EP0673561A1 - Oszillatorschaltung und deren verwendung - Google Patents

Oszillatorschaltung und deren verwendung

Info

Publication number
EP0673561A1
EP0673561A1 EP93917586A EP93917586A EP0673561A1 EP 0673561 A1 EP0673561 A1 EP 0673561A1 EP 93917586 A EP93917586 A EP 93917586A EP 93917586 A EP93917586 A EP 93917586A EP 0673561 A1 EP0673561 A1 EP 0673561A1
Authority
EP
European Patent Office
Prior art keywords
frequency
stage
oscillator
connection
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93917586A
Other languages
English (en)
French (fr)
Inventor
Gerhard Maier
Klaus Clemens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Thomson Brandt GmbH
Original Assignee
Deutsche Thomson Brandt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4219990A external-priority patent/DE4219990A1/de
Application filed by Deutsche Thomson Brandt GmbH filed Critical Deutsche Thomson Brandt GmbH
Publication of EP0673561A1 publication Critical patent/EP0673561A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1841Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator
    • H03B5/1847Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device
    • H03B5/1852Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device the semiconductor device being a field-effect device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1203Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1293Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator having means for achieving a desired tuning characteristic, e.g. linearising the frequency characteristic across the tuning voltage range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/0002Types of oscillators
    • H03B2200/0008Colpitts oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/003Circuit elements of oscillators
    • H03B2200/004Circuit elements of oscillators including a variable capacitance, e.g. a varicap, a varactor or a variable capacitance of a diode or transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/003Circuit elements of oscillators
    • H03B2200/0056Circuit elements of oscillators including a diode used for switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0088Reduction of noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • H03B2201/02Varying the frequency of the oscillations by electronic means
    • H03B2201/0208Varying the frequency of the oscillations by electronic means the means being an element with a variable capacitance, e.g. capacitance diode

