EP0665378A1 - Kreiselpumpe mit magnetischem Antrieb - Google Patents

Kreiselpumpe mit magnetischem Antrieb Download PDF

Info

Publication number
EP0665378A1
EP0665378A1 EP95420014A EP95420014A EP0665378A1 EP 0665378 A1 EP0665378 A1 EP 0665378A1 EP 95420014 A EP95420014 A EP 95420014A EP 95420014 A EP95420014 A EP 95420014A EP 0665378 A1 EP0665378 A1 EP 0665378A1
Authority
EP
European Patent Office
Prior art keywords
wheel
assembly
pump according
pump
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95420014A
Other languages
English (en)
French (fr)
Inventor
Pascal Gautier
Gilles Braussen
Bernard Gouthier
Ghislaine Deswert
Ernest Totino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mersen SA
Original Assignee
Carbone Lorraine SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbone Lorraine SA filed Critical Carbone Lorraine SA
Publication of EP0665378A1 publication Critical patent/EP0665378A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/025Details of the can separating the pump and drive area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/026Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/404Transmission of power through magnetic drive coupling
    • F05B2260/4041Transmission of power through magnetic drive coupling the driven magnets encircling the driver magnets

Definitions

  • the invention relates to centrifugal pumps with central magnetic drive, particularly pumps made of carbonaceous material and pumps intended to convey hot and / or corrosive and / or toxic and dangerous fluids.
  • Centrifugal pumps with magnetic drive have as basic components a pump body, a centrifugal impeller, a magnetic drive and assembly and connection elements.
  • Figure 1 schematically illustrates the constitution of a known pump of this type.
  • the pump body 4 is provided with an inlet port 12, a pumping compartment 22 and an outlet port 13.
  • the pump body 4 can be formed from several parts.
  • the magnetic drive device comprises a rotor 23 and a driver 24.
  • the driver consists of a drive wheel 14, which is provided with permanent motor magnets 3 and which is fixed to the shaft 2 of a motor.
  • peripheral drive there are at least two types of magnetic drive: either peripheral drive or central drive.
  • the drive wheel 14 surrounds the rotor 23, while in the second case, which relates to the present application, it is located inside the rotor.
  • the rotor 23 is fixed to the centrifugal wheel 5, most often by means of a common shaft and by screws, so as to form an integral wheel-rotor assembly.
  • the rotor is provided with follower elements 6, which are either permanent magnets, called follower magnets, or parts made of material of high magnetic permeability, called drive parts, or a combination of the two.
  • follower elements 6 are either permanent magnets, called follower magnets, or parts made of material of high magnetic permeability, called drive parts, or a combination of the two.
  • the motor magnets 3 and the follower elements 6 are generally placed opposite and spaced so as to ensure sufficient driving torque.
  • a lubrication device 10 and a particular lubricant are often necessary, but it is known to be able to ensure the lubrication of the bearings using the fluid conveyed (self-lubricating pumps).
  • the self-lubrication is obtained using a secondary circuit which promotes the circulation of the fluid conveyed in a slight clearance at the bearings and / or in reflux conduits 25 in the fixed and / or mobile parts.
  • the pumping compartment 22 occupies a volume closed internally by an air-tight bell 7.
  • the driver 24 and the motor are located outside the pumping compartment and are thus isolated from the transported fluid, which no longer circulates except in the pumping compartment 22.
  • the wall of the air-gap bell 7 is generally thin and configured. so as to pass through the air gap of the drive device, namely into the space which separates the motor magnets 3 from the follower elements 6.
  • pumps intended in particular for the chemical, parachemical and pharmaceutical industries are most often an integral part of complex devices.
  • they in addition to the imperative of resistance to the fluid conveyed, they must meet a certain number of additional imperatives of a technical and above all economic nature, in particular in order to reduce maintenance costs and limit production stoppages.
  • the rotor is cantilevered with respect to the centrifugal wheel (patent US-5201642) or with respect to an axis in the inlet port of the pump (US Pat. No. 4,645,433). It is known that these arrangements allow a slight radial movement, a source of vibrations and possibly parasitic friction. These undesirable effects are accentuated at high temperatures, in particular by the effect of differential expansions between the constituent parts.
  • US Pat. No. 4,645,433 describes a pump, the drive device of which is of reduced volume, but the inlet section is greatly reduced by the presence of the axis of rotation, which considerably increases the pressure drop. and the NPSH (Net Positive Suction Head) required and which consequently increases the risks of degradation of the centrifugal wheel by cavitation.
  • NPSH Net Positive Suction Head
  • the centrifugal pump with magnetic drive comprises a pump body 4, a centrifugal impeller 5, a rotor 23, an air-gap bell 7 and a driver 24, and assembly and connection members, and is characterized in that that the driver is central, in that the pump body 4 is made of carbonaceous material, in particular graphite, in that the air-gap bell 7 is made of non-magnetic and electrically non-conductive material, in that permanent follower magnets 6 are secured to the rotor 23 and completely isolated from the fluid carried, in that the rotor 23 is cylindrical in shape and is fixed directly to the centrifugal wheel 5, without any intermediate part, so as to form a compact wheel-rotor assembly, in that the wheel-rotor assembly is made of carbonaceous material of the same kind as that of the body of pump 4, in that the wheel-rotor assembly rests only on two rigid external annular axial bearings 16 and 17 situated at the ends of said assembly in the axial direction, and in that the wheel-rotor assembly has a secondary circuit
  • the air gap bell 7 is preferably made of composite material comprising in particular carbonaceous products and / or polymerized resins.
  • the secondary circuit preferably consists of an axial hole 19 in the centrifugal wheel 5 or in a series of holes 26 in the centrifugal wheel 5 arranged symmetrically around the axis of rotation of the wheel-rotor assembly.
