WO2020100690A1 - 電動ポンプ - Google Patents

電動ポンプ Download PDF

Info

Publication number
WO2020100690A1
WO2020100690A1 PCT/JP2019/043524 JP2019043524W WO2020100690A1 WO 2020100690 A1 WO2020100690 A1 WO 2020100690A1 JP 2019043524 W JP2019043524 W JP 2019043524W WO 2020100690 A1 WO2020100690 A1 WO 2020100690A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
bearing
electric pump
motor
Prior art date
Application number
PCT/JP2019/043524
Other languages
English (en)
French (fr)
Inventor
康司 鎌田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020100690A1 publication Critical patent/WO2020100690A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present disclosure relates to an electric pump, and particularly to an electric pump used in a vehicle cooling system.
  • Some cooling systems used for vehicles cool the heat-generating equipment mounted on the vehicle with a coolant (cooling water) cooled by a radiator.
  • a coolant cooling water
  • a refrigerant cooled by a radiator is sent through a pipe to cool a power unit including an inverter and a converter.
  • an electric pump is used to circulate the refrigerant in the pipe.
  • This type of electric pump is known to use a magnet coupling pump.
  • An electric pump that uses a magnet coupling pump uses a drive magnet and a driven magnet to rotate the impeller and circulates the refrigerant.
  • the impeller to which the driven magnet is fixed is rotatably attached to the shaft arranged in the pump chamber.
  • the drive magnet is fixed to the shaft to which the rotor is attached.
  • the drive magnet rotates with the shaft.
  • the rotational force is transmitted to the driven magnet due to the influence of the magnetic force generated by the drive magnet.
  • the impeller to which the driven magnet rotates.
  • the impeller, to which the driven magnet is fixed rotates with respect to the shaft arranged in the pump chamber via a bearing fixed to the center of the impeller.
  • the drive magnet is fixed in the section sandwiched by a pair of bearings attached to the shaft. Further, in the conventional electric pump, the drive magnet is arranged outside the bearing fixed to the housing among the pair of bearings.
  • the outer diameter of the drive magnet becomes larger than the outer diameter of the bearing, and the weight and inertia of the drive magnet increase. Further, in the conventional electric pump, the vibration may increase due to the rotating drive magnet.
  • the present disclosure has been made to solve such a problem.
  • the present disclosure aims to provide the following electric pump.
  • the drive magnet is arranged at the shaft end outside the section sandwiched between the pair of bearings. Further, the outer diameter of the drive magnet is smaller than the outer diameter of the bearing located near the drive magnet of the pair of bearings.
  • the electric pump according to the present disclosure can reduce the weight of the drive magnet, and can suppress vibration due to the rotating drive magnet.
  • one aspect of an electric pump according to the present disclosure includes a pump chamber and a motor.
  • the pump chamber has a suction port, a discharge port, an impeller, and a driven magnet.
  • the suction port sucks the refrigerant.
  • the discharge port discharges the sucked refrigerant.
  • the impeller guides the refrigerant sucked from the suction port to the discharge port.
  • the driven magnet is attached to the impeller.
  • the motor includes a rotor and a stator that faces the rotor.
  • the rotor includes a motor shaft, a first bearing, and a drive magnet.
  • the motor shaft extends in the axial direction.
  • the first bearing is attached to one end of the motor shaft and rotatably supports the motor shaft.
  • the drive magnet is attached to one end of the motor shaft at a position adjacent to the first bearing and facing the driven magnet.
  • the outer diameter of the drive magnet is smaller than the outer diameter of the first bearing in the radial direction intersecting the axis.
  • FIG. 1 is a sectional view of an electric pump according to an embodiment.
  • FIG. 2 is an external perspective view of the electric pump according to the embodiment.
  • FIG. 3 is a perspective view showing a partial cross section of a rotor included in the electric pump according to the embodiment.
  • FIG. 1 is a sectional view of an electric pump 1 according to the embodiment.
  • FIG. 2 is an external perspective view of the electric pump 1 according to the embodiment.
  • FIG. 3 is a perspective view showing a partial cross section of rotor 320 included in electric pump 1 according to the embodiment.
  • the electric pump 1 uses cooling water as a working fluid that is a refrigerant.
  • the electric pump 1 is an electric pump that sucks cooling water into the pump chamber 100a by the power of the motor 300 and discharges the sucked cooling water from the pump chamber 100a.
  • the electric pump 1 is an electric water pump that uses water (cooling water) as cooling water.
  • the electric pump 1 is a cooling pump incorporated in a circulation path to which a heat exchanger such as a radiator is connected.
  • a heat exchanger such as a radiator
  • the electric pump 1 circulates the cooling water cooled by a radiator in a circulation path to supply the cooling water to a power unit including an inverter and a converter or an engine (internal combustion engine).
  • the electric pump 1 includes a housing 100, an impeller 200, a motor 300, and a drive circuit unit 400.
  • the housing 100 has a pump chamber (pump casing) 100a and a motor chamber (motor casing) 100b.
  • the impeller 200 is arranged in the pump chamber 100a.
  • the motor 300 and the drive circuit unit 400 are arranged in the motor chamber 100b.
  • the drive circuit unit 400 has a plurality of circuit components 410 and a circuit board 420 on which the plurality of circuit components 410 are mounted.
  • the housing 100 is an outer shell member that forms the outer shell of the electric pump 1. As shown in FIGS. 1 and 2, the housing 100 includes a first housing portion 110, a second housing portion 120, and a third housing portion 130. The first housing unit 110, the second housing unit 120, and the third housing unit 130 are connected and fixed to each other by, for example, three screws.
  • the first housing section 110, the second housing section 120, and the third housing section 130 are made of a resin material, a metal material, or the like.
  • the first housing portion 110, the second housing portion 120, and the third housing portion 130 are made of PPS (Polyphenylene sulfide) resin having a relatively high thermal conductivity among resin materials.
  • the pump room 100a is an area through which cooling water passes.
  • the pump chamber 100a includes a first casing 110 and a second casing 120.
  • the pump chamber 100a is a space area surrounded by the first casing 110 and the second casing 120, and forms a flow path with the first casing 110 and the second casing 120 as partition walls. There is.
  • the pump chamber 100a has a suction port 101 for sucking cooling water and a discharge port 102 for discharging the sucked cooling water.
  • the suction port 101 and the discharge port 102 are provided in the first casing 110.
