EP0667370B1 - Mousses stratifiées, procédé pour leurs préparation et leurs utilisation - Google Patents

Mousses stratifiées, procédé pour leurs préparation et leurs utilisation Download PDF

Info

Publication number
EP0667370B1
EP0667370B1 EP95101990A EP95101990A EP0667370B1 EP 0667370 B1 EP0667370 B1 EP 0667370B1 EP 95101990 A EP95101990 A EP 95101990A EP 95101990 A EP95101990 A EP 95101990A EP 0667370 B1 EP0667370 B1 EP 0667370B1
Authority
EP
European Patent Office
Prior art keywords
foam
gel
sio
foam laminate
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95101990A
Other languages
German (de)
English (en)
Other versions
EP0667370A2 (fr
EP0667370A3 (fr
Inventor
Klaus-Jürgen Behme
Rolf-Michael Dr. Jansen
Andreas Dr. Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Corp filed Critical Cabot Corp
Publication of EP0667370A2 publication Critical patent/EP0667370A2/fr
Publication of EP0667370A3 publication Critical patent/EP0667370A3/fr
Application granted granted Critical
Publication of EP0667370B1 publication Critical patent/EP0667370B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the invention relates to novel composite foams made of SiO 2 airgel particles and plastic foams, and to the production and use thereof.
  • blowing agents such as fluorocarbons or chlorofluorocarbons (HFC or CFCs) or hydrocarbons (pentane isomers). That in the Foam trapped cells is for the high Thermal insulation (thermal conductivity 0.020 to 0.040 W / mK) responsible.
  • these blowing agents are a burden with a high halogen content the environment as it diffuses at least partially from the foam emit.
  • the less environmentally harmful halogen-free hydrocarbons have disadvantages in the manufacture and use because of their flammability the foams. They too are diffused during use released continuously.
  • SiO 2 aerogels typically have superior thermal insulation properties ( ⁇ 0.02 W / mK) to the foams. However, they cannot be produced in any shape, are sensitive to breakage and show only a low compressive strength.
  • SiO 2 aerogels can be produced by a sol-gel process from suitable precursor materials in a solvent and subsequent drying at supercritical values of temperature and pressure. Such processes are described, for example, in EP-A-0 396 076 and WO 92/03378. However, this drying technique is very complex.
  • SiO 2 gels can be dried under subcritical conditions if they are treated with a silylating agent before drying.
  • the products produced in this way are often referred to as "SiO 2 xerogels". They are excellent thermal insulation agents and, apart from SiO 2, only contain air (in the pores). However, they cannot easily be shaped into any desired shape for thermal insulation, and their mechanical strength is relatively low.
  • step a) an acidic ion exchange resin is preferably used; there those containing sulfonic acid groups are particularly suitable. If one If mineral acids are used, hydrochloric acid and sulfuric acid are particularly suitable. Sodium or potassium water glass is preferably used as the water glass.
  • the base used is generally NH 4 OH, NaOH, KOH, Al (OH) 3 or colloidal silica. If a mineral acid was used in step a), the SiO 2 gel produced with the aid of the base is washed free of electrolytes with water; washing is preferably carried out until the washing water running off has the same electrical conductivity as demineralized water.
  • the gel is preferably aged, in general at 20 to 90 ° C, preferably at 20 to 70 ° C, and a pH of 6 to 11, preferably 6 to 9.
  • the time for this is generally 1 to 48 hours, especially 1 to 24 hours.
  • the gel is preferably washed with an organic one Solvent until the water content of the gel is less than 2% by weight.
  • Solvents are generally aliphatic alcohols, ethers, esters or Ketones, as well as aliphatic or aromatic hydrocarbons are used.
  • Preferred solvents are methanol, ethanol, isopropanol, acetone, Tetrahydrofuran, ethyl acetate, dioxane, n-hexane and toluene.
  • solvents are methanol, ethanol, isopropanol, acetone, Tetrahydrofuran, ethyl acetate, dioxane, n-hexane and toluene.
  • Steps a) to c) are generally carried out at a temperature between Freezing point of the solution and 70 ° C carried out.
  • step d) the solvent-containing gel is reacted with a silylating agent.
  • the reaction is generally carried out at 20 to 100 ° C, preferably 30 to 70 ° C, if necessary in a solvent.
  • the silylated gel is preferably coated with a protic or aprotic solvent washed until unreacted silylating agent in is substantially removed (residual content ⁇ 1% by weight).
  • Suitable solvents are those mentioned in step c). Analogously, they are preferred there mentioned solvents also preferred here.
  • the gel is silylated, and preferably washed thereafter Temperatures from -30 to 200 ° C, preferably 0 to 100 ° C, as well as pressures from 0.001 to 20 bar, preferably 0.01 to 5 bar, in particular 0.1 to 2 bar, dried. Temperatures higher than 200 ° C and / or higher pressures than 20 bar is easily possible, but they are with unnecessary effort connected and have no advantages. The advantage of this procedure is that during drying temperatures and pressures sufficient for the usual solvents far below their critical temperatures and pressures lie. Drying is generally continued until the gel has a residual solvent content of less than 0.1% by weight.
  • the SiO 2 xerogel particles produced in this way generally have a diameter of 0.01 to 30 mm and a density of 0.1 to 0.6 g / cm 3 .
  • the thermal conductivity of such an SiO 2 particle is 0.01 to 0.02 W / mK.