  • the follower magnets 6 are preferably secured to the wheel-rotor assembly by bonding a cap 31 comprising an annular cavity 32.
  • complementary parts 28 and / or 29 are placed in the cavity 32 in addition to the follower magnets 6.
  • the parts 28 and / or 29, which may be made of magnetic or non-magnetic material, allow precise positioning of the follower magnets 6 and / or confinement of the magnetic field lines.
  • a suitable expansion joint which preferably consists of expanded graphite, can be placed in the residual expansion space 33 in order to wedge the magnets and to absorb the differential expansions.
  • the wheel-rotor assembly abuts against an axial stop 18 on the side of the inlet 12.
  • the bearings 16 and 17 and the stopper 18 are preferably made of carbonaceous material, in particular graphite, or graphite-silicide or silicon carbide.
  • the wheel-rotor assembly rests directly on the external bearings 16 and 17, without the intermediary of bearings fixed to said assembly.
  • the part of the transported liquid circulated in the pumping compartment by the secondary circuit not only allows the self-lubrication of the rear bearing, but also avoids the use of a second axial stop at the rear bearing thanks to an effect liquid bearing and limits the pressure at the rear of the wheel-rotor assembly, which reduces wear on the front stop.
  • the assembly and disassembly operations of the pump according to the invention are carried out by simple stacking and nesting of the constituent parts.
  • the motor can be removed without removing the pump from the device to which it is connected, that is to say that the fluid carried may remain in the pumping compartment during this operation.
  • the number of parts of the pump according to the invention is very small, which facilitates maintenance and reduces costs.
  • the pump according to the invention also has the advantage of great adaptability to very variable conditions of use, especially with regard to pressure and flow.
  • the pump according to the invention offers very good performance, in particular as regards the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and centering of the wheel-rotor assembly.
  • FIG. 1 shows, in axial section, a centrifugal pump with central magnetic drive of the prior art.
  • the centrifugal wheel 5 is supported by an axial bearing 8 and is provided with axial stops 11a and 11b and with a lubrication device 10.
  • FIG. 2 represents, in axial section, an embodiment of the centrifugal pump with central magnetic drive according to the invention which corresponds to example 1.
  • FIG. 3 illustrates a second embodiment of the pump according to the invention which corresponds to Example 2.
  • FIG. 4 shows, in axial section, an embodiment of the device for fixing the follower magnets which makes it possible to prevent the magnets from being attacked by the transported fluid.
  • the watertight fixing is obtained by gluing along the plane I-I of the wheel-rotor assembly, which has an annular cavity 30, with a cap 31 carrying a complementary annular cavity 32.
  • FIG. 5 illustrates a third embodiment of the pump according to the invention which corresponds to Example 3.
  • a pump was produced according to the invention comprising a drive motor on the shaft 2 of which was fixed the drive wheel 14 provided with motor magnets 3, a pump body 4 in graphite, a wheel-rotor assembly of which the annular cylindrical extension comprised follower magnets 6 located opposite the motor magnets 3, a rear intermediate piece 27 and a gap bell 7.
  • a tight fixing of the follower magnets on the wheel-rotor assembly was obtained by bonding with a cement based on graphite, phenolic resin and catalyst according to the plane I-I of the cap 31 on said assembly (FIG. 4).
  • a complementary part 29 consisting of a steel ring has been inserted into the cavity 32.
  • the residual space 33 has been filled with expanded graphite so as to form an expansion joint.
  • the wheel-rotor assembly was supported externally on the one hand on the pump body 4 and on the intermediate part 27 by means of two external annular axial bearings rigid 16 and 17 located at the two ends of the wheel-rotor assembly in the direction of the axis and on the other hand on an axial stop 18 located on the side of the inlet orifice 12.
  • the bearings 16 and 17 and the stop 18 were made of graphite-silicon and silicon carbide.
  • the wheel-rotor assembly included an axial hole 19 in the centrifugal wheel 5.
  • the bearing 17 rested on an intermediate piece 27 provided with two seals.
  • the air gap bell 7 was made from a resin-carbon fiber composite (Rigilor (R) from the company Le Carbone Lorraine).
  • the pump body 4 which was made in one piece having an inlet 12 and an outlet 13, was fixed to the flange 1 of the motor by means of an assembly plate 15 on which was fixed the air gap bell 7.
  • the pump had an inlet flange 20 and an outlet flange 21.
  • a second pump according to the invention was produced according to Example 1, with the exception of the bearing 17 which rested directly on the body of the pump 4, which made it possible to eliminate the intermediate part 27 and one of the corresponding seals.
  • This pump has been tested on several chemical processes and has given complete satisfaction, in particular with regard to the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and the centering of the wheel assembly. rotor, even in high temperature conditions.
  • a third pump according to the invention was produced according to Example 1, with the exception of the secondary circuit, which included a series of holes 26 arranged symmetrically around the axis of rotation at the level of the centrifugal wheel, and of the cap. 31 containing the follower magnets which was inserted into an annular cavity 34 in the centrifugal wheel. A second complementary piece 28 of graphite and of annular shape was placed in the annular cavity 32 of the cap 31.
  • This pump has been tested on several chemical processes and has given complete satisfaction, in particular with regard to the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and the centering of the wheel assembly. rotor, even in high temperature conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
EP95420014A 1994-01-26 1995-01-23 Kreiselpumpe mit magnetischem Antrieb Withdrawn EP0665378A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9401104 1994-01-26
FR9401104A FR2715442B1 (fr) 1994-01-26 1994-01-26 Pompe centrifuge à entraînement magnétique.

