EP0677662A1 - Muskelartiges Kraftelement - Google Patents

Muskelartiges Kraftelement Download PDF

Info

Publication number
EP0677662A1
EP0677662A1 EP95105461A EP95105461A EP0677662A1 EP 0677662 A1 EP0677662 A1 EP 0677662A1 EP 95105461 A EP95105461 A EP 95105461A EP 95105461 A EP95105461 A EP 95105461A EP 0677662 A1 EP0677662 A1 EP 0677662A1
Authority
EP
European Patent Office
Prior art keywords
force element
force
element according
muscle
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95105461A
Other languages
English (en)
French (fr)
Inventor
Werner Homann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0677662A1 publication Critical patent/EP0677662A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • F15B15/103Characterised by the construction of the motor unit the motor being of diaphragm type using inflatable bodies that contract when fluid pressure is applied, e.g. pneumatic artificial muscles or McKibben-type actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F3/00Devices, e.g. jacks, adapted for uninterrupted lifting of loads
    • B66F3/24Devices, e.g. jacks, adapted for uninterrupted lifting of loads fluid-pressure operated
    • B66F3/25Constructional features
    • B66F3/35Inflatable flexible elements, e.g. bellows

Definitions

  • Muscle-like power elements are components that are based on the mode of action of natural muscles.
  • a natural muscle is stimulated to "contract” by resonance, in which the living being couples itself arbitrarily (in contrast to “consciously") with an external source of excitation.
  • the longitudinal muscle fibers which are fixed in their length, start to oscillate (wavy line), which shortens the muscle under transverse thickening.
  • the invention makes it possible to produce force elements which are simple in construction, inexpensive to produce, lightweight, insensitive to misalignments, are environmentally friendly in operation and, in comparison with known force elements, offer a higher tapped force with comparable characteristic values.
  • Such a force element can be divided into several communicating chambers by means of intermediate bundles, the common inner shell of which enables pressure equalization.
  • the advantages resulting from this are manifold:
  • the amount of operating equipment is smaller because of the smaller volume of the inner shell, and thus the space requirement transversely to the longitudinal axis of the force element.
  • the wave-like outer line Because of the wave-like outer line, several such force elements can be combined side by side in a light and space-saving manner, which additionally increases the force that can be tapped linearly.
  • this multi-chamber force element can be used excellently for the production of tubular muscle-like force elements.
  • Another decisive advantage is that the inner shell is stretched considerably less, which leads to an increase in tool life.
  • the load locations are the areas on the longitudinal axis of the force element that delimit the same and to which, with the shortest construction, a load is just attached
  • the load locations could) separate from each other as soon as the internal pressure of the force element is increased, ie that its length, measured in the longitudinal axis, increases.
  • a force element according to the invention consists of two individual parts, namely an inner shell and an outer shell, the outer shell being connected at two opposite ends to a fixed point and to the load.
  • the inner envelope is elastically extensible on all sides, expediently a balloon envelope made of an elastomer, rubber or the like.
  • the equipment be it a gas or a liquid, is introduced into it with pressure. It is sealed to the outside of the equipment and expands more and more as the internal pressure increases.
  • the length of the force element is shortened with increasing internal pressure of the inner cover. A shortening also results when using a mesh-like fabric.
  • the bundling of the shell components at the load locations of the force element is absolutely necessary for the force element to be effective; see picture I.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Prostheses (AREA)

Abstract

Das Kraftelement besteht aus einer ersten ballonartigen, durch ein Fluid aufblasbaren inneren Hülle (2) aus elastischem Material und einer diese innere Hülle umgebenden zweiten äußeren Hülle (3) aus einem in Kraftrichtung unelastischen Material. Mit der äußeren Hülle sind die Befestigungspunkte (4) verbunden. Beim Aufblasen der inneren Hülle verringert sich der Abstand zwischen den beiden Befestigungspunkten. <IMAGE>