  • the thermal conductivity ( ⁇ value) of a bed of such particles depends on the particle size. A bed of large particles contains large voids filled with air, and therefore the bed has almost the same ⁇ value as air (0.024 W / mK), as shown in Table 1.
  • Particle size (mm) particle shape Thermal conductivity (W / mK, 24 ° C) 10 - 30 rods 0.033 1 - 5 granules 0.024 ⁇ 1 powder 0,021
  • thermal insulation materials with high mechanical strength and high thermal insulation capacity can be produced in any geometric shape by foaming SiO 2 airgel particles with foam.
  • SiO 2 airgel particles are poured into a correspondingly shaped container and mixed with a mixture which contains the components required for the foam synthesis.
  • the hardening foam envelops the particles and binds them together in the intended shape.
  • the volume of the bed of particles should be 10 to 90% of the volume of the finished composite foam, ie 10 to 90% of the volume of the molded container in which it is manufactured. 90 to 10% of the volume of the finished composite foam is accounted for by the foam.
  • the volume percentages are based on the volume of the finished Composite foam covered.
  • the aerogels are made by drying a suitable gel. According to the invention, among gels in the broader sense, “gels with air as Dispersant "to understand.
  • airgel in this sense includes aerogels in the narrower sense, Xerogels and cryogels.
  • a dried gel is used as an airgel in the narrower range Meaning meaning when the liquid of the gel is at temperatures above the critical temperature and starting from pressures above the critical Pressure is removed. However, if the liquid of the gel becomes subcritical, removed, for example, to form a liquid-vapor boundary phase, then the resulting gel is called a xerogel.
  • subcritically dried aerogels used. They can be dried over critically Airgels easier, i.e. at lower temperatures and lower pressures, produce, and are due to the groups inserted by the silylation (preferably trimethylsilyl groups) permanently hydrophobic.
  • Xerogel particles preferably have porosities above 60% and densities below 0.6 g / cm 3 .
  • the diameter of the gel particles is preferably in the range from 0.01 to 30 mm.
  • a polyurethane and / or Polyolefin foam used.
  • a linear low density polyethylene for example, can be used as the polyolefin (LLDPE), a high-density polyethylene (HDPE) or an ethylene vinyl acetate (EVA) and a polypropylene homo- or copolymer can be used.
  • LLDPE polyolefin
  • HDPE high-density polyethylene
  • EVA ethylene vinyl acetate
  • Polyurethane is particularly preferred as the plastic foam.
  • polyurethane foams are known and for example in plastic manual, volume VII, polyurethane, Carl Hanser Verlag Kunststoff, Vienna, 3rd edition (1993), especially pages 271-282, as well in EP-A-0 077 964, EP-A-0 334 059, DE-AS 1 964 138 (GB-PS 1 209 243) described.
  • CO 2 is preferably used as the blowing agent for the polyurethane, which is produced in the polyurethane synthesis from polyisocyanates and compounds having at least two hydrogen atoms which are reactive toward isocyanate groups (and, if appropriate, other customary additives, for example foam stabilizers) by adding water.
  • these have the disadvantages described above.
  • polycarbonate Polysulfone, poly (phenylene oxide), polyamide, poly (methyl acrylate), Polymethacrylamide, polyimide, epoxy and silicone foams, foams Phenol, urethane and melamine formaldehyde resins and polyvinyl chloride (PVC) foams.
  • PVC polyvinyl chloride
  • the composite foams according to the invention preferably have a density of 0.05 to 0.6 g / cm 3 .
  • Their thermal conductivity is preferably in the range from 0.015 to 0.040 W / mK.
  • Another object of the invention is a method for producing a composite foam, which is characterized in that a bed of SiO 2 airgel particles is foamed with plastic foam, the volume of the bed being 10 to 90% by volume of the intended volume of the composite foam.
  • the composite foams produced in this way can be used for thermal insulation are used, for example, as building boards, components or as components of cooling devices and other heat-insulating hollow bodies.
  • This solution was brought to a pH of 5.5 with a 0.5 molar NH 4 OH solution and then sprayed using an ultrasonic nozzle.
  • the moist gel granules were ripened for a further 24 hours at 50 ° C. and a pH of 6.
  • the water was then extracted with 6 l of acetone at 50 ° C. and the gel containing acetone was silylated with trimethylchlorosilane (TMCS) (0.05 g of TMCS per gram of wet gel, reaction time 4 hours at 50 ° C.) and then washed again with 1 l of acetone ,
  • TMCS trimethylchlorosilane
  • the transparent SiO 2 xerogel granules thus obtained had a bulk density of approx. 0.1 g / cm 3 .
  • the BET specific surface area was 950 m 2 / g and the thermal conductivity was 0.021 W / mK.
  • the particle diameter was 0.1 to 1 mm.
  • the thermal conductivity was determined using a heating wire method (see e.g. O. Nielsson, G. Joschenpöhler, J. subject, J. Fricke, High-Temperatures-High-Pressures, Vol. 21: 267-274 (1989)).
  • the mold was then closed, after which the SiO 2 xerogel particles were enveloped by the resulting polyurethane foam.
  • a hard composite foam sheet with a density of 0.14 g / cm 3 and an initial thermal conductivity of 0.020 W / mK resulted, which increased to 0.022 W / mK in the course of 1 week. This value was unchanged after further storage for 2 months.
  • the composite foam contained 80 vol.% SiO 2 xerogel particles and 20 vol.% Polyurethane foam.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Silicon Compounds (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Polyurethanes Or Polyureas (AREA)