Publications (1)

Publication Number Publication Date
EP0665378A1 true EP0665378A1 (de) 1995-08-02

Family

ID=9459644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95420014A Withdrawn EP0665378A1 (de) 1994-01-26 1995-01-23 Kreiselpumpe mit magnetischem Antrieb

Country Status (4)

Country Link
US (1) US5501582A (de)
EP (1) EP0665378A1 (de)
JP (1) JPH07224785A (de)
FR (1) FR2715442B1 (de)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009889A1 (en) * 1998-08-11 2000-02-24 Cooper Paul V Molten metal pump with monolithic rotor
US6303074B1 (en) 1999-05-14 2001-10-16 Paul V. Cooper Mixed flow rotor for molten metal pumping device
US6345964B1 (en) 1996-12-03 2002-02-12 Paul V. Cooper Molten metal pump with metal-transfer conduit molten metal pump
US6689310B1 (en) 2000-05-12 2004-02-10 Paul V. Cooper Molten metal degassing device and impellers therefor
US6723276B1 (en) 2000-08-28 2004-04-20 Paul V. Cooper Scrap melter and impeller
US7731891B2 (en) 2002-07-12 2010-06-08 Cooper Paul V Couplings for molten metal devices
US7906068B2 (en) 2003-07-14 2011-03-15 Cooper Paul V Support post system for molten metal pump
US8075837B2 (en) 2003-07-14 2011-12-13 Cooper Paul V Pump with rotating inlet
US8178037B2 (en) 2002-07-12 2012-05-15 Cooper Paul V System for releasing gas into molten metal
US8333666B2 (en) 2004-12-10 2012-12-18 Sundyne Corporation Inner drive for magnetic drive pump
US8337746B2 (en) 2007-06-21 2012-12-25 Cooper Paul V Transferring molten metal from one structure to another
US8361379B2 (en) 2002-07-12 2013-01-29 Cooper Paul V Gas transfer foot
US8366993B2 (en) 2007-06-21 2013-02-05 Cooper Paul V System and method for degassing molten metal
US8444911B2 (en) 2009-08-07 2013-05-21 Paul V. Cooper Shaft and post tensioning device
US8449814B2 (en) 2009-08-07 2013-05-28 Paul V. Cooper Systems and methods for melting scrap metal
US8524146B2 (en) 2009-08-07 2013-09-03 Paul V. Cooper Rotary degassers and components therefor
US8529828B2 (en) 2002-07-12 2013-09-10 Paul V. Cooper Molten metal pump components
US8535603B2 (en) 2009-08-07 2013-09-17 Paul V. Cooper Rotary degasser and rotor therefor
US8613884B2 (en) 2007-06-21 2013-12-24 Paul V. Cooper Launder transfer insert and system
US8714914B2 (en) 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
US9011761B2 (en) 2013-03-14 2015-04-21 Paul V. Cooper Ladle with transfer conduit
US9108244B2 (en) 2009-09-09 2015-08-18 Paul V. Cooper Immersion heater for molten metal
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9205490B2 (en) 2007-06-21 2015-12-08 Molten Metal Equipment Innovations, Llc Transfer well system and method for making same
US9409232B2 (en) 2007-06-21 2016-08-09 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9410744B2 (en) 2010-05-12 2016-08-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9643247B2 (en) 2007-06-21 2017-05-09 Molten Metal Equipment Innovations, Llc Molten metal transfer and degassing system
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US10052688B2 (en) 2013-03-15 2018-08-21 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10138892B2 (en) 2014-07-02 2018-11-27 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US10428821B2 (en) 2009-08-07 2019-10-01 Molten Metal Equipment Innovations, Llc Quick submergence molten metal pump
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11358217B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc Method for melting solid metal
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443844A1 (de) * 1994-12-09 1996-06-13 Philips Patentverwaltung Gebläseaggregat zum Erzeugen von Gasströmen
GB2307947B (en) * 1995-12-08 1999-08-18 Aisan Ind Magnetically coupled pump
SE508445C2 (sv) * 1997-01-28 1998-10-05 Magnetal Ab Vakuumpump av höghastighetstyp
DE19718981A1 (de) * 1997-05-05 1998-11-12 Proair Geraetebau Gmbh Fördereinrichtung für flüssige und gasförmige Medien, wie Sauggeräte, insbesondere Naßsauger, Pumpen und dergleichen
US6129704A (en) 1997-06-12 2000-10-10 Schneider (Usa) Inc. Perfusion balloon catheter having a magnetically driven impeller
GB9717866D0 (en) * 1997-08-23 1997-10-29 Concentric Pumps Ltd Improvements to rotary pumps
US5915931A (en) * 1997-11-13 1999-06-29 The Gorman-Rupp Company Magnetic drive unit having molded plastic magnetic driver
EP0954087A1 (de) * 1998-04-30 1999-11-03 Sulzer Innotec Ag Elektrodynamisches Getriebe und Kreiselpumpe mit einem derartigen Getriebe
DE29822717U1 (de) 1998-12-21 1999-03-18 Feodor Burgmann Dichtungswerke GmbH & Co, 82515 Wolfratshausen Kreiselpumpe, insbesondere zum Pumpen eines Kühlmittels in einem Kühlmittelkreislauf
US6254361B1 (en) * 1999-07-29 2001-07-03 Itt Manufacturing Enterprises, Inc. Shaftless canned rotor inline pipe pump
EP1120569B1 (de) * 1999-08-10 2015-07-29 Iwaki Co., Ltd. Magnetpumpe
FR2798169B1 (fr) * 1999-09-06 2001-11-16 Siebec Sa Pompe a entrainement magnetique
CH710862B1 (de) 1999-11-26 2016-09-15 Imerys Graphite & Carbon Switzerland Sa Verfahren zur Herstellung von Graphitpulvern mit erhöhter Schüttdichte.
CN1278439C (zh) * 2001-10-08 2006-10-04 蒂米卡尔股份公司 电化学电池
ATE296958T1 (de) * 2001-12-04 2005-06-15 Levitronix Llc Abgabevorrichtung für ein fluid
US6863124B2 (en) * 2001-12-21 2005-03-08 Schlumberger Technology Corporation Sealed ESP motor system
US7572115B2 (en) * 2002-07-19 2009-08-11 Innovative Mag-Drive, Llc Corrosion-resistant rotor for a magnetic-drive centrifugal pump
US6908291B2 (en) * 2002-07-19 2005-06-21 Innovative Mag-Drive, Llc Corrosion-resistant impeller for a magnetic-drive centrifugal pump
CN1746468A (zh) * 2004-06-09 2006-03-15 鸿富锦精密工业(深圳)有限公司 液冷式散热系统微型泵
JP2007071147A (ja) * 2005-09-08 2007-03-22 Kr & D:Kk ポンプ駆動装置
NO325341B1 (no) * 2005-12-05 2008-03-31 Norsk Hydro Produksjon As Kjolesystem for en elektrisk motor, og et drivsystem for drift av et lopehjul
DE202006005189U1 (de) * 2006-03-31 2007-08-16 H. Wernert & Co. Ohg Kreiselpumpe mit koaxialer Magnetkupplung
US20070224059A1 (en) * 2006-03-23 2007-09-27 Cheng-Tien Lai Miniature pump for liquid cooling system
CN101852216A (zh) * 2010-05-08 2010-10-06 白银鸿浩化工机械制造有限公司 一种磁力泵的内磁转子生产工艺
US20120177511A1 (en) * 2011-01-10 2012-07-12 Peopleflo Manufacturing, Inc. Modular Pump Rotor Assemblies
US8905728B2 (en) 2011-12-30 2014-12-09 Peopleflo Manufacturing, Inc. Rotodynamic pump with permanent magnet coupling inside the impeller
US8905729B2 (en) 2011-12-30 2014-12-09 Peopleflo Manufacturing, Inc. Rotodynamic pump with electro-magnet coupling inside the impeller
US9551091B2 (en) * 2013-12-26 2017-01-24 Hexa Nano Carbon LLC Process and equipment for the production of micro-carbonfibers
CN104776033B (zh) * 2014-01-14 2017-09-15 高涵文 一种耐腐蚀抗干磨的磁力泵
US9771938B2 (en) * 2014-03-11 2017-09-26 Peopleflo Manufacturing, Inc. Rotary device having a radial magnetic coupling
EP3247480B1 (de) * 2015-01-21 2018-11-07 Basf Se Kolonne zur reindestillation von carbonsäureanhydriden
CN105042181A (zh) * 2015-06-30 2015-11-11 志远科技有限公司 适用于高温浓硫酸的控制阀
US9920764B2 (en) 2015-09-30 2018-03-20 Peopleflo Manufacturing, Inc. Pump devices
DE202015106097U1 (de) * 2015-11-11 2016-02-01 Holger Blum Fördereinrichtung für eine Vakuumdestillationsanlage
US20180245596A1 (en) * 2016-07-26 2018-08-30 RELIAX MOTORES SA de CV Integrated electric motor and pump assembly
CN110249135B (zh) * 2016-11-01 2021-09-21 Psg全球公司 磁力耦合无密封离心泵
DE102017204947A1 (de) * 2017-03-23 2018-09-27 Volkswagen Aktiengesellschaft Außenläufer-Rotor einer Pumpe sowie Pumpe mit einem solchen Außenläufer-Rotor
RU2681045C1 (ru) 2018-05-21 2019-03-01 Акционерное общество "Новомет-Пермь" Установка погружного насоса с герметичным двигателем
RU2681051C1 (ru) * 2018-05-21 2019-03-01 Акционерное общество "Новомет-Пермь" Узел передачи крутящего момента для погружной установки (варианты)
CN111002764B (zh) * 2018-10-06 2022-06-10 河南天基轮胎有限公司 一种磁流体可调刚度轮胎
WO2020100690A1 (ja) * 2018-11-13 2020-05-22 パナソニックIpマネジメント株式会社 電動ポンプ
GB2581339A (en) * 2019-02-08 2020-08-19 Hmd Seal/Less Pumps Ltd Containment shell for a magnetic pump
DE102019122042A1 (de) * 2019-08-16 2021-02-18 HELLA GmbH & Co. KGaA Pumpvorrichtung
DE202020101750U1 (de) * 2020-03-31 2020-04-15 Speck Pumpen Verkaufsgesellschaft Gmbh Gegenstromschwimmanlage