  • the suction port 101 and the discharge port 102 have an elongated cylindrical shape.
  • the suction port 101 and the discharge port 102 are provided in the first housing unit 110 in such a relationship that the extending directions of the cylinders are in a twisted position.
  • the suction port 101 is provided so that the direction in which the cooling water flows in the suction port 101 and the rotation axis of the impeller 200 are substantially parallel to each other.
  • the discharge port 102 is provided such that the direction in which the cooling water flows in the discharge port 102 and one tangential direction of the tangential directions of the circle indicating the range in which the impeller 200 rotates are substantially parallel. Has been. As a result, as the impeller 200 rotates, the cooling water is drawn into the pump chamber 100a from the suction port 101, and the drawn cooling water is discharged from the pump chamber 100a via the discharge port 102.
  • the motor chamber 100b is a space area surrounded by the second casing part 120 and the third casing part 130.
  • the second casing part 120 and the third casing part 130 serve as a partition wall to form a closed space.
  • the second casing 120 also serves as a partition between the pump chamber 100a and the motor chamber 100b.
  • the motor 300 and the drive circuit unit 400 are housed in the motor room 100b. That is, the motor 300 and the drive circuit unit 400 are arranged in the motor chamber 100b, which is the same internal space. Specifically, the motor 300 is housed in the motor chamber 100b, and a plurality of circuit components 410 and a circuit board 420 are housed therein.
  • the electric pump 1 has a structure in which a pump chamber 100a which is a liquid layer and a motor chamber 100b which is an air layer are separated with the second casing 120 as a boundary.
  • the electric pump 1 unlike the canned type in which the rotor included in the motor is immersed in the cooling water, the motor 300 located in the motor chamber 100b is not immersed in the cooling water.
  • the electric pump 1 has a structure in which cooling water does not flow into the motor chamber 100b.
  • the impeller (impeller) 200 has a disk-shaped bottom portion (base) 210 and a plurality of blades (blades) 220.
  • the impeller 200 is arranged at a position facing the suction port 101.
  • the plurality of blades 220 are fixed to the bottom 210.
  • the plurality of blades 220 are open blades.
  • the plurality of blades 220 are arranged substantially radially around the central axis of the impeller 200.
  • the central axis of the impeller 200 is located on a direction in which an axis C included in a motor shaft 323 described below extends.
  • the impeller 200 has an impeller bearing 230 coaxially with the central axis of the impeller 200, and has an annular driven magnet 240 coaxially with the central axis and an annular back yoke 250 on the lower surface of the bottom 210. ..
  • the impeller bearing 230, the driven magnet 240, and the back yoke 250 are fixed to the bottom portion 210.
  • the impeller shaft 500 is fixed to the second casing 120 and coaxially with the central axis of the second casing 120, and is arranged inside the pump chamber 100a.
  • the impeller 200 is rotatably attached via an impeller shaft 500 and an impeller bearing 230.
  • the washer 600 is fixed to the tip of the impeller shaft 500 by a tip screw portion formed on the tip of the impeller shaft 500 and a nut 700.
  • the washer 600 suppresses the movement of the impeller 200 in the thrust direction (axial center C direction).
  • the motor 300 is, for example, an inner rotor type DC brushless motor.
  • the motor 300 has a stator 310 (stator) and a rotor (rotor) 320 arranged on the inner peripheral side of the stator 310.
  • the stator 310 has a plurality of coils 311 (windings).
  • the stator 310 generates a magnetic flux on the inner peripheral side by energizing the coil 311.
  • the stator 310 is fixed to the motor frame 330.
  • the motor frame 330 is fixed to the third casing 130.
  • the rotor 320 has a rotor frame 321 and a rotor shaft 323 connected thereto.
  • the rotor magnet 322 is fixed to the outer circumference of the rotor frame 321.
  • the rotor magnet 322 is a columnar member and is installed so as to face the inner peripheral surface of the stator 310 with a slight gap (air gap) therebetween.
  • the rotor magnet 322 is provided with a plurality of magnetic poles (for example, permanent magnets in which N poles and S poles are alternately arranged in the circumferential direction) so as to correspond to the plurality of coils 311 included in the stator 310.
  • the rotor shaft 323 is supported by a second rotor bearing 326 that is a second bearing provided on the motor frame 330 and a first rotor bearing 327 that is a first bearing provided on the second casing 120. Has been done. Both the first rotor bearing 327 and the second rotor bearing 326 are radial ball bearings, so-called radial bearing type ball bearings. The first rotor bearing 327 and the second rotor bearing 326 are press fitted into the respective end portions of the rotor shaft 323. Therefore, in the motor 300, the rotor shaft 323 is mounted in the axial direction (axial direction) while being rotatably supported with respect to the axial center C.
  • a magnet holder 324 is fixed to the tip of the rotor shaft 323.
  • An annular drive magnet 325 is coaxially fixed to the rotor shaft 323 on the outer periphery of the magnet holder 324.
  • the drive magnet 325 is fixed to the end of the rotor shaft 323 near the first rotor bearing 327, outside the section sandwiched by the second rotor bearing 326 and the first rotor bearing 327 via the magnet holder 324.
  • the outer diameter of the drive magnet 325 is smaller than the outer diameter of the first rotor bearing 327. As a result, the first rotor bearing 327 is held by the second casing 120.
  • the drive magnet 325 and the driven magnet 240 are provided with a plurality of magnetic poles and have the same number of magnetic poles. In the drive magnet 325 and the driven magnet 240, the N pole and the S pole facing each other are attracted by a magnetic force. The drive magnet 325 and the driven magnet 240 are coaxially arranged.
  • the drive magnet 325 fixed via the magnet holder 324 rotates, the magnetic force generated by the drive magnet 325 transmits the rotational force to the driven magnet 240, and the impeller 200 rotates.
  • the drive magnet 325 is arranged in the motor chamber 100b.
  • the driven magnet 240 is arranged in the pump chamber 100a.
  • the drive magnet 325 and the driven magnet 240 are partitioned by the partition wall of the second casing 120.
  • the rotational force of the drive magnet 325 is transmitted to the driven magnet 240 by the magnetic force passing through the partition wall of the second casing 120.
  • the electric pump 1 draws the cooling water into the pump chamber 100a from the suction port 101 and discharges the cooling water from the discharge port 102.
  • the drive circuit unit 400 includes a plurality of circuit components 410 for driving the motor 300 and a circuit board 420 on which the plurality of circuit components 410 are mounted.