Claims (8)

  1. Mousse composite contenant
    a) de 10 à 90 % vol. de particules d'aérogel de SiO2 silylé
    et
    b) de 90 à 10 % en volume d'une mousse de matière synthétique.
  2. Mousse composite selon la revendication 1, caractérisée en ce que les particules de gel présentent des porosités supérieures à 60 % et des masses volumiques inférieures à 0,6 g/cm3.
  3. Mousse composite selon l'une des revendications 1 ou 2, caractérisée en ce que les particules de gel présentent un diamètre qui se trouve dans le domaine de 0,01 à 30 mm.
  4. Mousse composite selon la revendication 1, caractérisée en ce que la mousse de matière synthétique est une mousse de polyuréthanne et/ou polyoléfine.
  5. Mousse composite selon la revendication 4, caractérisée en ce que la mousse composite de matière synthétique est une mousse de polyuréthanne expansée à l'aide de CO2 comme agent d'expansion.
  6. Procédé pour la préparation d'une mousse composite, caractérisé en ce qu'on enrobe de mousse de matière synthétique une matière en vrac de particules de xérogel de SiO2 silylées, le volume de la matière en vrac étant de 10 à 90 % en volume du volume recherché de la mousse composite.
  7. Procédé selon la revendication 6, caractérisé en ce qu'on fait réagir des particules de xérogel de SiO2 que l'on peut obtenir par
    a) établissement d'un pH ≤ 3,0 dans une solution aqueuse à l'aide d'une résine échangeuse d'ions acide ou d'un acide minéral,
    b) polycondensation de l'acide silicique en formation par ajout d'une base pour donner un gel de SiO2 et, si on utilise à l'étape a) un acide minéral, on lave le gel jusqu'à l'absence d'électrolyte,
    c) lavage du gel obtenu à l'étape b) par un solvant organique jusqu'à ce que la teneur en eau du gel ≤ 5,0 % en poids,
    d) réaction du gel obtenu à l'étape c) sur un agent de silylation,
    e) séchage su gel silylé obtenu à l'étape d) à une température de -30 à 200°C et une pression de 0,001 à 20 bars.
  8. Utilisation de la mousse composite selon au moins l'une des revendications 1 à 5 pour le calorifugeage.
EP95101990A 1994-02-15 1995-02-14 Mousses stratifiées, procédé pour leurs préparation et leurs utilisation Expired - Lifetime EP0667370B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4404701 1994-02-15
DE4404701A DE4404701A1 (de) 1994-02-15 1994-02-15 Verbundschaumstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung

Publications (3)

Publication Number Publication Date
EP0667370A2 EP0667370A2 (fr) 1995-08-16
EP0667370A3 EP0667370A3 (fr) 1995-08-30
EP0667370B1 true EP0667370B1 (fr) 2002-08-14

Family

ID=6510237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95101990A Expired - Lifetime EP0667370B1 (fr) 1994-02-15 1995-02-14 Mousses stratifiées, procédé pour leurs préparation et leurs utilisation

Country Status (8)

Country Link
US (1) US6040375A (fr)
EP (1) EP0667370B1 (fr)
JP (1) JP3691868B2 (fr)
CN (1) CN1056393C (fr)
AT (1) ATE222275T1 (fr)
CA (1) CA2142520A1 (fr)
DE (2) DE4404701A1 (fr)
ES (1) ES2181727T3 (fr)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2177810T3 (es) * 1995-10-11 2002-12-16 Cabot Corp Lamina recubierta de aerogel.
US6365663B2 (en) 1996-04-01 2002-04-02 Cabot Corporation Elastomer composite blends and methods-II
TW360585B (en) 1996-04-01 1999-06-11 Cabot Corp Elastomeric compositions and methods and apparatus for producing same
DE19643046A1 (de) * 1996-10-18 1998-04-23 Herbert Heinemann Verfahren zur Herstellung eines Dämmelements
DE19648798C2 (de) * 1996-11-26 1998-11-19 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
DE19718740A1 (de) 1997-05-02 1998-11-05 Hoechst Ag Verfahren zur Granulierung von Aerogelen
DE19718741A1 (de) 1997-05-02 1998-11-05 Hoechst Ag Verfahren zur Kompaktierung von Aerogelen
DE19756633A1 (de) 1997-12-19 1999-06-24 Hoechst Ag Verfahren zur unterkritischen Trocknung von Lyogelen zu Aerogelen
DE19801004A1 (de) 1998-01-14 1999-07-15 Cabot Corp Verfahren zur Herstellung von im wesentlichen kugelförmigen Lyogelen in wasserunlöslichen Silylierungsmitteln
DE59811774D1 (de) * 1998-06-05 2004-09-09 Cabot Corp Nanoporöse interpenetrierende organisch-anorganische netzwerke
EP1226918B1 (fr) * 1999-08-30 2007-07-11 Sekisui Chemical Co., Ltd. Procede de production pour mousse de resine thermoplastique et moule de moulage prevu a cet effet
DE10042580A1 (de) * 2000-08-30 2002-03-28 Hilti Ag Flexible Brandschutzplatte und deren Verwendung zum Brandschutz von Mauer-, Boden- oder Deckendurchbrüchen
US7635411B2 (en) * 2004-12-15 2009-12-22 Cabot Corporation Aerogel containing blanket
PT103257B (pt) 2005-04-05 2007-05-31 Inst Superior Tecnico Método de produção subcrítica de xerogéis e aerogéis monolíticos híbridos de sílica e látex modificado com grupos alcoxissilano
KR101423342B1 (ko) * 2005-10-21 2014-07-30 캐보트 코포레이션 에어로겔 기재 복합체
WO2007050436A2 (fr) * 2005-10-24 2007-05-03 Biomet 3I, Inc. Procedes pour la fabrication d'implants dentaires
KR100666110B1 (ko) 2006-02-28 2007-01-09 한국생산기술연구원 에어로겔 복합체 폼 및 그 제조방법
US7781492B2 (en) * 2006-06-08 2010-08-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Foam/aerogel composite materials for thermal and acoustic insulation and cryogen storage
WO2007146945A2 (fr) * 2006-06-12 2007-12-21 Aspen Aerogels, Inc. Composites d'aérogel et de mousse