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1453760A1 (de) * 1962-01-08 1969-01-09 Fuss Und Stahl Veredlung Gmbh Pumpe mit einem schnell rotierend angetriebenen Laufrad,insbesondere Kreiselpumpe
DE3413930A1 (de) * 1984-04-13 1985-10-31 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Kreiselpumpe
US4645433A (en) * 1984-07-16 1987-02-24 Cp Pumpen Ag Sealing shroud centrifugal pump
EP0250856A1 (de) * 1986-06-04 1988-01-07 GebràœDer Sulzer Aktiengesellschaft Kreiselpumpe mit Magnetkupplung
US4775291A (en) * 1987-07-27 1988-10-04 Binks Manufacturing Company Magnetic clutch drive and thrust balancing mechanism for rotary pumps
EP0291780A1 (de) * 1987-05-12 1988-11-23 Comadur SA Pumpe mit Spaltrohrantrieb
DE3922426A1 (de) * 1988-09-19 1990-03-22 Sulzer Ag Magnetkupplung fuer rotierende prozesspumpen
US5017103A (en) * 1989-03-06 1991-05-21 St. Jude Medical, Inc. Centrifugal blood pump and magnetic coupling
FR2672344A1 (fr) * 1991-02-05 1992-08-07 Lorraine Carbone Pompe a entrainement magnetique equipee d'une piece de separation monobloc en materiau composite.
US5201642A (en) * 1991-11-27 1993-04-13 Warren Pumps, Inc. Magnetic drive pump
GB2263312A (en) * 1992-01-17 1993-07-21 Stork Pompen Vertical pump with magnetic coupling.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806080A (en) * 1983-07-06 1989-02-21 Ebara Corporation Pump with shaftless impeller
CH672820A5 (de) * 1986-03-21 1989-12-29 Ernst Hauenstein
US5324177A (en) * 1989-05-08 1994-06-28 The Cleveland Clinic Foundation Sealless rotodynamic pump with radially offset rotor
US5405251A (en) * 1992-09-11 1995-04-11 Sipin; Anatole J. Oscillating centrifugal pump
US5248245A (en) * 1992-11-02 1993-09-28 Ingersoll-Dresser Pump Company Magnetically coupled centrifugal pump with improved casting and lubrication