Definitions

  • the present invention relates to an oscillator circuit according to the preamble of the main claim and a preferred use according to the first use claim.
  • Oszi llators for generating signals with periodic vibrations are known in a variety of designs.
  • Co Ipi tts oscillators are relatively inexpensive to buy as a construction stage. However, it is not possible to control the frequency of its output signal by means of a simple control signal, which is designed, for example, as a DC voltage signal.
  • a first stage which oscillates essentially at a constant frequency, as in the case of ⁇ pi el swei se a Colpitt ⁇ -Oszi Ilator, is followed by a second stage which has a capacitance diode, such as a so-called La bda half (L / 2 ) Oscillator. Its frequency can be changed be by driving a capacitance diode with a DC voltage.
  • the capacitance diode changes its capacitance as a function of the voltage value by means of a DC voltage signal, and thus the frequency value of the oscillator output signal is also varied accordingly.
  • the oscillator according to the invention can preferably be used for a converter in which a controllable oscillator with an output signal with a high frequency value is required.
  • the frequency of the oscillator can be regulated, for example, by a control signal of an amplifier stage, such as an AFC (Automatic Frequency Control) signal in the case of gaming.
  • AFC Automatic Frequency Control
  • PLL Phase Locked Loop
  • Fig. 1 a preferred embodiment
  • Fig. 1 shows a Colpitts oscillator 10, which can be implemented, for example, as an integrated circuit and has a MOS transistor 11.
  • the drain connection of the transistor 11 is connected to ground via a resistor 12.
  • the source connection of transistor 11 is connected via a resistor 13 to a positive voltage U +, to which a first connection of a further resistor 14 also leads.
  • With the second connection of the resistor 14 two further resistors 15, 16 are connected, one of which (15) leads to ground and the other (16) is connected with its second connection to the gate connection of the transistor 11.
  • a series connection consisting of two capacitors 17, 18 leads from the gate connection to ground.
  • the center tap of this line circuit is connected to Source.
  • the Colpitts output signal is passed via an input capacitor 21 to a further capacitor 22, the second connection of which is connected to ground.
  • an inductor 23 which is realized in this exemplary embodiment as a strip conductor, leads to two further capacitors 24, 25.
  • the capacitor 24 is connected to ground and the second connection of the capacitor 25 is connected to the cathode of a capacitance diode 26 and a first connection of a resistor 27.
  • the anode of the diode 26 is grounded and the second connection of the resistor 27 is connected to a connection 28, via which an A FC control signal, which in this embodiment is designed as a DC voltage signal, is supplied.
  • the capacitance diode 26 is therefore arranged in terms of circuitry on the side of the oscillatory field of the second stage 20 opposite the active oscillator part.
  • An output signal of the overall arrangement of the oscillator circuit can be tapped off at the junction of the resistor 13 with the source connection of the transistor 11 and passed on to an oscillator output connection 40.
  • This switchover device can have a capacitor 30 at the common connection point of the capacitors 21 and 22 with the coil 23, which capacitor is connected to a diode 31 connected to ground and can optionally be connected to ground via this diode.
  • a voltage U provided for this purpose can be fed in at the connection point between the capacitor 30 and the diode 31.
  • This Ums cha Itei nr icht can be achieved when using an oscillator circuit as part of a frequency converter that depending on the relative position of the image and the sound carrier of a received transmitter, the frequency of the Festoszi llators switchable below or above is the first intermediate frequency ZF1, so as to convert reception channels with an "inverted" image carrier / sound carrier position into the "correct” position for subsequent signal processing.
  • Capacitor 21 2.7 pF Capacitor 22 2.2 pF Capacitor 24 3.9 pF Capacitor 25 0.47 pF capacitance diode 26 1T32 resistor 27 47 kOhm
  • Fig. 3 shows that the oscillator frequency increases with approximately 125 kHz / V with increasing DC voltage U28.
  • FIG. 4 A preferred example of use is shown in FIG. 4.
  • a tuner 30 receives a television input signal, in this exemplary embodiment via an antenna 31, and converts the reception signal with the frequency fe to a first intermediate frequency (ZF1.) Using a mixer 32, to which a first oscillator 33 is assigned ) with a frequency value in the range around 1200 MHz.
  • An intermediate frequency amplifier 34 to which the IF1 signal is fed, has a second mixer 35 with a second oscillator 36 and converts the IF1 signal into a second intermediate frequency signal (IF2), which in this exemplary embodiment is a Frequency value in the range of 30 - 70 MHz can have.
  • IF2 second intermediate frequency signal
  • an oscillator circuit according to the present invention is particularly suitable since its Frequency can be controlled by an AFC signal that is generated by an IF stage 37.
  • stages 30, 34 shown in FIG. 4 be constructed in such a way that they are virtually separated from one another. This means that, apart from a supply line which leads the ZF1 signal from the tuner 30 to the intermediate frequency amplifier 34, there is no electrical, magnetic or electromagnetic connection. This also includes the fact that there are no common connexions.
  • n 0, 1, 2, ...
  • L01 frequency of the oscillator of the first stage
  • L02 frequency of the oscillator of the second stage.
  • ZF1 m * L01 +/- n * fe. It has proven to be particularly advantageous to select the frequency range of the ZF1 in the range from approximately 1100 to 1400 MHz.
  • the oscillator circuit according to the invention can also be used in converter circuits which process signals of other frequency ranges; in particular frequency ranges et a between 1 and 2 gigahertz are provided in applications with AFC; a double converter of the type shown in Fig. 4 can also be operated with other oscillators.
  • oscillators whose frequency is regulated by a PLL.

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

Es ist die Aufgabe der vorliegenden Erfindung, eine Oszillatorschaltung vorzustellen, die Ausgangssignale mit einer hohen Frequenz erzeugt und durch ein Gleichspannungssignal steuerbar ist. Erfindungsgemäß wird einer ersten Stufe (10), die im wesentlichen mit gleicher Frequenz schwingt, eine zweite Stufe (20) nachgeschaltet, die eine Kapazitätsdiode aufweist. Die Erfindung läßt sich bevorzugt bei einem Doppelkonverter zur Aufbereitung von Fernsehsignalen verwenden.