KR101091860B1 (ko) * 2006-10-10 2011-12-12 한국생산기술연구원 영구적 소수성을 갖는 에어로겔의 제조 방법 및 이로부터 제조된 영구적 소수성을 갖는 에어로겔
KR101660316B1 (ko) 2010-03-30 2016-09-28 삼성전자 주식회사 유기 에어로젤 및 유기 에어로젤용 조성물
KR101782624B1 (ko) * 2010-02-12 2017-09-28 삼성전자주식회사 에어로젤 및 에어로젤의 제조방법
KR101666098B1 (ko) 2010-04-01 2016-10-14 삼성전자 주식회사 에어로젤, 에어로젤용 조성물 및 에어로젤의 제조방법
KR20110049572A (ko) * 2009-11-05 2011-05-12 삼성전자주식회사 유기 에어로젤, 유기 에어로젤용 조성물 및 상기 유기 에어로젤의 제조 방법
US8691883B2 (en) 2009-02-11 2014-04-08 Samsung Electronics Co., Ltd. Aerogel-foam composites
KR101560738B1 (ko) * 2009-02-11 2015-10-16 삼성전자 주식회사 유기 에어로젤, 이의 형성용 조성물 및 이의 제조방법
KR101627127B1 (ko) * 2009-09-24 2016-06-03 삼성전자 주식회사 유기 에어로젤 및 유기 에어로젤용 조성물
ES2568458T3 (es) * 2009-07-29 2016-04-29 Dow Global Technologies Llc Espuma polimérica termoaislante y artículo de material compuesto de aerogel
DE102009053782A1 (de) * 2009-11-19 2011-06-01 BSH Bosch und Siemens Hausgeräte GmbH Poröses SiO2-Xerogel mit charakteristischer Porengröße, dessen trocknungsstabile Vorstufen und dessen Anwendung
DE102009053784A1 (de) * 2009-11-19 2011-05-26 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Herstellung eines porösen SiO2-Xerogels mit charakteristischer Porengröße durch ein Bottom-Up-Verfahren über eine Vorstufe mit organischen Festkörperskelettstützen
DK2336223T5 (da) * 2009-12-08 2014-07-21 Recticel Fremgangsmåde til fremstilling af fleksibelt polyurethanskum og skum, der opnås derved
EP2368925B1 (fr) * 2010-03-27 2016-05-11 Samsung Electronics Co., Ltd. Aérogel, composition pour l'aérogel et procédé de fabrication de l'aérogel
WO2012000184A1 (fr) * 2010-06-30 2012-01-05 Dow Global Technologies Llc Particules nanoporeuses inorganiques comprenant un liant polyuréthane dispersible dans l'eau
WO2012076506A1 (fr) 2010-12-07 2012-06-14 Basf Se Matériau composite de polyuréthane
US20140128488A1 (en) * 2011-06-29 2014-05-08 Dow Global Technologies Llc Method for Making Organic Foam Composites Containing Aerogel Particles
DE102011083017A1 (de) * 2011-09-20 2013-03-21 Evonik Industries Ag Verbundwerkstoffe umfassend eine offenzellige Polymermatrix und darin eingebettete Granulate
EP2797994A2 (fr) * 2011-12-30 2014-11-05 Dow Global Technologies LLC Composition de mousse contenant des particules de gel de copolymère oléfinique séquencé
WO2013182506A1 (fr) * 2012-06-04 2013-12-12 Basf Se Matériau composite polyuréthane contenant de l'aérogel
US11053369B2 (en) 2012-08-10 2021-07-06 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
PT106781A (pt) 2013-02-15 2014-08-18 Inst Superior Técnico Aerogéis híbridos flexíveis preparados em condições subcríticas e processo de preparação dos mesmos
CN104177115B (zh) * 2013-05-27 2018-03-27 乌鲁木齐益好天成新型节能材料有限公司 一种固相硅凝胶制备泡沫材料的方法
FR3007025B1 (fr) 2013-06-14 2015-06-19 Enersens Materiaux composites isolants comprenant un aerogel inorganique et une mousse de melamine