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1453760A1 (de) * 1962-01-08 1969-01-09 Fuss Und Stahl Veredlung Gmbh Pumpe mit einem schnell rotierend angetriebenen Laufrad,insbesondere Kreiselpumpe
DE3413930A1 (de) * 1984-04-13 1985-10-31 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Kreiselpumpe
US4645433A (en) * 1984-07-16 1987-02-24 Cp Pumpen Ag Sealing shroud centrifugal pump
EP0250856A1 (de) * 1986-06-04 1988-01-07 GebràœDer Sulzer Aktiengesellschaft Kreiselpumpe mit Magnetkupplung
EP0291780A1 (de) * 1987-05-12 1988-11-23 Comadur SA Pumpe mit Spaltrohrantrieb
US4775291A (en) * 1987-07-27 1988-10-04 Binks Manufacturing Company Magnetic clutch drive and thrust balancing mechanism for rotary pumps
DE3922426A1 (de) * 1988-09-19 1990-03-22 Sulzer Ag Magnetkupplung fuer rotierende prozesspumpen
US5017103A (en) * 1989-03-06 1991-05-21 St. Jude Medical, Inc. Centrifugal blood pump and magnetic coupling
FR2672344A1 (fr) * 1991-02-05 1992-08-07 Lorraine Carbone Pompe a entrainement magnetique equipee d'une piece de separation monobloc en materiau composite.
US5201642A (en) * 1991-11-27 1993-04-13 Warren Pumps, Inc. Magnetic drive pump
GB2263312A (en) * 1992-01-17 1993-07-21 Stork Pompen Vertical pump with magnetic coupling.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MERSCH A: "MAGNETIC DRIVE CHEMICAL PUMPS OF TOMORROW", WORLD PUMPS, no. 5, pages 146/147, XP000084072 *