  • the plurality of circuit components 410 form a drive circuit and the like for driving the motor 300.
  • the circuit component 410 (circuit element) is, for example, a capacitive element such as an electrolytic capacitor 411 or a ceramic capacitor, a resistive element such as a resistor, a coil element, or a semiconductor element such as a microcomputer 412.
  • the circuit component 410 may include a rotational position detection element (Hall IC) that detects the rotational position of the rotor 320.
  • the circuit board 420 has a through hole 421 through which the rotor shaft 323 penetrates.
  • the through hole 421 has, for example, a circular shape, but is not limited to this.
  • Fig. 1 the flow of cooling water is indicated by arrows.
  • the impeller 200 rotates clockwise (CW direction) to draw the cooling water from the suction port 101 into the pump chamber 100a and to discharge the cooling water from the discharge port 102.
  • a coolant flow is formed.
  • the outer diameter of the drive magnet 325 is smaller than the outer diameter of the first rotor bearing 327.
  • the electric pump 1 according to the embodiment can reduce the weight of the drive magnet 325 and reduce the inertia. Further, the electric pump 1 according to the embodiment can suppress the vibration caused by the rotating drive magnet 325. Further, in the electric pump 1 according to the embodiment, the drive magnet 325 having a small outer diameter and the driven magnet 240 can be arranged in the space below the impeller 200. Therefore, with this configuration, the electric pump can be made smaller and lighter.
  • the electric pump 1 according to the embodiment can reduce the weight of the drive magnet 325. Further, the electric pump 1 according to the embodiment can suppress the vibration caused by the rotating drive magnet 325.
  • the outer diameter of the drive magnet 325 is smaller than the outer diameter of the rotor magnet 322 fixed to the rotor shaft 323, and the drive magnet 325 is arranged in the direction along the axis C included in the rotor shaft 323.
  • the first rotor bearing 327 is located between the rotor magnet 322 and the rotor magnet 322. Therefore, the rotational torque (driving force of the motor) generated in the rotor magnet 322 is transmitted to the driving magnet 325 having smaller inertia than the rotor magnet 322 via the first rotor bearing 327. Therefore, in the electric pump 1 according to the embodiment, the drive magnet 325 can rotate stably. Therefore, the electric pump 1 according to the embodiment can suppress the vibration caused by the drive magnet 325.
  • the magnet holder 324 holding the drive magnet 325 and the rotor frame 321 holding the rotor magnet 322 are both cup-shaped and have a bottomed tubular shape. Both the magnet holder 324 and the rotor frame 321 face the bearing toward the bottom, and are adjacent to the first rotor bearing 327 and sandwich the first rotor bearing 327. It is fixed. Therefore, the load due to the inertia of the drive magnet 325 and the rotor magnet 322 is concentrated near the first rotor bearing 327. Therefore, the electric pump 1 according to the embodiment can suppress the vibration by the first rotor bearing 327.
  • the first rotor bearing 327 and the second rotor bearing 326 are attached so as to sandwich the rotor frame 321, and rotatably support the rotor shaft 323.
  • the electric pump 1 according to the embodiment can suppress the axial runout of the rotor shaft 323 by these two bearings against the radial load of the rotor shaft 323, and suppress the vibration.
  • the electric pump 1 includes the pump chamber 100a and the motor 300.
  • the pump chamber 100a has a suction port 101, a discharge port 102, an impeller 200, and a driven magnet 240.
  • the suction port 101 sucks the refrigerant.
  • the discharge port 102 discharges the sucked refrigerant.
  • the impeller 200 guides the refrigerant sucked from the suction port 101 to the discharge port 102.
  • the driven magnet 240 is attached to the impeller 200.
  • the motor 300 includes a rotor 320 and a stator 310 that faces the rotor 320.
  • the rotor 320 includes a motor shaft 323, a first rotor bearing 327 that is a first bearing, and a drive magnet 325.
  • the motor shaft 323 extends in the axial center C direction.
  • the first rotor bearing 327 which is the first bearing, is attached to one end of the motor shaft 323 and rotatably supports the motor shaft 323.
  • the drive magnet 325 is attached to one end of the motor shaft 323, adjacent to the first rotor bearing 327, which is the first bearing, and facing the driven magnet 240.
  • the outer diameter of the drive magnet 325 is smaller than the outer diameter of the first rotor bearing 327 that is the first bearing in the radial direction intersecting the axis C.
  • the driven magnet 240 may have an annular shape.
  • the drive magnet 325 may be annular.
  • the electric pump 1 may further include a motor chamber 100b in which the motor 300 is mounted.
  • the driven magnet 240 may be arranged radially outside the drive magnet 325 in the radial direction orthogonal to the axial center C direction.
  • the rotor 320 may further include a rotor magnet 322 attached to the motor shaft 323.
  • the outer diameter of the rotor magnet 322 is smaller than the outer diameter of the drive magnet 325.
  • the first rotor bearing 327 which is the first bearing, may be located between the drive magnet 325 and the rotor magnet 322 in the direction along the axis C included in the motor shaft 323.
  • the rotor 320 further includes a bottomed cylindrical magnet holder 324 that holds the drive magnet 325, and a bottomed cylindrical rotor frame 321 that holds the rotor magnet 322.
  • the bottom portion of the magnet holder 324 and the bottom portion of the rotor frame 321 are located toward the first rotor bearing 327, which is the first bearing.
  • the bottom of the magnet holder 324 and the bottom of the rotor frame 321 are attached to the motor shaft 323, and the bottom of the magnet holder 324 and the bottom of the rotor frame 321 are attached to the motor shaft 323.
  • the motor 300 further includes a second rotor bearing 326 that is a second bearing.
  • the rotor frame 321 is located between the first rotor bearing 327 that is the first bearing and the second rotor bearing 326 that is the second bearing in the direction along the axis C.
  • first rotor bearing 327 which is the first bearing
  • second rotor bearing 326 which is the second bearing
  • the weight of the drive magnet 325 can be reduced and the inertia can be reduced. Further, the electric pump 1 according to the embodiment can suppress the vibration caused by the rotating drive magnet 325. Further, in the electric pump 1 according to the embodiment, the drive magnet 325 having a small outer diameter and the driven magnet 240 can be arranged in the space below the impeller 200.
  • the motor 300 is an inner rotor type DC brushless motor, but the invention is not limited to this.
  • the electric pump according to the present disclosure is a pump for circulating a refrigerant such as water (cooling water).
  • the electric pump according to the present disclosure can be used as, for example, an electric water pump used in a vehicle cooling system or the like.