US11380953B2 (en) 2014-06-23 2022-07-05 Aspen Aerogels, Inc. Thin aerogel materials
JP6487542B2 (ja) 2014-10-03 2019-03-20 アスペン エアロゲルズ,インコーポレイティド 改善された疎水性エアロゲル材料
KR101637270B1 (ko) 2015-03-23 2016-07-07 현대자동차 주식회사 다공성 고분자 수지층 및 그 제조방법
AT517431A1 (de) * 2015-07-01 2017-01-15 Radius-Kelit Infrastructure Gesmbh Mehrschichtiges Rohr
CN105733244A (zh) * 2016-02-29 2016-07-06 歌尔声学股份有限公司 吸音件的制备方法和吸音件
US10072213B2 (en) * 2016-10-20 2018-09-11 Jean-Hong CHEN Fireproof material incorporating aerogel with organic foam material and method for making the same
US10793777B2 (en) 2017-07-11 2020-10-06 Lukla Inc. Low density closed cell composite aerogel foam and articles including same
CN107236284B (zh) * 2017-07-26 2021-02-23 保定市日新塑胶制造有限公司 一种热塑型聚氨酯颗粒
US10480189B2 (en) * 2017-11-06 2019-11-19 Johns Manville Aerogel containing construction board
US10633855B2 (en) * 2017-12-01 2020-04-28 Johns Manville Aerogel containing foam board
SG11202011338TA (en) 2018-05-31 2020-12-30 Aspen Aerogels Inc Fire-class reinforced aerogel compositions
CN109232850A (zh) * 2018-08-08 2019-01-18 山东新朗华科技有限公司 一种气凝胶改性耐热阻燃低导热系数硬质聚氨酯泡沫塑料及其制备方法
CN110723984B (zh) * 2019-09-12 2022-06-07 巩义市泛锐熠辉复合材料有限公司 一种保温板材用气凝胶复合泡沫芯材及其制备方法
CN111944110A (zh) * 2020-08-30 2020-11-17 宁波耀众模塑科技有限公司 一种隔热效果好的聚氨酯发泡产品配方
US20230383083A1 (en) * 2020-10-01 2023-11-30 Cabot Corporation Flexible Polyurethane Foam and Formulation Thereof
CN114956863A (zh) * 2022-06-09 2022-08-30 安徽瑞联节能科技股份有限公司 一种建筑外墙保温复合板及其加工工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1203458B (de) * 1963-02-21 1965-10-21 Walker Mfg Co Verfahren zur Herstellung eines sorbierenden Materials unter Verwendung einer verschaeum-baren Mischung aus Kunststoff und Silikagel
GB1156783A (en) * 1965-07-30 1969-07-02 Ici Ltd Improvements in or relating to the Manufacture of Polyurethanes.
US3598772A (en) * 1969-01-28 1971-08-10 Hood Foam Ind Inc Mineral filled polyurethane foams
US4048272A (en) * 1976-01-02 1977-09-13 Arco Polymers, Inc. Method for preparing improved expanded polystyrene sheet
JPS5628225A (en) * 1980-07-11 1981-03-19 Ishikawa Takashi Preparation of light and high strength inorganic board
EP0218762A1 (fr) * 1985-09-27 1987-04-22 Agritec, Inc. Isolation à base de silice d'origine végétale
JPS63238140A (ja) * 1987-03-26 1988-10-04 Matsushita Electric Works Ltd 微細多孔体
US5227239A (en) * 1990-11-30 1993-07-13 The United States Of America As Represented By The United States Department Of Energy Production of hollow aerogel microspheres
DE4038784A1 (de) * 1990-12-05 1992-06-11 Basf Ag Verbundschaumstoffe mit niedriger waermeleitfaehigkeit
DE4115456A1 (de) * 1991-05-11 1992-11-12 Basf Ag Verfahren zur herstellung von fluorchlorkohlenwasserstoff freien, urethangruppen enthaltenden formkoerpern mit einem zelligen kern und einer verdichteten randzone
DE4342548A1 (de) * 1993-12-14 1995-06-22 Hoechst Ag Xerogele, Verfahren zu ihrer Herstellung, sowie ihre Verwendung