Description

Die vorliegende Erfindung betrifft eine Oεzi llatorschaltung gemäß dem Oberbegriff des Hauptanspruchs und eine bevorzugte Verwendung gemäß dem ersten Verwendungsanspruch.
Oszi llatoren zur Erzeugung von Signalen mit periodischen Schwingungen sind in ielfältigen Ausführungen bekannt. Eine mögliche Ausführung für hohe Frequenzen,, beispielsweise im Bereich von 1 Gigahertz, stellt der sogenannte Co Ipi tt s-Oszi l- lator dar, der einen kapazitiven Spannungstei ler aufweist, durch den ein Bruchte l einer zur Mitkopplung dienenden Span¬ nung bestimmt wi rd.
Co Ipi tts-Oszi l latoren sind als Baustufe relativ preiswert im Handel erhältlich. Es ist jedoch nicht möglich, die Frequenz ihres Ausgangssignales durch ein einfaches Steuersignal, das beispielsweise als Gleichspannungssignal ausgebi ldet ist, zu steuern.
Es ist die Aufgabe der vorliegenden Erfindung, eine Oszi lla- torεchaltung unter Verwendung eines Oszi llators mit im wesent¬ lichen konstanter Frequenz, wie beispielsweise ein Colpitts- Oεzi llator, zu verwi rklichen, bei der die Frequenz des Aus¬ gangssignals mittels eines Steuersignals geändert werden kann.
Diese Aufgabe wird gelöst durch eine Oszi L latorsc ha Ltung nach Anspruch 1.
Erfindungsgemäß ist einer ersten Stufe, die im wesentlichen mit konstanter Frequenz schwingt, wie bei εpi e l swei se ein Col- pittε-Oszi Ilator, eine zweite Stufe nachgeschaltet, die eine Kapazitätsdiode aufweist, wie beispielsweise ein sogenannter La bda-Halbe (L/2) Oszi llator. Desεen Frequenz kann verändert werden werden durch die Ansteuerung einer Kapazitätsdiode mit einer Gleichspannung.
Durch ein Gleichspannungεsignal ändert die Kapazitätsdiode in Abhängigkeit vom Spannungswert ihre Kapazität und damit wird auch der Frequenzwert des Oszi llator-Ausgangssignals entspre¬ chend variiert.
Der erfindungsgemäße Oszi llator kann bevorzugterweise für einen Konverter eingesetzt werden, bei dem ein steuerbarer Oszi llator mit einem Ausgangssignal mit einem hohen Frequenz- wert benötigt wird. Die Frequenz des Oszi llators kann bei- spielsweiεe durch ein Steuersignal einer Verstä rke rstufe, wie bei spi e Iswei se ein AFC (Automatic Frequency Control) Signal, geregelt werden. Dadurch entfällt eine PLL (Phase Locked Loop) Stufe, die andernfalls den Oszi llator regelt.
Weitere Vortei le, Merkmale und Einzelheiten der Erfindung werden in den folgenden Ausführungsbeispielen anhand der Zeichnung erläutert. Dabei zeigen:
Fig. 1 : ein bevorzugtes Ausführungsbeispiel;
Fig. 2, 3 : Ausgangs kenn li ni en des Ausführungsbeispiels nach Fig. 1 in Abhängigkeit von verschiedenen
Parametern; Fig. 4 : eine bevorzugte Anwendung des
Ausführungsbeispiels.
Bevor auf die Beschreibung der Ausführungsbeispiele näher eingegangen wird, sei darauf hingewiesen, daß die in der Zeichnung dargestellten Blöcke lediglich zum besseren Ver¬ ständnis der Erfindung dienen, üblicherweise sind einzelne oder mehrere dieser Blöcke zu Einheiten zusammenge aßt. Diese können beispielsweise in integrierter oder Hybridtechnik realisiert sein. Die in den einzelnen Stufen enthaltenen Elemente können auch getrennt ausgeführt werden.