Description

  • Muskelartige Kraftelemente sind Bauteile, die sich an die Wirkungsweise natürlicher Muskeln anlehnen.
  • Die Anregung eines natürlichen Muskels zur "Zusammenziehung" erfolgt durch Resonanz, indem sich das Lebewesen willkürlich (im Unterschied zu "bewußt") mit einer außerhalb liegenden Erregerquelle koppelt. Die in ihrer Länge festgelegten längsgehenden Muskelfasern geraten also in Schwingung (Wellenlinie), wodurch der Muskel unter Querverdickung sich verkürzt.
  • Die Erfindung ermöglicht es, Kraftelemente herzustellen, die von einfacher Bauart, preisgünstig herzustellen, leichtgewichtig, unempfindlich gegen Fluchtfehler, umweltfreundlich im Betrieb sind und im Vergleich mit bekannten Kraftelementen bei vergleichbaren Kennwerten eine höhere abgreifbare Kraft anbieten.
  • Quergestreifte willkürliche Muskeln ermöglichen eine kraftvolle Bewegung der Körperteile und dadurch die körperliche Arbeit. Mit dieser Kraftentfaltung sind sehr kurze Wege verbunden, weswegen sich ein dieser Muskelart nachempfundenes Kraftelement für große Übersetzungen mit hohen Reaktionsgeschwindigkeiten eignet und dort eingesetzt werden kann, wo eine kurze und extrem leichte Bauweise vorteilhaft ist. Ebenso besteht der große Vorteil, durch die diesen Kraftelement anhaftende günstige innere Übersetzung mit geringem Druck des Betriebsmittels, etwa Luft oder Wasser, und geringen Mengen davon arbeiten zu können. Daraus ergibt sich das günstige Gewichtsverhältnis von Kraftelement zu Last, wobei ein Verhältnis von kleiner als 1‰ durchaus erreichbar ist, und beste Umweltverträglichkeit bei Verwendung von Luft oder Wasser als treibenden Stoff.
  • Ein solches Kraftelement kann mittels Zwischenbündelungen in mehrere kommunizierende Kammern unterteilt sein, deren gemeinsame innere Hülle einen Druckausgleich ermöglicht.
  • Die daraus sich ergebenden Vorteile sind vielfältig: Die Betriebsmittelmenge ist geringer wegen des geringeren Volumens der Innenhülle, und damit auch der Platzbedarf quer zur Längsachse des Kraftelementes. Mehrerer solcher Kraftelemente lassen sich wegen der wellenartigen Außenlinie leicht und platzsparend nebeneinanderliegend zusammenfassen, was die abgreifbare Kraft zusätzlich linear vergrößert. Außerdem läßt sich dieses mehrkammrige Kraftelement ausgezeichnet zur Anfertigung schlauchmuskelartiger Kraftelemente verwenden. Ein entscheidender Vorteil ist auch, daß die innere Hülle erheblich weniger gedehnt wird, was zu einer Erhöhung der Standzeit führt.
  • Bei herkömmlichen hydraulischen oder pneumatischen Kraftelementen, z.B. bei Faltenbälgen, Pneumatik- oder Hydraulikzylindern, aufblasbaren Hebezeugen usw., ist es kennzeichnend, daß sich die Lastorte (als Lastorte werden hier die Bereiche auf der Längsachse des Kraftelementes bezeichnet, welche selbes begrenzen und an welchen bei kürzester Bauweise eine Last eben noch angebracht werden könnte) voneinander entfernen, sobald der Innendruck des Kraftelementes erhöht wird, d.h. daß sich dessen Länge, gemessen in der Längsachse, vergrößert.
  • Bei muskelartigen Kraftelementen gemäß der Erfindung ist dies, wie auch beim natürlichen Muskel, gerade umgekehrt. Bei Kraftelementen gemäß der Erfindung nähern sich die Lastorte bei Erhöhung des Innendruckes unter Verkürzung des Kraftelementes einander an. Kennzeichnend für diese Art Kraftelemente ist auch, daß die Kennlinie Kraft/Weg deutlich nichtlinear ist und im Endpunkt (im Ideal bei Kugelform des muskelartigen Kraftelementes) Selbsthemmung eintritt.
  • Ein Kraftelement gemäß der Erfindung besteht aus zwei Einzelteilen, nämlich einer inneren Hülle und einer äußeren Hülle, wobei die äußere Hülle an zwei gegenüberliegenden Enden mit einem Fixpunkt und mit der Last verbunden ist.