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6345964B1 (en) 1996-12-03 2002-02-12 Paul V. Cooper Molten metal pump with metal-transfer conduit molten metal pump
WO2000009889A1 (en) * 1998-08-11 2000-02-24 Cooper Paul V Molten metal pump with monolithic rotor
US6093000A (en) * 1998-08-11 2000-07-25 Cooper; Paul V Molten metal pump with monolithic rotor
US6398525B1 (en) 1998-08-11 2002-06-04 Paul V. Cooper Monolithic rotor and rigid coupling
US6303074B1 (en) 1999-05-14 2001-10-16 Paul V. Cooper Mixed flow rotor for molten metal pumping device
US6689310B1 (en) 2000-05-12 2004-02-10 Paul V. Cooper Molten metal degassing device and impellers therefor
US6723276B1 (en) 2000-08-28 2004-04-20 Paul V. Cooper Scrap melter and impeller
US8110141B2 (en) 2002-07-12 2012-02-07 Cooper Paul V Pump with rotating inlet
US8361379B2 (en) 2002-07-12 2013-01-29 Cooper Paul V Gas transfer foot
US9034244B2 (en) 2002-07-12 2015-05-19 Paul V. Cooper Gas-transfer foot
US8529828B2 (en) 2002-07-12 2013-09-10 Paul V. Cooper Molten metal pump components
US8178037B2 (en) 2002-07-12 2012-05-15 Cooper Paul V System for releasing gas into molten metal
US8440135B2 (en) 2002-07-12 2013-05-14 Paul V. Cooper System for releasing gas into molten metal
US7731891B2 (en) 2002-07-12 2010-06-08 Cooper Paul V Couplings for molten metal devices
US8409495B2 (en) 2002-07-12 2013-04-02 Paul V. Cooper Rotor with inlet perimeters
US9435343B2 (en) 2002-07-12 2016-09-06 Molten Meal Equipment Innovations, LLC Gas-transfer foot
US7906068B2 (en) 2003-07-14 2011-03-15 Cooper Paul V Support post system for molten metal pump
US8075837B2 (en) 2003-07-14 2011-12-13 Cooper Paul V Pump with rotating inlet
US8475708B2 (en) 2003-07-14 2013-07-02 Paul V. Cooper Support post clamps for molten metal pumps
US8501084B2 (en) 2003-07-14 2013-08-06 Paul V. Cooper Support posts for molten metal pumps
US8333666B2 (en) 2004-12-10 2012-12-18 Sundyne Corporation Inner drive for magnetic drive pump
US9362050B2 (en) 2004-12-10 2016-06-07 Sundyne, Llc Inner drive for magnetic drive pump
US9855600B2 (en) 2007-06-21 2018-01-02 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US11167345B2 (en) 2007-06-21 2021-11-09 Molten Metal Equipment Innovations, Llc Transfer system with dual-flow rotor
US11759854B2 (en) 2007-06-21 2023-09-19 Molten Metal Equipment Innovations, Llc Molten metal transfer structure and method
US8613884B2 (en) 2007-06-21 2013-12-24 Paul V. Cooper Launder transfer insert and system
US11185916B2 (en) 2007-06-21 2021-11-30 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel with pump
US8753563B2 (en) 2007-06-21 2014-06-17 Paul V. Cooper System and method for degassing molten metal
US11130173B2 (en) 2007-06-21 2021-09-28 Molten Metal Equipment Innovations, LLC. Transfer vessel with dividing wall
US9017597B2 (en) 2007-06-21 2015-04-28 Paul V. Cooper Transferring molten metal using non-gravity assist launder
US11103920B2 (en) 2007-06-21 2021-08-31 Molten Metal Equipment Innovations, Llc Transfer structure with molten metal pump support
US11020798B2 (en) 2007-06-21 2021-06-01 Molten Metal Equipment Innovations, Llc Method of transferring molten metal
US10562097B2 (en) 2007-06-21 2020-02-18 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9205490B2 (en) 2007-06-21 2015-12-08 Molten Metal Equipment Innovations, Llc Transfer well system and method for making same
US10458708B2 (en) 2007-06-21 2019-10-29 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US10352620B2 (en) 2007-06-21 2019-07-16 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US10345045B2 (en) 2007-06-21 2019-07-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9383140B2 (en) 2007-06-21 2016-07-05 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US10274256B2 (en) 2007-06-21 2019-04-30 Molten Metal Equipment Innovations, Llc Vessel transfer systems and devices
US9409232B2 (en) 2007-06-21 2016-08-09 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US10195664B2 (en) 2007-06-21 2019-02-05 Molten Metal Equipment Innovations, Llc Multi-stage impeller for molten metal
US10072891B2 (en) 2007-06-21 2018-09-11 Molten Metal Equipment Innovations, Llc Transferring molten metal using non-gravity assist launder
US8366993B2 (en) 2007-06-21 2013-02-05 Cooper Paul V System and method for degassing molten metal
US9982945B2 (en) 2007-06-21 2018-05-29 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9925587B2 (en) 2007-06-21 2018-03-27 Molten Metal Equipment Innovations, Llc Method of transferring molten metal from a vessel
US9909808B2 (en) 2007-06-21 2018-03-06 Molten Metal Equipment Innovations, Llc System and method for degassing molten metal
US9862026B2 (en) 2007-06-21 2018-01-09 Molten Metal Equipment Innovations, Llc Method of forming transfer well
US9566645B2 (en) 2007-06-21 2017-02-14 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9581388B2 (en) 2007-06-21 2017-02-28 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US8337746B2 (en) 2007-06-21 2012-12-25 Cooper Paul V Transferring molten metal from one structure to another
US9643247B2 (en) 2007-06-21 2017-05-09 Molten Metal Equipment Innovations, Llc Molten metal transfer and degassing system