Fig. 1 zeigt einen Colpitts-Oszi llator 10, der beispielsweise als integrierte Schaltung realisiert werden kann und einen MOS Transistor 11 aufweist. Der Drain Anschluß des Transi¬ stors 11 ist über einen Widerstand 12 mit Masse verbunden. Der Source Anschluß des Transistors 11 ist über einen Wider¬ stand 13 mit einer einer positiven Spannung U+ verbunden, zu der auch ein erster Anschluß eines weiteren Widersta des 14 führt. Mit dem zweiten Anschluß des Widerstandes 14 sind zwei weitere Widerstände 15, 16 verbunden, von denen einer (15) zu Masse führt und der andere (16) mit seinem zweiten Anschluß mit dem Gate Anschluß des Transistors 11 verbunden ist. Von dem Gate Anschluß führt eine Reihenschaltung bestehend aus zwei Kondensatoren 17, 18 zu Masse. Der Mittenabgriff dieser Peihenschaltung ist mit Source verbunden.
Das Ausgangssi gna L des Colpitts Oszi llators 10, das von dem Gate Anschluß abgreifbar ist, wird zu einem Block 20 geführt, der einen sogenannten La bda-Halbe (L/2) Oszi llator entält.
Das Colpitts Ausgangssignal wird über einen Eingangskondensa¬ tor 21 zu einem weiteren Kondensator 22 geleitet, dessen zweiter Anschluß mit Masse verbunden ist. Von dem gemeinsamen Anschluß der Kondensatoren 21, 22 führt eine Induktivität 23, die in diesem Ausführungsbeispiel als St rei fen Lei te r reali¬ siert ist, zu zwei weiteren Kondenεatoren 24, 25. Dabei iεt der Kondensator 24 gegen Masse geschaltet und der zweite Anschluß des Kondensators 25 ist mit der Katode einer Kapazi¬ tätsdiode 26 und einem ersten Anschluß eines Widerstandes 27 verbunden. Die Anode der Diode 26 liegt an Masse und der zweite Anschluß des Widerstandes 27 ist mit einem Anschluß 28 verbunden, über den ein A FC-Steue rsi gna l , das in diesem Aus¬ führungsbeispiel als Gleichspannungssignal ausgebi ldet ist, zugeführt wi rd. Die Kapazitätsdiode 26 ist be diesem Ausführungsbeispiel also schaltungsmäßig an der dem aktiven Oszi llatortei l entge- gengesetzen Seite des schwingungsf igen Gebi ldes der zweiten Stufe 20 angeordnet.
Ein Ausgangssignal der Gesamtanordnung der Oszi llatorεchal- tung kann an der Verbindungεstelle des Widerstands 13 mit dem Source Anschluß des Transistorε 11 abgegriffen und an einen Oszi llator-Ausgangsanschluß 40 weitergeleitet werden.
An der dem aktiven Oszi llatortei l zugewandten Seite des schwingungsfähigen Gebi ldes der zweiten Stufe 20 kann zusätz¬ lich eine U schalteinπ'chtung für die feste Oszi llatorfre¬ quenz vorgesehen sein. Diese Umscha Itei n ri chtung kann an dem gemeinsamen Verbindungspunkt der Kondensatoren 21 und 22 mit der Spule 23 einen Kondensator 30 aufweisen, der an eine mit Masse verbundene Diode 31 angeschlossen ist und über diese Diode wahlweise an Masse anschaltbar ist. Eine dafür vorgese¬ hene Scha It Spannung U ist an der Verbindungsstelle zwischen s dem Kondensator 30 und der Diode 31 einspeisbar.
Durch diese Ums cha Itei nri c htung kann bei Verwendung einer Oszi llatorschaltung als Tei l eines Frequenzumsetzers auf einfache Weise erreicht werden, daß je nach relativer Lage des Bi ld- und des Tonträgers eines empfangenen Senders die Frequenz des Festoszi llators schaltbar unter- oder oberhalb der ersten Zwischenfrequenz ZF1 liegt, um so Empfangskaπäle mit "umgekehrter" Bi Ldt räger/Tont rage r Lage in die für eine nachfolgende Signalverarbeitung "richtige" Lage umzusetzen.
Bei einer Ausgestaltung des Ausführungsbeispiels der Fig. 1 wurden Bauelemente mit folgenden Werten bzw. Bezeichnungen verwendet:
Kondensator 21 2,7 pF Kondensator 22 2,2 pF Kondensator 24 3,9 pF Kondensator 25 0,47 pF Kapazitätsdiode 26 1T32 Widerstand 27 47 kOhm
Mit diesen Bauelementen konnten Ausgangssignale mit Frequenz- werten im Bereich von 1173 MHz erzeugt werden. Die Abhängig¬ keit der Frequenzwerte von der Spannung U+ und der über den Anschluß 28 zugeführten Gleichspannung (U28) ist in den Figu¬ ren 2 bzw. 3 dargestellt.