Abstract

電動ポンプ(1)は、ポンプ室(100a)とモータ(300)とを備える。ポンプ室(100a)は、冷媒を吸い込む吸込口(101)と、吸い込んだ冷媒を吐出する吐出口(102)と、吸込口から吐出口へと冷媒を導くインペラ(200)と、インペラに取り付けられた従動マグネット(240)と、を有する。モータ(300)は、ロータ(320)と、ロータと向かい合って位置するステータ(310)と、を備える。ロータは、軸心方向に延伸するモータシャフト(323)と、第1の軸受(327)と、駆動マグネット(325)と、を含む。第1の軸受(327)はモータシャフト(323)の一端に取り付けられて、モータシャフト(323)を回転自在に支持する。駆動マグネット(325)は、モータシャフト(323)の一端において、第1の軸受(327)と隣接し、従動マグネット(240)と向かい合う位置に取り付けられる。駆動マグネット(325)の外径は、第1の軸受(327)の外径よりも小さい。

Description

電動ポンプ
 本開示は、電動ポンプ、特に車両用の冷却システムに用いられる電動ポンプに関する。
 自動車等の車両に用いられる冷却システムは、ラジエータで冷却された冷媒(冷却水)によって車両に搭載された発熱機器を冷却するものがある。例えば、ハイブリッド自動車に用いられる冷却システムは、ラジエータで冷却された冷媒が配管によって送液されて、インバータ及びコンバータ等からなるパワーユニットを冷却している。このような冷却システムでは、配管内の冷媒を循環させるために電動ポンプが用いられる。
 この種の電動ポンプには、マグネットカップリングポンプを用いるものが知られている。
 マグネットカップリングポンプを用いる電動ポンプは、駆動マグネットおよび従動マグネットを用いてインペラを回転し、冷媒を循環させている。具体的に、従動マグネットが固定されたインペラは、ポンプ室に配置されたシャフトに回転自在に取り付けられている。駆動マグネットは、ロータが取り付けられたシャフトに固定されている。シャフトが回転すれば、シャフトとともに駆動マグネットが回転する。駆動マグネットが回転すれば、駆動マグネットが発生する磁気力の影響により、従動マグネットに回転力が伝達される。従動マグネットが回転すれば、従動マグネットが固定されたインペラは回転する。従動マグネットが固定されたインペラは、ポンプ室に配置されたシャフトに対して、インペラの中心部に固定された軸受を介して回転する。
 一方、電動ポンプには、小型化を求める声がある。この要望に対し、電動ポンプは、ポンプ全長を縮めるため、シャフトに取り付けられる一対の軸受に挟まれた区間に、駆動マグネットを固定したものが知られている(例えば、特許文献1を参照)。
 従来の電動ポンプは、シャフトに取り付けられる一対の軸受に挟まれた区間に駆動マグネットを固定している。さらに、従来の電動ポンプは、一対の軸受のうち筐体に固定された軸受の外側に駆動マグネットを配置している。
 この構成の場合、従来の電動ポンプは、駆動マグネットの外径が軸受の外径より大きくなり、駆動マグネットの重量及びイナーシャが増大する。さらに、従来の電動ポンプは、回転する駆動マグネットにより、振動が増大することがある。
特開平1-142292号公報
 本開示は、このような問題を解決するためになされたものである。本開示は、つぎの電動ポンプを提供することを目的とする。
 すなわち、本開示において、駆動マグネットは、一対の軸受に挟まれた区間の外側のシャフト端部に配置される。さらに、駆動マグネットの外径は、一対の軸受のうち駆動マグネットの近くに位置する軸受の外径よりも小さい。
 本構成とすることで、本開示に係る電動ポンプは、駆動マグネットの重量を低減することができ、回転する駆動マグネットによる振動を抑制できる。
 上記目的を達成するために、本開示に係る電動ポンプの一態様は、ポンプ室と、モータと、を備える。
 ポンプ室は、吸込口と、吐出口と、インペラと、従動マグネットと、を有する。吸込口は、冷媒を吸い込む。吐出口は、吸い込んだ冷媒を吐出する。インペラは、吸込口から吸い込んだ冷媒を吐出口へと導く。従動マグネットは、インペラに取り付けられる。
 モータは、ロータと、ロータと向かい合って位置するステータと、を備える。ロータは、モータシャフトと、第1の軸受と、駆動マグネットと、を含む。モータシャフトは、軸心方向に延伸する。第1の軸受は、モータシャフトの一端に取り付けられて、モータシャフトを回転自在に支持する。駆動マグネットは、モータシャフトの一端において、第1の軸受と隣接し、従動マグネットと向かい合う位置に取り付けられる。
 軸心と交差する径方向において、駆動マグネットの外径は、第1の軸受の外径よりも小さい。
 本開示の電動ポンプを用いれば、駆動マグネットの重量及びイナーシャを低減することができ、回転する駆動マグネットによる振動を抑制することができる。
図1は、実施の形態に係る電動ポンプの断面図である。 図2は、実施の形態に係る電動ポンプの外観斜視図である。 図3は、実施の形態に係る電動ポンプが備えるロータの部分断面を示す斜視図である。
 以下、本開示の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって、本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態)
 以下、実施の形態に係る電動ポンプ1について、図1~図3を用いて説明する。図1は、実施の形態に係る電動ポンプ1の断面図である。図2は、実施の形態に係る電動ポンプ1の外観斜視図である。図3は、実施の形態に係る電動ポンプ1が備えるロータ320の部分断面を示す斜視図である。
 電動ポンプ1は、冷媒である作動流体として冷却水を用いる。電動ポンプ1は、モータ300の動力によって冷却水をポンプ室100aに吸い込み、吸い込んだ冷却水をポンプ室100aから吐出する電動式のポンプである。電動ポンプ1は、冷却水として水(冷却水)を用いる電動ウォーターポンプである。