  • Die innere Hülle ist allseitig elastisch stark dehnbar, zweckmäßigerweise eine Ballonhülle aus einem Elastomer, Kautschuk oder Ähnlichem. In sie wird das Betriebsmittel, sei es ein Gas oder eine Flüssigkeit, mit Druck eingeleitet. Sie ist nach außen hin für das Betriebsmittel dicht und dehnt sich bei Erhöhung des Innendruckes immer stärker aus.
  • Die äußere Hülle besteht aus einem unelastischen Stoff oder Gewebe mit einer Struktur dergestalt, daß eine Dehnung in Richtung der Längsachse des muskelartigen Kraftelementes wirksam unterbunden wird. Gleichzeitig läßt die äußere Hülle jedoch eine Ausdehnung des Umfanges der inneren Hülle quer zur Längsachse zu. Um diese beiden Eigenschaften zu vereinen, gibt es mehrere Möglichkeiten, insbesondere:
    • Man nimmt nur längsgehende Fäden, welche in Fadenrichtung im wesentlichen nicht dehnbar sind und nebeneinander und übereinander liegen können;
    • man nimmt ein netzartiges Gewebe, wobei darauf zu achten ist, das Netz im lastfreien Zustand derartig vorzuspannen, daß die Netzknoten in Richtung Längsachse des Kraftelementes möglichst weit voneinander entfernt sind und quer dazu möglichst eng beieinanderliegen;
    • man nimmt einen in Richtung Längsachse des Kraftelementes stark bevorzugten Kreuzschlag von Fädern, die wiederum in Fadenrichtung unelastisch sind;
    • man nimmt einen Stoff, welcher sich in Längsrichtung unelastisch verhält und in Querrichtung elastisch. Ist er dazu noch gasdicht, erfüllt er die Aufgaben der inneren Hülle mit. Erfüllt er noch dazu die Forderungen nach Festigkeit, Dichtheit und Beständigkeit, ist er ideal.
  • Die äußere Hülle erfüllt folgende Aufgaben:
    • Sie nimmt die Last in Längsrichtung auf,
    • bewirkt eine steuerbare Aufdehnung des Kraftelementumfangs,
    • ermöglicht eine gezielte Verformung der inneren Hülle und stützt sie,
    • ermöglicht die entsprechende Steuerung des Innendruckes,
    • bewirkt im Verein mit der inneren Hülle die Längsachsenverkürzung des Kraftelementes, da bei Erhöhung des Innendruckes in der Innenhülle sich diese nicht in Längsrichtung ausdehnen kann, wohl aber radial und im Umfang.
  • Da die Bogenlänge der Fäden zwischen den Lastorten sich nicht ändern kann (deswegen die Forderung nach unelastischem Stoff), wird die Länge des Kraftelementes bei steigendem Innendruck der Innenhülle verkürzt. Eine Verkürzung ergibt sich auch bei Verwendung eines netzartigen Gewebes. Unbedingt erforderlich für eine gute Wirksamkeit des Kraftelementes ist die Bündelung der Hüllenbestandteile an den Lastorten des Kraftelementes; siehe hierzu Bild I.
  • Durch das innere Übersetzungsverhältnis eines muskelartigen Kraftelementes (im Mittel überschlagsweise über 1:7), ist ersichtlich, daß bei gleicher Lastaufnahme und vergleichbaren Kenngrößen (etwa Querschnitt zu Kolbendurchmesser) der Betriebsdruck gegenüber Kraftelementen bekannter Bauart lediglich ein Siebentel betragen muß, oder eben bei gleichem Druck die siebenfache Last aufgenommen werden kann. Je nach Betriebspunkt auf der Kraft/Weg-Kennlinie ist auch eine 20-fache Kraft bei entsprechend kürzerem Weg ohne weiteres möglich.
  • Zur Nachbildung sogenannter längsgestreifter, unwillkürlicher Muskeln werden mehrere der beschriebenen Kraftelemente kreis- oder bogenförmig angeordnet und an ihren Lastorten miteinander verbunden (siehe Bild II), und die so gebildeten Kraftelemente in axialer Anordnung entweder fest miteinander verbunden oder lose aneinander gelegt, wobei man immer das nächste mehrkammrige Kraftelement so um die Kraftelementlängsachse verdreht, daß immer ein Ort stärkster Verdickung einer Kammer in die Senke eines Lastortes des danebenliegenden Muskelringes eintaucht und in Summe die gewünschte Schlauchform erreicht wird.
  • Durch eine spiralige Anordnung eines sehr langen, auch mehrkammrigen Kraftelementes läßt sich das ebenfalls erreichen, wobei zu beachten ist, daß das Kraftelement dann die Längsachse des Stützelementes radial verdreht.