Aus Fig. 2 wird erkennbar, daß die Oszi llatorfrequenz fo nur schwach von der Spannung U+ abhängt.
Fig. 3 zeigt, daß die Oszi llatorfrequenz mit etwa 125 kHz/V mit steigender Gleichspannung U28 ansteigt.
Ein bevorzugtes Verwendungsbeispiel ist in Fig. 4 dargestellt.
Ein Tuner 30 empfängt ein Fernseh-E p angssi gna l, in diesem Ausführungsbeispiel über eine Antenne 31, und konvertiert das Empfangsεi gna l mit der Frequenz fe mittels eines Mischers 32, dem ein erster Oszillator 33 zugeordnet ist, auf eine erste Zwischenfrequenz (ZF1) mit einem Frequenzwert im Bereich um 1200 MHz.
Ein Zwi schenfrequenzverstä rker 34, dem das ZF1 Signal zuge¬ führt wird, weist einen zweiten Mischer 35 mit einem zweiten Oszi llator 36 auf und konvertiert das ZF1 Signal in ein zwei¬ tes Zwischenfrequenz Signal (ZF2), das in diesem Ausführungs- beiεpiel einen Frequenzwert im Bereich von 30 - 70 MHz aufwei- εen kann.
Um eine Konvertierung von ZF1 auf ZF2 zu erzielen ist es notwendig, daß der zweite Oszi llator 36 im Bereich um 1100 bis 1200 MHz schwingt. Dafür ist eine Oszi l latorεcha ltung gemäß der vorliegenden Erfindung besonders geeignet, da deren Frequenz durch ein AFC Signal, das von einer ZF-Stufe 37 erzeugt wi rd, geregelt werden kann.
Es hat sich herausgestellt, daß bei einem Doppelumsetzer der in Fig. 4 dargestellten Art häufig starke Störungen auftre¬ ten, die verursacht werden durch gegenseitige Störungen der Oszi llatoren 33, 36. Weiterhin treten übersprecheffekte auf, die durch einen der Oszi llator 33, 36 in der jewei ls anderen Stufe 34 bzw. 30 verursacht werden.
Um die genannten Störungen zu verringern oder zu vermeiden, wi rd vorgeschlagen, die in Fig. 4 dargestellten Stufen 30, 34 derart aufzubauen, daß sie nahezu voneinander getrennt εind. Daε heißt, daß außer einer Zuleitung, die daε ZF1 Si¬ gnal von dem Tuner 30 zu dem Zwischenfrequenzverstärker 34 leitet, keinerlei elektrische, magnetische oder elektromagne¬ tische Verbindung besteht. Das schließt auch mit ein, daß keinerlei gemeinsame asseanεchlüεεe beεtehen.
Dadurch werden Kopplungen der Oszi llatoren 33, 36 auf die jewei ls andere Stufe 34 bzw. 30 wei testgehend vermieden.
Es hat sich gezeigt, daß die Anzahl an Störungen mit steigen¬ dem Frequenzwert von ZF1 vermindert werden kann.
So treten Störungen bei einer Ei ngangs frequenz fe auf gemäß
fe = m*L01 +/- n*L02
mit m, n = 0, 1, 2,...
L01 : Frequenz des Oszi llatorε der ersten Stufe L02 : Frequenz deε Oszi llators der zweiten Stufe.
Störungen der ersten Zwischenfrequenz ZF1 treten auf bei
ZF1 = m*L01 +/- n*fe. Es hat sich als besonders vortei lhaft erwiesen, als Frequenz- wert der ZF1 den Bereich von ca. 1100 - 1400 MHz zu wählen.
Das ist ein guter Kompromiß z ischen der Anzahl von Störungen einerseitε und den bauelementespezi fischen Anforderungen andererseits.
Versionen der genannten Ausführungsbeispiele können minde¬ stens eine der folgenden Variationen aufweisen:
die erfindungsgemäße Oszi llatorschaltung kann auch bei U setzerscha Ltungen (Konverter) verwendet werden, die Signale anderer Frequenzbereiche verarbeiten; insbesonde¬ re sind dabei Frequenzbereiche et a zwischen 1 und 2 Gigahertz in Anwendungen mit AFC vorgesehen; ein Doppelumsetzer der in Fig. 4 dargestellten Art kann auch mit anderen Oszi llatoren betrieben werden. So ist es beispielsweise denkbar, Oszi llatoren einzusetzen, deren Frequenz durch eine PLL geregelt w rd.

