fuer eine brennkraftmaschine zur beeinflussung von betriebsparametern
EP1244919A2 (de) Verfahren und vorrichtung zur erkennung einer verpolung bei einem signalgeber
DE10329586A1 (de) Kurbelwinkeldetektoreinrichtung für Brennkraftmaschinen
EP0898070B1 (de) Verfahren zur Erkennung des Verbrennungstaktes eines bestimmten Zylinders beim Start einer Brennkraftmaschine
DE19527347B4 (de) Einchip-Mikrocomputer für Steuervorrichtungen wie etwa eine Kraftfahrzeugmotor-Steuervorrichtung
EP0745836B1 (de) Vorrichtung zur Erzeugung eines synthetischen Signals für den Test von Klopfregelfunktionen
DE102016204263B4 (de) Verfahren zum Gleichstellen von Zylindern einer Brennkraftmaschine
EP1322917A1 (de) Drehwinkelgeber, einspritzanlage und zugehöriges betriebsverfahren
DE19957551A1 (de) Verfahren zum Synchronisieren von mindestens zwei Steuereinrichtungen
DE3414681C2 (de)
DE19529708C1 (de) Verfahren und Einrichtung zur Ermittlung der relativen Kompression einer Brennkraftmaschine
DE10350066A1 (de) Vorrichtung zur Glättung eines Signals mittels eines Epsilon-Filters
WO1991010113A1 (de) Geber zur zylindererkennung
DE4440639A1 (de) Verfahren zur Stationärsteuerung von Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 19960114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59407393

Country of ref document: DE

Date of ref document: 19990114

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070626

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100706

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100824

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59407393

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630