Claims (7)

  1. Muskelartiges Kraftelement zum Bewegen von Lasten, dadurch gekennzeichnet, daß es aus zwei Hüllen besteht, nämlich einer inneren und einer äußeren Hülle, wobei die innere Hülle aus einem dehnbaren Material besteht und nach Art eines Ballons mit einem Fluid, z.B. einem Gas oder einer Flüssigkeit, aufblasbar ist, und die äußere Hülle aus einem in Längsrichtung des Kraftelements nicht elastischen Stoff besteht, jedoch eine Ausdehnung der inneren Hülle in radialer und Umfangsrichtung zuläßt.
  2. Kraftelement nach Anspruch 1, dadurch gekennzeichnet, daß die äußere Hülle aus einer Vielzahl von längsgehenden, unelastischen Fäden besteht, die neben- und übereinander liegen und an gegenüberliegenden Seiten des Kraftelementes zusammengefaßt sind.
  3. Kraftelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß äußere und innere Hülle zu einer gemeinsamen Hülle zusammengefaßt sind.
  4. Kraftelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Kraftelement mittels Zwischenbündelungen in mehrere kommunizierende Kammern unterteilt ist, deren gemeinsame innere Hülse einen Druckausgleich zwischen den Kammern ermöglicht.
  5. Kraftelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere derartiger Kraftelemente hintereinander geschaltet und spiralig, ring- oder bogenförmig angeordnet sind.
  6. Kraftelement nach Anspruch 4, dadurch gekennzeichnet, daß die Innenhüllen zumindest einiger aufeinanderfolgender Kraftelemente miteinander kommunizieren.
  7. Kraftelement nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß bei einer spiraligen, ring- oder bogenförmigen Anordnung von Kraftelementen mehrere von ihnen miteinander seitlich verbunden sind.
EP95105461A 1994-04-11 1995-04-11 Muskelartiges Kraftelement Withdrawn EP0677662A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19944412422 DE4412422A1 (de) 1994-04-11 1994-04-11 Muskelartiges Kraftelement
DE4412422 1994-04-11

Publications (1)

Publication Number Publication Date
EP0677662A1 true EP0677662A1 (de) 1995-10-18

Family

ID=6515101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95105461A Withdrawn EP0677662A1 (de) 1994-04-11 1995-04-11 Muskelartiges Kraftelement

Country Status (2)

Country Link
EP (1) EP0677662A1 (de)
DE (1) DE4412422A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023050A1 (en) * 2000-09-14 2002-03-21 Alexandr Nikolaevich Marti Mechanical muscle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103802126A (zh) * 2014-03-07 2014-05-21 上海当世流体动力控制设备有限公司 液压仿生肌肉

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR951941A (fr) * 1947-08-08 1949-11-07 Soc Fr Regulateurs Arca Perfectionnements aux servo-moteurs à membranes tubulaires en série
US2844126A (en) * 1955-01-20 1958-07-22 Clevite Corp Fluid actuated motor system and stroking device
CH462374A (de) * 1966-04-08 1968-09-15 Politechnika Warszawska Künstlicher pneumatischer Muskel
US3481254A (en) * 1967-08-14 1969-12-02 United Aircraft Corp Composite structure
DE2904779A1 (de) * 1979-02-06 1980-09-04 Wolfgang Karl Renzland Kontraktile zelle mit kontraktiler zellwand
JPS5881205A (ja) * 1981-11-09 1983-05-16 Shunji Hirabayashi 流体圧アクチユエ−タ
EP0261721A2 (de) * 1986-09-22 1988-03-30 Théophile Beullens Hydraulische oder pneumatische Antriebseinrichtung
WO1992007789A1 (en) * 1990-11-05 1992-05-14 Michelsens Chr Inst Arrangement of stretching means
WO1992015790A1 (de) * 1991-03-06 1992-09-17 Ralph Wenzel Vorrichtung zum erzeugen einer zugkraft mittels druckmittel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24272E (en) * 1952-01-07 1957-02-12 Land vehicle or load-moving device comprising
JPS579698A (en) * 1980-05-19 1982-01-19 Goodyear Aerospace Corp Air pressure working lift-pad