Also Published As

Publication number Publication date
DE59510313D1 (de) 2002-09-19
EP0667370A2 (fr) 1995-08-16
ATE222275T1 (de) 2002-08-15
JPH07316328A (ja) 1995-12-05
DE4404701A1 (de) 1995-08-17
CN1116217A (zh) 1996-02-07
ES2181727T3 (es) 2003-03-01
JP3691868B2 (ja) 2005-09-07
CN1056393C (zh) 2000-09-13
US6040375A (en) 2000-03-21
CA2142520A1 (fr) 1995-08-16
EP0667370A3 (fr) 1995-08-30

Similar Documents

Publication Publication Date Title
EP0667370B1 (fr) Mousses stratifiées, procédé pour leurs préparation et leurs utilisation
EP0859739B1 (fr) Procede de preparation d'aerogels modifies de maniere organique a l'aide d'alcools
EP0658513B1 (fr) Procédé de préparation de xérogels
DE19648798C2 (de) Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
EP0859740B1 (fr) Procede de preparation d'aerogels modifies de maniere organique, selon lequel les sels formes sont precipites
EP0672635B1 (fr) Corps moulés contenant des particules d'aérogel de silice et procédé pour leur fabrication
EP2649119B1 (fr) Mousses de résine de mélamine contenant des matières de charge nanoporeuses
EP0690023B1 (fr) Procédé de préparation de xérogels
EP0789667B1 (fr) Procede de production d'aerogels
EP2649115B2 (fr) Matériau composite de polyuréthane
WO1998023367A2 (fr) Procede pour la fabrication d'aerogels durablement hydrophobes modifies organiquement
WO1996022942A1 (fr) Procede de production d'aerogels modifies et leur utilisation
EP0861207B1 (fr) Procede de preparation d'aerogels modifies de maniere organique a l'aide d'alcools, selon lequel les sels formes sont precipites
WO1994026406A1 (fr) Procede de sechage sous-critique d'aerogels
CH710694B1 (de) Verfahren zur Herstellung eines Aerogels resp. eines Aerogel-Verbundwerkstoffs, sowie Aerogel resp. Aerogel-Verbundwerkstoff erhältlich nach dem Verfahren.
EP1680201B1 (fr) Procede pour produire des corps moules monolithiques
EP0925256B1 (fr) Procede de production d'aerogels modifies de maniere organique
DE19631267C1 (de) Verfahren zur Herstellung von organisch modifizierten Aerogelen
EP0837832B1 (fr) Procede de production d'aerogels organiquement modifies et leur utilisation
DE19801004A1 (de) Verfahren zur Herstellung von im wesentlichen kugelförmigen Lyogelen in wasserunlöslichen Silylierungsmitteln
DE102021134244A1 (de) Monolithischer Silica-Formkörper und dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19960229

17Q First examination report despatched

Effective date: 19981021

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH & C

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CABOT CORPORATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CABOT CORPORATION

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 222275

Country of ref document: AT

Date of ref document: 20020815

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020814

REF Corresponds to:

Ref document number: 59510313

Country of ref document: DE

Date of ref document: 20020919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030110

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030205

Year of fee payment: 9

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030214

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2181727

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030319

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59510313

Country of ref document: DE

Representative=s name: MAI DOERR BESIER PATENTANWAELTE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140228

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140128

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59510313

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150213