US9080577B2 (en) 2009-08-07 2015-07-14 Paul V. Cooper Shaft and post tensioning device
US10570745B2 (en) 2009-08-07 2020-02-25 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US9506129B2 (en) 2009-08-07 2016-11-29 Molten Metal Equipment Innovations, Llc Rotary degasser and rotor therefor
US9422942B2 (en) 2009-08-07 2016-08-23 Molten Metal Equipment Innovations, Llc Tension device with internal passage
US10428821B2 (en) 2009-08-07 2019-10-01 Molten Metal Equipment Innovations, Llc Quick submergence molten metal pump
US9470239B2 (en) 2009-08-07 2016-10-18 Molten Metal Equipment Innovations, Llc Threaded tensioning device
US9464636B2 (en) 2009-08-07 2016-10-11 Molten Metal Equipment Innovations, Llc Tension device graphite component used in molten metal
US8444911B2 (en) 2009-08-07 2013-05-21 Paul V. Cooper Shaft and post tensioning device
US9377028B2 (en) 2009-08-07 2016-06-28 Molten Metal Equipment Innovations, Llc Tensioning device extending beyond component
US8449814B2 (en) 2009-08-07 2013-05-28 Paul V. Cooper Systems and methods for melting scrap metal
US8524146B2 (en) 2009-08-07 2013-09-03 Paul V. Cooper Rotary degassers and components therefor
US9657578B2 (en) 2009-08-07 2017-05-23 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US9328615B2 (en) 2009-08-07 2016-05-03 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US8535603B2 (en) 2009-08-07 2013-09-17 Paul V. Cooper Rotary degasser and rotor therefor
US9382599B2 (en) 2009-08-07 2016-07-05 Molten Metal Equipment Innovations, Llc Rotary degasser and rotor therefor
US8714914B2 (en) 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
US9108244B2 (en) 2009-09-09 2015-08-18 Paul V. Cooper Immersion heater for molten metal
US10309725B2 (en) 2009-09-09 2019-06-04 Molten Metal Equipment Innovations, Llc Immersion heater for molten metal
US9410744B2 (en) 2010-05-12 2016-08-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9482469B2 (en) 2010-05-12 2016-11-01 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US10641279B2 (en) 2013-03-13 2020-05-05 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened tip
US11391293B2 (en) 2013-03-13 2022-07-19 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US10126059B2 (en) 2013-03-14 2018-11-13 Molten Metal Equipment Innovations, Llc Controlled molten metal flow from transfer vessel
US9587883B2 (en) 2013-03-14 2017-03-07 Molten Metal Equipment Innovations, Llc Ladle with transfer conduit
US10302361B2 (en) 2013-03-14 2019-05-28 Molten Metal Equipment Innovations, Llc Transfer vessel for molten metal pumping device
US10126058B2 (en) 2013-03-14 2018-11-13 Molten Metal Equipment Innovations, Llc Molten metal transferring vessel
US9011761B2 (en) 2013-03-14 2015-04-21 Paul V. Cooper Ladle with transfer conduit
US10307821B2 (en) 2013-03-15 2019-06-04 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10322451B2 (en) 2013-03-15 2019-06-18 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10052688B2 (en) 2013-03-15 2018-08-21 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US11286939B2 (en) 2014-07-02 2022-03-29 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10465688B2 (en) 2014-07-02 2019-11-05 Molten Metal Equipment Innovations, Llc Coupling and rotor shaft for molten metal devices
US11939994B2 (en) 2014-07-02 2024-03-26 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10138892B2 (en) 2014-07-02 2018-11-27 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US11933324B2 (en) 2015-02-02 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US11519414B2 (en) 2016-01-13 2022-12-06 Molten Metal Equipment Innovations, Llc Tensioned rotor shaft for molten metal
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11098719B2 (en) 2016-01-13 2021-08-24 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11098720B2 (en) 2016-01-13 2021-08-24 Molten Metal Equipment Innovations, Llc Tensioned rotor shaft for molten metal
US10641270B2 (en) 2016-01-13 2020-05-05 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US12031550B2 (en) 2017-11-17 2024-07-09 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11976672B2 (en) 2017-11-17 2024-05-07 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11858036B2 (en) 2019-05-17 2024-01-02 Molten Metal Equipment Innovations, Llc System and method to feed mold with molten metal
US11358217B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc Method for melting solid metal
US11858037B2 (en) 2019-05-17 2024-01-02 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11850657B2 (en) 2019-05-17 2023-12-26 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11931803B2 (en) 2019-05-17 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal transfer system and method
US11931802B2 (en) 2019-05-17 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal controlled flow launder
US11759853B2 (en) 2019-05-17 2023-09-19 Molten Metal Equipment Innovations, Llc Melting metal on a raised surface
US11471938B2 (en) 2019-05-17 2022-10-18 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11358216B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device