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR951941A (fr) * 1947-08-08 1949-11-07 Soc Fr Regulateurs Arca Perfectionnements aux servo-moteurs à membranes tubulaires en série
US2844126A (en) * 1955-01-20 1958-07-22 Clevite Corp Fluid actuated motor system and stroking device
CH462374A (de) * 1966-04-08 1968-09-15 Politechnika Warszawska Künstlicher pneumatischer Muskel
US3481254A (en) * 1967-08-14 1969-12-02 United Aircraft Corp Composite structure
DE2904779A1 (de) * 1979-02-06 1980-09-04 Wolfgang Karl Renzland Kontraktile zelle mit kontraktiler zellwand
JPS5881205A (ja) * 1981-11-09 1983-05-16 Shunji Hirabayashi 流体圧アクチユエ−タ
EP0261721A2 (de) * 1986-09-22 1988-03-30 Théophile Beullens Hydraulische oder pneumatische Antriebseinrichtung
WO1992007789A1 (en) * 1990-11-05 1992-05-14 Michelsens Chr Inst Arrangement of stretching means
WO1992015790A1 (de) * 1991-03-06 1992-09-17 Ralph Wenzel Vorrichtung zum erzeugen einer zugkraft mittels druckmittel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 7, no. 177 (M - 233)<1322> 5 August 1983 (1983-08-05) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023050A1 (en) * 2000-09-14 2002-03-21 Alexandr Nikolaevich Marti Mechanical muscle

Also Published As

Publication number Publication date
DE4412422A1 (de) 1995-10-12

Similar Documents

Publication Publication Date Title
EP1437525B1 (de) Einrichtung für hydraulische Schwingungsdämpfer
EP2920484B1 (de) Feder
EP0309441A2 (de) Doppelt wirkende hydraulische Kolben-Zylinder-Einheit
DE20321645U1 (de) Zwischenwirbelimplantat
DE3540300C2 (de)
DE102011107580A1 (de) Faltenbalg
EP0838597B1 (de) Stellantrieb zur Umwandlung der Energie eines Fluids in eine mechanische Kraft
WO2010054775A1 (de) Aktor mit einem magnetorheologischen elastomer-element
EP0677662A1 (de) Muskelartiges Kraftelement
DE202009001086U1 (de) Künstlicher Muskel
EP0372167A2 (de) Elastisches Gummilager
DE19930726C1 (de) Hydraulisch dämpfendes Lager
DE102008007566B4 (de) Schwingungsfluiddämpfung- und/oder -federung
EP0587986B1 (de) Aktives Stellelement
EP3807084B1 (de) Anordnung zur übertragung von torsionsmomenten, insbesondere als torsionsfeder oder antriebswelle, aus faserverbundwerkstoffen zur erzielung einer hohen spezifischen materialausnutzung
DE19643649C1 (de) Stellantrieb zur Umwandlung der Energie eines Fluids in eine mechanische Kraft
DE2626414C3 (de) Elastische Wellenkupplung zur schwingungshemmenden Übertragung von Drehmomenten
DE19801277A1 (de) Hydraulisch dämpfendes Mehrkammer-Motorlager
EP0406478B1 (de) Kraftzellenanordnung für Druckluftmotoren
DE102016206891B3 (de) Hydropneumatisches Federbein
DE2717578C2 (de) Pumpe oder Verdichter
DE01973531T1 (de) Verfahren und vorrichtung zur verbesserten schwingungsisolierung
WO2015197215A1 (de) Hydrolager sowie kraftfahrzeug mit einem derartigen hydrolager
DE102017110178A1 (de) Vorrichtung zur Niveauverstellung eines Fahrzeugaufbaus
WO2010037379A1 (de) Künstlicher muskel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19950919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19951127

R18W Application withdrawn (corrected)

Effective date: 19951124

R18W Application withdrawn (corrected)

Effective date: 19951124