Claims

1. Oszillatorschaltung zur Erzeugung von Ausgangssignalen mit einstellbarem Frequenzwert, dadurch gekennzeichnet, daß eine erste Stufe (10) vorhanden ist, die mjt. einer zweiten, ein frequenzbesti mendes Gebi lde aufweisenden Stufe (20) verbunden ist und im wesentlichen mit einer konstanten Frequenz schwingt, und daß die zweite Stufe (20) eine Kapazitätsdiode (26) aufweist.
2. Oszi l latorscha Itung nach Anspruch 1, dadurch gekennzeich¬ net, daß die erste Stufe (10) als Co Ipi tts-Oszi l lator ausgebi ldet ist und/oder die zweite Stufe (20) als La b- da-Halbe Oszi llator ausgebildet ist.
3. Verwendung einer Oszi l latorscha Itung nach einem der vorherigen Ansprüche als Tei l eines Frequenzumsetzers (30, 34).
Verwendung nach Anspruch 3, dadurch gekennzeichnet, daß der Frequenzumsetzer (30, 34) als Doppelumsetzer ausge¬ bi ldet ist mit einem ersten Teil (30), der eine Eingangs¬ frequenz in eine erste Zwischenfrequenz (ZF1) umsetzt, die einen höheren Frequenzwert aufweist als eine höchste für den ersten Tei l (30) vorgesehene Eingangsfrequenz, und mit einem zweiten Tei l (34), der die erste Zwischen¬ frequenz (ZF1) in eine zweite Zwischenfrequenz (ZF2) umsetzt .
EP93917586A 1992-06-19 1993-06-21 Oszillatorschaltung und deren verwendung Withdrawn EP0673561A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4219990A DE4219990A1 (de) 1992-06-19 1992-06-19 Oszillatorschaltung und deren Verwendung
DE4219990 1992-06-19
DE4220250 1992-06-22
DE4220250 1992-06-22
PCT/EP1993/001577 WO1994000912A1 (de) 1992-06-19 1993-06-21 Oszillatorschaltung und deren verwendung

Publications (1)