Also Published As

Publication number Publication date
FR2715442B1 (fr) 1996-03-01
FR2715442A1 (fr) 1995-07-28
JPH07224785A (ja) 1995-08-22
US5501582A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
EP0665378A1 (de) Kreiselpumpe mit magnetischem Antrieb
FR2944838A1 (fr) Amelioration structurelle d'une pompe a rotor noye
FR2588323A1 (fr) Pompe centrifuge a entrainement magnetique
EP1210520B1 (de) Kreiselpumpe mit magnetischem antrieb
EP3464903B1 (de) Stator, rotierende welle, trockenvakuumpumpe und zugehörige herstellungsverfahren
FR3037110B1 (fr) Compresseur frigorifique centrifuge
CN101892990B (zh) 一种中开多级泵
FR2867229A1 (fr) Palier a roulement de turbomachine a encombrement reduit
FR2594185A1 (fr) Pompe radiale
FR3094051A1 (fr) Bague à cage de type écureuil en bi-matière composite et métal, et ensemble de roulement à éléments roulants équipé d’une telle bague
CA2915106C (fr) Tourillon pour turbine haute pression, et turboreacteur incluant un tel tourillon
FR3134435A1 (fr) Pompe à vide
FR2845735A1 (fr) Pompe a vide a embout
EP0697524A1 (de) Turbomolekular-Vakuumpumpe
FR2672344A1 (fr) Pompe a entrainement magnetique equipee d'une piece de separation monobloc en materiau composite.
FR3112172A1 (fr) Pompe à vide sèche
FR2514079A1 (fr) Machine a pistons radiaux, notamment pompe a pistons a bille
FR2911166A1 (fr) Pompe a entrainement magnetique et etancheite coulissante
EP1552158A1 (de) Pumpeneinheit zum zirkulieren eines korrosiven fluids
FR2599092A1 (fr) Pompe centrifuge a bagues d'usure pour rotors
FR2912797A1 (fr) Joint d'etancheite magnetique a portance
EP0554803B1 (de) Mehrstufige Kreiselpumpe
EP0823027B1 (de) Kreiselpumpe mit magnetischem antrieb
BE1000978A5 (fr) Motopompe integree a moteur electrique et pompe rotative.
EP0612135A1 (de) Drehvorrichtung für einen Spaltrohrmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19950902

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LE CARBONE LORRAINE

17Q First examination report despatched

Effective date: 19960708

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980117