 電動ポンプ1は、ラジエータ等の熱交換器が接続された循環路中に組み込まれる冷却用ポンプである。例えばハイブリッド自動車において、電動ポンプ1は、ラジエータで冷却された冷却水を循環路内に循環させることで、インバータ及びコンバータ等からなるパワーユニットあるいはエンジン(内燃機関)等に冷却水を供給する。
 図1及び図2に示すように、電動ポンプ1は、筐体100と、インペラ200と、モータ300および駆動回路ユニット400と、を備える。
 筐体100は、ポンプ室(ポンプケーシング)100aと、モータ室(モータケーシング)100bと、を有する。インペラ200は、ポンプ室100a内に配置される。モータ300および駆動回路ユニット400は、モータ室100b内に配置される。駆動回路ユニット400は、複数の回路部品410と、複数の回路部品410が実装された回路基板420と、を有する。
 筐体100は、電動ポンプ1の外郭をなす外郭部材である。図1及び図2に示すように、筐体100は、第1筐体部110と第2筐体部120と第3筐体部130とによって構成されている。第1筐体部110、第2筐体部120及び第3筐体部130は、例えば3本のネジによって互いに連結されて固定されている。
 第1筐体部110、第2筐体部120及び第3筐体部130は、樹脂材料又は金属材料等によって構成されている。第1筐体部110、第2筐体部120及び第3筐体部130は、樹脂材料の中では比較的に熱伝導率が高いPPS(Polyphenylenesulfide)樹脂によって構成されている。
 ポンプ室100aは、冷却水が通る領域である。ポンプ室100aは、第1筐体部110と第2筐体部120とによって構成されている。ポンプ室100aは、第1筐体部110と第2筐体部120とによって囲まれた空間領域であり、第1筐体部110及び第2筐体部120を隔壁として流路を構成している。
 ポンプ室100aは、冷却水を吸い込む吸込口101及び吸い込んだ冷却水を吐出する吐出口102を有する。吸込口101及び吐出口102は、第1筐体部110に設けられている。吸込口101及び吐出口102は、長尺円筒形状である。吸込口101及び吐出口102は、互いの円筒の延伸方向がねじれの位置にある関係で、第1筐体部110に設けられている。
 具体的には、吸込口101は、吸込口101内を冷却水が流れる方向とインペラ200の回転軸とが実質的に平行となるように設けられている。一方、吐出口102は、吐出口102内を冷却水が流れる方向と、インペラ200が回転する範囲を示す円の接線方向のうちの1つの接線方向と、が実質的に平行となるように設けられている。これにより、インペラ200が回転することで、冷却水が吸込口101からポンプ室100a内に引き込まれるとともに、引き込まれた冷却水がポンプ室100aから吐出口102を介して吐出される。
 モータ室100bは、第2筐体部120と第3筐体部130とによって囲まれた空間領域である。モータ室100bは、第2筐体部120と第3筐体部130とが隔壁となって閉空間を形成している。このように、第2筐体部120が、ポンプ室100aとモータ室100bとの隔壁を兼用している。
 モータ室100bには、モータ300及び駆動回路ユニット400が収納されている。つまり、モータ300及び駆動回路ユニット400は、同一の内部空間であるモータ室100bに配置されている。具体的には、モータ室100bには、モータ300が収納されているとともに、複数の回路部品410及び回路基板420が収納されている。
 電動ポンプ1は、第2筐体部120を境界として液層であるポンプ室100aと空気層であるモータ室100bとに分離された構造となっている。電動ポンプ1は、モータが備えるロータが冷却水に浸されるキャンドタイプとは異なり、モータ室100b内に位置するモータ300は冷却水に浸されない。電動ポンプ1は、モータ室100b内には冷却水が流入しない構造となっている。
 インペラ(羽根車)200は、円板状の底部(ベース)210と複数枚の羽根(ブレード)220とを有する。インペラ200は、吸込口101に対向する位置に配置されている。複数枚の羽根220は、底部210に固定されている。複数枚の羽根220は、オープンブレードである。複数枚の羽根220は、インペラ200の中心軸を中心として実質的に放射状に配置されている。インペラ200の中心軸は、後述するモータシャフト323に含まれる軸心Cが延伸する方向上に位置する。
 インペラ200は、インペラ200の中心軸と同軸にインペラ軸受230を有し、底部210の下面に中心軸と同軸に円環状の従動マグネット240と、円環状のバックヨーク250と、を有している。インペラ軸受230と、従動マグネット240と、バックヨーク250とは、底部210に固定されている。
 インペラシャフト500は、第2筐体部120の中心軸と同軸に、第2筐体部120に固定され、ポンプ室100a内に配置される。
 インペラ200は、インペラシャフト500と、インペラ軸受230を介して回転自在に取り付けられている。
 ワッシャ600は、インペラシャフト500の先端に形成された先端ネジ部とナット700により、インペラシャフト500の先端に固定されている。ワッシャ600は、インペラ200のスラスト方向(軸心C方向)の移動を抑制する。
 モータ300は、例えばインナロータ型のDCブラシレスモータである。モータ300は、ステータ310(固定子)と、ステータ310の内周側に配置されたロータ(回転子)320と、を有する。
 ステータ310は、複数のコイル311(巻線)を有している。ステータ310は、コイル311への通電により内周側に磁束を生じさせる。ステータ310は、モータフレーム330に固定されている。なお、モータフレーム330は、第3筐体部130に固定されている。