Publication Number Publication Date
EP0673561A1 true EP0673561A1 (de) 1995-09-27

Family

ID=25915828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93917586A Withdrawn EP0673561A1 (de) 1992-06-19 1993-06-21 Oszillatorschaltung und deren verwendung

Country Status (2)

Country Link
EP (1) EP0673561A1 (de)
WO (1) WO1994000912A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI101657B1 (fi) * 1996-07-25 1998-07-31 Nokia Mobile Phones Ltd Jänniteohjattu oskillaattorikytkentä
US6407557B1 (en) 1998-08-27 2002-06-18 Canon Kabushiki Kaisha Process for measuring the electrical resistance of a resistive body for example for checking the conformity of a liquid product and devices for carrying out such a process
FR2782805B1 (fr) * 1998-08-27 2000-11-10 Canon Kk Procede de mesure de la resistance electrique d'un corps resistif et dispositifs pour la mise en oeuvre d'un tel procede

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2276749A1 (fr) * 1974-06-26 1976-01-23 Videon Oscillateur uhf a decalage de bande de frequences, destine en particulier aux tuners multinormes de television
JPS6018024A (ja) * 1983-07-11 1985-01-30 Toshiba Corp 局部発振回路
DE3405683A1 (de) * 1984-02-17 1985-08-22 Blaupunkt-Werke Gmbh, 3200 Hildesheim Hochfrequenz-oszillator
US4621241A (en) * 1985-06-07 1986-11-04 Vari-L Company, Inc. Wide range electronic oscillator
JPS62183609A (ja) * 1986-02-07 1987-08-12 Murata Mfg Co Ltd マイクロ波発振器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9400912A1 *

Also Published As

Publication number Publication date
WO1994000912A1 (de) 1994-01-06

Similar Documents

Publication Publication Date Title
DE102005048409B4 (de) Verstärkeranordnung für Ultra-Breitband-Anwendungen und Verfahren
DE69832620T2 (de) Empfänger mit mehreren Tunern
DE2334570B1 (de) Abstimmbare Hochfrequenz-Eingangsschaltungsanordnung fuer einen Fernsehempfaenger
DE69031738T2 (de) Spannungsgesteuerter Oszillator
DE102014102940A1 (de) Oszillator mit LC-Primär- und Sekundärschwingschaltungen
DE69836249T2 (de) UHF/VHF-Tuner
DE3133547A1 (de) "eingangswaehlschaltung zur zufuehrung verschiedener oszillatorsignale zu einem vorteiler eines pll-abstimmsystems"
DE69834456T2 (de) Hochfrequenz-Oszillatorschaltung
DE2412689A1 (de) Schaltungsanordnung zur abstimmung und bereichs- bzw. bandumschaltung eines hfschwingungskreises
DE10232861A1 (de) Frequenzverdoppler-Schaltungsanordnung
DE19833072A1 (de) Oszillatorschaltung
EP0125586B1 (de) Oszillatorschaltung für Fernsehempfangsgeräte
EP0761038B1 (de) Frequenzveränderbare oszillatoranordnung
DE3752195T2 (de) Abstimmbarer Oszillator mit Dual-Gate-FET
DE3689704T2 (de) Steuerbarer Oszillator.
EP0673561A1 (de) Oszillatorschaltung und deren verwendung
DE2753629C2 (de)
EP1258077B1 (de) Schaltungsanordnung zur direktmodulation
DE3788196T2 (de) Oszillator mit grossem Bereich.
EP1128552B1 (de) Schaltungsanordnung zur Filterung eines Hochfrequenzsignals
JPS61205015A (ja) 同調電圧トラツキング装置
DE2607530C2 (de) Funkgerät mit einer Oszillatoren-Einrichtung
DE1919625B2 (de) Empfaenger-eingangsschaltung, insbesondere fuer mittelwelle
DE2507607A1 (de) Tuner fuer fernsehempfaenger
DE4219990A1 (de) Oszillatorschaltung und deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000101