 図1及び図3に示すように、ロータ320は、ロータフレーム321にロータシャフト323が連結された構成である。ロータマグネット322は、ロータフレーム321の外周に固定されている。ロータマグネット322は、円柱状の部材であり、ステータ310の内周面と僅かな隙間(エアギャップ)を介して対向するように設置されている。ステータ310が有する複数のコイル311に対応するよう、ロータマグネット322には、複数の磁極(例えば周方向に交互にN極とS極とが並ぶ永久磁石)が設けられている。ロータシャフト323は、モータフレーム330に設けられた第2の軸受である第2ロータ軸受326と、第2筐体部120に設けられた第1の軸受である第1ロータ軸受327と、で支持されている。第1ロータ軸受327及び第2ロータ軸受326は、ともにラジアル玉軸受、いわゆるラジアル軸受タイプのボールベアリングである。第1ロータ軸受327及び第2ロータ軸受326は、ロータシャフト323のそれぞれの端部に圧入される。よって、モータ300内において、ロータシャフト323は、軸心Cに対して回転自在に支持された状態で軸心方向(アキシャル方向)に取り付けられる。
 ロータシャフト323の先端には、マグネットホルダー324が固定される。マグネットホルダー324の外周には、円環状の駆動マグネット325がロータシャフト323と同軸上に固定されている。駆動マグネット325は、マグネットホルダー324を介して、第2ロータ軸受326と第1ロータ軸受327とに挟まれた区間の外側であって、第1ロータ軸受327近傍のロータシャフト323の端部に固定されている。駆動マグネット325の外径は、第1ロータ軸受327の外径より小さい。これにより、第1ロータ軸受327が、第2筐体部120に保持される。
 駆動マグネット325と従動マグネット240は、複数の磁極が設けられ、同一の磁極数となっている。駆動マグネット325と従動マグネット240は、対向するN極とS極が磁気力で引き合っている。駆動マグネット325と従動マグネット240は同軸上に配置されている。
 マグネットホルダー324を介して固定された駆動マグネット325が回転すると、駆動マグネット325が発する磁気力により、従動マグネット240に回転力が伝達され、インペラ200が回転する。駆動マグネット325は、モータ室100bに配置されている。従動マグネット240は、ポンプ室100aに配置されている。駆動マグネット325と従動マグネット240は、第2筐体部120の隔壁で仕切られている。駆動マグネット325の回転力は、第2筐体部120の隔壁を通過する磁気力により、従動マグネット240に伝達される。ポンプ室100a内に配置されたインペラ200を回転させることで、電動ポンプ1は、吸込口101から冷却水をポンプ室100a内に引き込み、吐出口102から冷却水を吐出する。
 駆動回路ユニット400は、モータ300を駆動するための複数の回路部品410と、複数の回路部品410が実装された回路基板420とを備える。
 複数の回路部品410は、モータ300を駆動するための駆動回路等を構成する。回路部品410(回路素子)は、例えば、電解コンデンサ411又はセラミックコンデンサ等の容量素子、抵抗器等の抵抗素子、コイル素子、又は、マイクロコンピュータ412等の半導体素子等である。回路部品410には、ロータ320の回転位置を検出する回転位置検出素子(ホールIC)が含まれていてもよい。
 複数の回路部品410の多くは、回路基板420のインペラ200側の面に実装されている。
 回路基板420には、ロータシャフト323が貫通する貫通孔421が形成されている。貫通孔421は、例えば円形であるが、これに限るものではない。
 図1に、冷却水の流れを矢印で示す。吸込口101から見たときインペラ200は時計回り(CW方向)に回転することにより、吸込口101から冷却水をポンプ室100a内に引き込み、吐出口102から冷却水を吐出するという、冷却水(冷媒)の流れが形成される。
 本開示の実施の形態において、駆動マグネット325の外径は、第1ロータ軸受327の外径より小さい。これにより、実施の形態に係る電動ポンプ1は、駆動マグネット325の重量を低減し、かつ、イナーシャを小さくできる。さらに、実施の形態に係る電動ポンプ1は、回転する駆動マグネット325による振動を抑制することができる。また、実施の形態に係る電動ポンプ1は、インペラ200下の空間に外径の小さい駆動マグネット325と、従動マグネット240を配置することができる。したがって、本構成とすれば、電動ポンプを小型化、軽量化できる。
 駆動マグネット325を内側、従動マグネット240を外側に配置し、駆動マグネット325の外径を小さくすることにより、実施の形態に係る電動ポンプ1は、駆動マグネット325の重量を低減することができる。さらに、実施の形態に係る電動ポンプ1は、回転する駆動マグネット325による振動を抑制することができる。
 実施の形態に係る電動ポンプ1は、ロータシャフト323に固定されたロータマグネット322の外径より駆動マグネット325の外径が小さく、ロータシャフト323が含む軸心Cに沿った方向において、駆動マグネット325とロータマグネット322の間に第1ロータ軸受327が位置する。このため、ロータマグネット322に発生した回転トルク(モータの駆動力)は、ロータマグネット322よりイナーシャが小さい駆動マグネット325に対して、第1ロータ軸受327を介して伝達される。よって、実施の形態に係る電動ポンプ1では、駆動マグネット325が安定して回転することができる。したがって、実施の形態に係る電動ポンプ1は、駆動マグネット325による振動を抑制することができる。
 駆動マグネット325を保持するマグネットホルダー324及びロータマグネット322を保持するロータフレーム321は、ともにカップ状の有底筒形状である。マグネットホルダー324及びロータフレーム321はともに軸受に底部を向けて、第1ロータ軸受327に隣接し第1ロータ軸受327を挟む状態で、マグネットホルダー324の底部及びロータフレーム321の底部でロータシャフト323に固定されている。このため、駆動マグネット325及びロータマグネット322のイナーシャによる荷重が、第1ロータ軸受327付近に集中する。したがって、実施の形態に係る電動ポンプ1は、第1ロータ軸受327により振動を抑制することができる。
 第1ロータ軸受327と第2ロータ軸受326は、ロータフレーム321を挟むように取り付けられて、ロータシャフト323を回転自在に支持している。これにより、実施の形態に係る電動ポンプ1は、ロータシャフト323のラジアル方向の荷重に対し、この2つのベアリングによりロータシャフト323の軸ぶれを押さえ、振動を抑制することができる。
 以上のように、本実施の形態に係る電動ポンプ1は、ポンプ室100aと、モータ300と、を備える。
 ポンプ室100aは、吸込口101と、吐出口102と、インペラ200と、従動マグネット240と、を有する。吸込口101は、冷媒を吸い込む。吐出口102は、吸い込んだ冷媒を吐出する。インペラ200は、吸込口101から吸い込んだ冷媒を吐出口102へと導く。従動マグネット240は、インペラ200に取り付けられる。
 モータ300は、ロータ320と、ロータ320と向かい合って位置するステータ310と、を備える。ロータ320は、モータシャフト323と、第1の軸受である第1ロータ軸受327と、駆動マグネット325と、を含む。モータシャフト323は、軸心C方向に延伸する。第1の軸受である第1ロータ軸受327は、モータシャフト323の一端に取り付けられて、モータシャフト323を回転自在に支持する。駆動マグネット325は、モータシャフト323の一端において、第1の軸受である第1ロータ軸受327と隣接し、従動マグネット240と向かい合う位置に取り付けられる。
 軸心Cと交差する径方向において、駆動マグネット325の外径は、第1の軸受である第1ロータ軸受327の外径よりも小さい。
 特に、従動マグネット240は、円環状でもよい。駆動マグネット325は、円環状でもよい。
 あるいは、電動ポンプ1は、モータ300が内部に取り付けられるモータ室100bをさらに備えてもよい。
 また、従動マグネット240は、軸心C方向と直交する径方向において、駆動マグネット325の径方向外側に配置されていてもよい。
 また、ロータ320は、モータシャフト323に取り付けられるロータマグネット322をさらに含んでもよい。ロータマグネット322の外径は、駆動マグネット325の外径よりも小さい。第1の軸受である第1ロータ軸受327は、モータシャフト323が含む軸心Cに沿った方向において、駆動マグネット325とロータマグネット322との間に位置してもよい。
 特に、ロータ320は、駆動マグネット325を保持する有底筒形状のマグネットホルダー324と、ロータマグネット322を保持する有底筒形状のロータフレーム321と、をさらに含む。マグネットホルダー324の底部とロータフレーム321の底部とは、それぞれ第1の軸受である第1ロータ軸受327に向かって位置する。マグネットホルダー324の底部とロータフレーム321の底部とは、マグネットホルダー324の底部とロータフレーム321の底部とは、モータシャフト323に取り付けられている。
 なお、モータ300は、第2の軸受である第2ロータ軸受326をさらに含む。このとき、ロータフレーム321は、軸心Cに沿った方向において、第1の軸受である第1ロータ軸受327と第2の軸受である第2ロータ軸受326との間に位置する。
 ここで、第1の軸受である第1ロータ軸受327と第2の軸受である第2ロータ軸受326は、ラジアル玉軸受である。
 これにより、実施の形態に係る電動ポンプ1は、駆動マグネット325の重量を低減し、かつ、イナーシャを小さくできる。さらに、実施の形態に係る電動ポンプ1は、回転する駆動マグネット325による振動を抑制することができる。また、実施の形態に係る電動ポンプ1は、インペラ200下の空間に外径の小さい駆動マグネット325と、従動マグネット240を配置することができる。
 以上、本開示に係る電動ポンプについて、実施の形態に基づいて説明したが、本開示は、実施の形態に限定されるものではない。
 実施の形態において、モータ300は、インナロータ型のDCブラシレスモータであったが、これに限るものではない。
 その他、上記の実施の形態に対して当業者が思いつく各種変形を施して得られる形態、又は、本開示の趣旨を逸脱しない範囲で上記の実施の形態おける構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示に係る電動ポンプは、水(冷却水)等の冷媒を循環させるためのポンプである。本開示に係る電動ポンプは、例えば車両用の冷却システム等に用いられる電動ウォーターポンプ等として利用することができる。
 1 電動ポンプ
 100 筐体
 101 吸込口
 102 吐出口
 100a ポンプ室
 100b モータ室
 110 第1筐体部
 120 第2筐体部
 130 第3筐体部
 200 インペラ
 210 底部
 220 羽根
 230 インペラ軸受
 240 従動マグネット
 250 バックヨーク
 300 モータ
 310 ステータ
 311 コイル
 320 ロータ
 321 ロータフレーム
 322 ロータマグネット
 323 ロータシャフト(モータシャフト)
 324 マグネットホルダー
 325 駆動マグネット
 326 第2ロータ軸受(第2の軸受)
 327 第1ロータ軸受(第1の軸受)
 330 モータフレーム
 400 駆動回路ユニット
 410 回路部品
 411 電解コンデンサ
 412 マイクロコンピュータ
 420 回路基板
 421 貫通孔
 500 インペラシャフト
 600 ワッシャ
 700 ナット

Claims (9)

  1.       冷媒を吸い込む吸込口と、
          吸い込んだ前記冷媒を吐出する吐出口と、
          前記吸込口から吸い込んだ前記冷媒を前記吐出口へと導くインペラと、
          前記インペラに取り付けられた従動マグネットと、
       を有するポンプ室と、
             軸心方向に延伸するモータシャフトと、
             前記モータシャフトの一端に取り付けられて、前記モータシャフトを回転自在に支持する第1の軸受と、
             前記モータシャフトの前記一端において、前記第1の軸受と隣接し、前記従動マグネットと向かい合う位置に取り付けられる駆動マグネットと、
          を含むロータと、
          前記ロータと向かい合って位置するステータと、
       を有するモータと、を備え、
    前記駆動マグネットの外径は、前記第1の軸受の外径よりも小さい、電動ポンプ。
  2. 前記従動マグネットは、円環状である、請求項1に記載の電動ポンプ。
  3. 前記駆動マグネットは、円環状である、請求項1に記載の電動ポンプ。
  4. 前記電動ポンプは、前記モータが内部に取り付けられるモータ室をさらに備える、請求項1に記載の電動ポンプ。
  5. 前記従動マグネットは、前記軸心方向と直交する径方向において、前記駆動マグネットの径方向外側に配置されている請求項1から4のいずれか一項に記載の電動ポンプ。
  6. 前記ロータは、前記モータシャフトに取り付けられるロータマグネットをさらに含み、
    前記ロータマグネットの外径は、前記駆動マグネットの外径よりも小さく、
    前記第1の軸受は、前記モータシャフトが含む軸心に沿った方向において、前記駆動マグネットと前記ロータマグネットとの間に位置する、請求項1から5のいずれか一項に記載の電動ポンプ。
  7. 前記ロータは、前記駆動マグネットを保持する有底筒形状のマグネットホルダーと、前記ロータマグネットを保持する有底筒形状のロータフレームと、をさらに含み、
    前記マグネットホルダーの底部と前記ロータフレームの底部とは、それぞれ前記第1の軸受に向かって位置するとともに、前記マグネットホルダーの底部と前記ロータフレームの底部とは、前記モータシャフトに取り付けられている、請求項6に記載の電動ポンプ。
  8. 前記モータは、第2の軸受をさらに含み、
    前記ロータフレームは、前記軸心に沿った方向において、前記第1の軸受と前記第2の軸受との間に位置する、請求項7に記載の電動ポンプ。
  9. 前記第1の軸受と前記第2の軸受は、ラジアル玉軸受である、請求項8に記載の電動ポンプ。
PCT/JP2019/043524 2018-11-13 2019-11-06 電動ポンプ WO2020100690A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-212601 2018-11-13
JP2018212601 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020100690A1 true WO2020100690A1 (ja) 2020-05-22

Family

ID=70731406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043524 WO2020100690A1 (ja) 2018-11-13 2019-11-06 電動ポンプ

Country Status (1)

Country Link
WO (1) WO2020100690A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291780A1 (fr) * 1987-05-12 1988-11-23 Comadur SA Pompe à entraînement magnétique
JPH01142292A (ja) * 1987-11-27 1989-06-05 Matsushita Electric Ind Co Ltd マグネットポンプ
JPH07224785A (ja) * 1994-01-26 1995-08-22 Carbone Lorraine 磁気駆動遠心ポンプ
WO2003074881A1 (fr) * 2002-03-07 2003-09-12 Ichimaru Giken Co., Ltd. Dispositif d'alimentation de fluide, et equipement de vulcanisation de pneu faisant appel a ce dispositif d'alimentation de fluide
JP2004150390A (ja) * 2002-10-31 2004-05-27 Kps Kogyo Kk 水中ポンプ
JP2005320954A (ja) * 2004-04-08 2005-11-17 Asmo Co Ltd 流体ポンプ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291780A1 (fr) * 1987-05-12 1988-11-23 Comadur SA Pompe à entraînement magnétique
JPH01142292A (ja) * 1987-11-27 1989-06-05 Matsushita Electric Ind Co Ltd マグネットポンプ
JPH07224785A (ja) * 1994-01-26 1995-08-22 Carbone Lorraine 磁気駆動遠心ポンプ
WO2003074881A1 (fr) * 2002-03-07 2003-09-12 Ichimaru Giken Co., Ltd. Dispositif d'alimentation de fluide, et equipement de vulcanisation de pneu faisant appel a ce dispositif d'alimentation de fluide
JP2004150390A (ja) * 2002-10-31 2004-05-27 Kps Kogyo Kk 水中ポンプ
JP2005320954A (ja) * 2004-04-08 2005-11-17 Asmo Co Ltd 流体ポンプ装置

Similar Documents

Publication Publication Date Title
US10415590B2 (en) Electric coolant pump
US10001139B2 (en) Electric coolant pump
JP5880842B2 (ja) 電動オイルポンプ装置
JP6350375B2 (ja) 回転電機
US11085711B2 (en) Cooling device
EP1972791A1 (en) Flat brushless motor pump and electric water pump unit for vehicle employing flat brushless motor pump
US20160290364A1 (en) Electric water pump
JPWO2018062093A1 (ja) ポンプ装置
JP6993546B2 (ja) 冷却装置
WO2020100690A1 (ja) 電動ポンプ
WO2013190790A1 (ja) 液体循環装置
JP4369551B2 (ja) ポンプ装置
JP7186342B2 (ja) 電動ポンプ
JP2006348802A (ja) 電動ポンプ
JP2001159397A (ja) ファンモータ
JP5429231B2 (ja) ウォータポンプ
JP2016125405A (ja) ファン
WO2018037596A1 (ja) 電動流体ポンプ
JP7178548B2 (ja) 電動ポンプ
JP2012207591A (ja) 電動流体ポンプ
WO2017154536A1 (ja) 電動ポンプ
JP7167293B2 (ja) 冷却装置
JPH0583389U (ja) マグネットポンプ
JP2012154282A (ja) 電動流体ポンプ
JP2005299552A (ja) ポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP