EP0665378A1 - Centrifugal pump with magnetic drive - Google Patents
Centrifugal pump with magnetic drive Download PDFInfo
- Publication number
- EP0665378A1 EP0665378A1 EP95420014A EP95420014A EP0665378A1 EP 0665378 A1 EP0665378 A1 EP 0665378A1 EP 95420014 A EP95420014 A EP 95420014A EP 95420014 A EP95420014 A EP 95420014A EP 0665378 A1 EP0665378 A1 EP 0665378A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wheel
- assembly
- pump according
- pump
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012530 fluid Substances 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910002804 graphite Inorganic materials 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 10
- 239000003575 carbonaceous material Substances 0.000 claims description 8
- 230000000295 complement effect Effects 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 239000000696 magnetic material Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229910021332 silicide Inorganic materials 0.000 claims description 2
- 238000005461 lubrication Methods 0.000 description 6
- 238000005086 pumping Methods 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001311 chemical methods and process Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/021—Units comprising pumps and their driving means containing a coupling
- F04D13/024—Units comprising pumps and their driving means containing a coupling a magnetic coupling
- F04D13/027—Details of the magnetic circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/021—Units comprising pumps and their driving means containing a coupling
- F04D13/024—Units comprising pumps and their driving means containing a coupling a magnetic coupling
- F04D13/025—Details of the can separating the pump and drive area
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/021—Units comprising pumps and their driving means containing a coupling
- F04D13/024—Units comprising pumps and their driving means containing a coupling a magnetic coupling
- F04D13/026—Details of the bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
- F05B2260/404—Transmission of power through magnetic drive coupling
- F05B2260/4041—Transmission of power through magnetic drive coupling the driven magnets encircling the driver magnets
Definitions
- the invention relates to centrifugal pumps with central magnetic drive, particularly pumps made of carbonaceous material and pumps intended to convey hot and / or corrosive and / or toxic and dangerous fluids.
- Centrifugal pumps with magnetic drive have as basic components a pump body, a centrifugal impeller, a magnetic drive and assembly and connection elements.
- Figure 1 schematically illustrates the constitution of a known pump of this type.
- the pump body 4 is provided with an inlet port 12, a pumping compartment 22 and an outlet port 13.
- the pump body 4 can be formed from several parts.
- the magnetic drive device comprises a rotor 23 and a driver 24.
- the driver consists of a drive wheel 14, which is provided with permanent motor magnets 3 and which is fixed to the shaft 2 of a motor.
- peripheral drive there are at least two types of magnetic drive: either peripheral drive or central drive.
- the drive wheel 14 surrounds the rotor 23, while in the second case, which relates to the present application, it is located inside the rotor.
- the rotor 23 is fixed to the centrifugal wheel 5, most often by means of a common shaft and by screws, so as to form an integral wheel-rotor assembly.
- the rotor is provided with follower elements 6, which are either permanent magnets, called follower magnets, or parts made of material of high magnetic permeability, called drive parts, or a combination of the two.
- follower elements 6 are either permanent magnets, called follower magnets, or parts made of material of high magnetic permeability, called drive parts, or a combination of the two.
- the motor magnets 3 and the follower elements 6 are generally placed opposite and spaced so as to ensure sufficient driving torque.
- a lubrication device 10 and a particular lubricant are often necessary, but it is known to be able to ensure the lubrication of the bearings using the fluid conveyed (self-lubricating pumps).
- the self-lubrication is obtained using a secondary circuit which promotes the circulation of the fluid conveyed in a slight clearance at the bearings and / or in reflux conduits 25 in the fixed and / or mobile parts.
- the pumping compartment 22 occupies a volume closed internally by an air-tight bell 7.
- the driver 24 and the motor are located outside the pumping compartment and are thus isolated from the transported fluid, which no longer circulates except in the pumping compartment 22.
- the wall of the air-gap bell 7 is generally thin and configured. so as to pass through the air gap of the drive device, namely into the space which separates the motor magnets 3 from the follower elements 6.
- pumps intended in particular for the chemical, parachemical and pharmaceutical industries are most often an integral part of complex devices.
- they in addition to the imperative of resistance to the fluid conveyed, they must meet a certain number of additional imperatives of a technical and above all economic nature, in particular in order to reduce maintenance costs and limit production stoppages.
- the rotor is cantilevered with respect to the centrifugal wheel (patent US-5201642) or with respect to an axis in the inlet port of the pump (US Pat. No. 4,645,433). It is known that these arrangements allow a slight radial movement, a source of vibrations and possibly parasitic friction. These undesirable effects are accentuated at high temperatures, in particular by the effect of differential expansions between the constituent parts.
- US Pat. No. 4,645,433 describes a pump, the drive device of which is of reduced volume, but the inlet section is greatly reduced by the presence of the axis of rotation, which considerably increases the pressure drop. and the NPSH (Net Positive Suction Head) required and which consequently increases the risks of degradation of the centrifugal wheel by cavitation.
- NPSH Net Positive Suction Head
- the centrifugal pump with magnetic drive comprises a pump body 4, a centrifugal impeller 5, a rotor 23, an air-gap bell 7 and a driver 24, and assembly and connection members, and is characterized in that that the driver is central, in that the pump body 4 is made of carbonaceous material, in particular graphite, in that the air-gap bell 7 is made of non-magnetic and electrically non-conductive material, in that permanent follower magnets 6 are secured to the rotor 23 and completely isolated from the fluid carried, in that the rotor 23 is cylindrical in shape and is fixed directly to the centrifugal wheel 5, without any intermediate part, so as to form a compact wheel-rotor assembly, in that the wheel-rotor assembly is made of carbonaceous material of the same kind as that of the body of pump 4, in that the wheel-rotor assembly rests only on two rigid external annular axial bearings 16 and 17 situated at the ends of said assembly in the axial direction, and in that the wheel-rotor assembly has a secondary circuit
- the air gap bell 7 is preferably made of composite material comprising in particular carbonaceous products and / or polymerized resins.
- the secondary circuit preferably consists of an axial hole 19 in the centrifugal wheel 5 or in a series of holes 26 in the centrifugal wheel 5 arranged symmetrically around the axis of rotation of the wheel-rotor assembly.
- the follower magnets 6 are preferably secured to the wheel-rotor assembly by bonding a cap 31 comprising an annular cavity 32.
- complementary parts 28 and / or 29 are placed in the cavity 32 in addition to the follower magnets 6.
- the parts 28 and / or 29, which may be made of magnetic or non-magnetic material, allow precise positioning of the follower magnets 6 and / or confinement of the magnetic field lines.
- a suitable expansion joint which preferably consists of expanded graphite, can be placed in the residual expansion space 33 in order to wedge the magnets and to absorb the differential expansions.
- the wheel-rotor assembly abuts against an axial stop 18 on the side of the inlet 12.
- the bearings 16 and 17 and the stopper 18 are preferably made of carbonaceous material, in particular graphite, or graphite-silicide or silicon carbide.
- the wheel-rotor assembly rests directly on the external bearings 16 and 17, without the intermediary of bearings fixed to said assembly.
- the part of the transported liquid circulated in the pumping compartment by the secondary circuit not only allows the self-lubrication of the rear bearing, but also avoids the use of a second axial stop at the rear bearing thanks to an effect liquid bearing and limits the pressure at the rear of the wheel-rotor assembly, which reduces wear on the front stop.
- the assembly and disassembly operations of the pump according to the invention are carried out by simple stacking and nesting of the constituent parts.
- the motor can be removed without removing the pump from the device to which it is connected, that is to say that the fluid carried may remain in the pumping compartment during this operation.
- the number of parts of the pump according to the invention is very small, which facilitates maintenance and reduces costs.
- the pump according to the invention also has the advantage of great adaptability to very variable conditions of use, especially with regard to pressure and flow.
- the pump according to the invention offers very good performance, in particular as regards the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and centering of the wheel-rotor assembly.
- FIG. 1 shows, in axial section, a centrifugal pump with central magnetic drive of the prior art.
- the centrifugal wheel 5 is supported by an axial bearing 8 and is provided with axial stops 11a and 11b and with a lubrication device 10.
- FIG. 2 represents, in axial section, an embodiment of the centrifugal pump with central magnetic drive according to the invention which corresponds to example 1.
- FIG. 3 illustrates a second embodiment of the pump according to the invention which corresponds to Example 2.
- FIG. 4 shows, in axial section, an embodiment of the device for fixing the follower magnets which makes it possible to prevent the magnets from being attacked by the transported fluid.
- the watertight fixing is obtained by gluing along the plane I-I of the wheel-rotor assembly, which has an annular cavity 30, with a cap 31 carrying a complementary annular cavity 32.
- FIG. 5 illustrates a third embodiment of the pump according to the invention which corresponds to Example 3.
- a pump was produced according to the invention comprising a drive motor on the shaft 2 of which was fixed the drive wheel 14 provided with motor magnets 3, a pump body 4 in graphite, a wheel-rotor assembly of which the annular cylindrical extension comprised follower magnets 6 located opposite the motor magnets 3, a rear intermediate piece 27 and a gap bell 7.
- a tight fixing of the follower magnets on the wheel-rotor assembly was obtained by bonding with a cement based on graphite, phenolic resin and catalyst according to the plane I-I of the cap 31 on said assembly (FIG. 4).
- a complementary part 29 consisting of a steel ring has been inserted into the cavity 32.
- the residual space 33 has been filled with expanded graphite so as to form an expansion joint.
- the wheel-rotor assembly was supported externally on the one hand on the pump body 4 and on the intermediate part 27 by means of two external annular axial bearings rigid 16 and 17 located at the two ends of the wheel-rotor assembly in the direction of the axis and on the other hand on an axial stop 18 located on the side of the inlet orifice 12.
- the bearings 16 and 17 and the stop 18 were made of graphite-silicon and silicon carbide.
- the wheel-rotor assembly included an axial hole 19 in the centrifugal wheel 5.
- the bearing 17 rested on an intermediate piece 27 provided with two seals.
- the air gap bell 7 was made from a resin-carbon fiber composite (Rigilor (R) from the company Le Carbone Lorraine).
- the pump body 4 which was made in one piece having an inlet 12 and an outlet 13, was fixed to the flange 1 of the motor by means of an assembly plate 15 on which was fixed the air gap bell 7.
- the pump had an inlet flange 20 and an outlet flange 21.
- a second pump according to the invention was produced according to Example 1, with the exception of the bearing 17 which rested directly on the body of the pump 4, which made it possible to eliminate the intermediate part 27 and one of the corresponding seals.
- This pump has been tested on several chemical processes and has given complete satisfaction, in particular with regard to the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and the centering of the wheel assembly. rotor, even in high temperature conditions.
- a third pump according to the invention was produced according to Example 1, with the exception of the secondary circuit, which included a series of holes 26 arranged symmetrically around the axis of rotation at the level of the centrifugal wheel, and of the cap. 31 containing the follower magnets which was inserted into an annular cavity 34 in the centrifugal wheel. A second complementary piece 28 of graphite and of annular shape was placed in the annular cavity 32 of the cap 31.
- This pump has been tested on several chemical processes and has given complete satisfaction, in particular with regard to the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and the centering of the wheel assembly. rotor, even in high temperature conditions.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
L'invention concerne les pompes centrifuges à entraînement magnétique central, particulièrement les pompes en matériau carboné et les pompes destinées à véhiculer des fluides chauds et/ou corrosifs et/ou toxiques et dangereux.The invention relates to centrifugal pumps with central magnetic drive, particularly pumps made of carbonaceous material and pumps intended to convey hot and / or corrosive and / or toxic and dangerous fluids.
Les pompes centrifuges à entraînement magnétique ont pour constituants de base un corps de pompe, une roue centrifuge, un dispositif d'entraînement magnétique et des organes d'assemblage et de raccordement.Centrifugal pumps with magnetic drive have as basic components a pump body, a centrifugal impeller, a magnetic drive and assembly and connection elements.
La figure 1 illustre schématiquement la constitution d'une pompe connue de ce type.Figure 1 schematically illustrates the constitution of a known pump of this type.
Le corps de pompe 4 est doté d'un orifice d'entrée 12, d'un compartiment de pompage 22 et d'un orifice de sortie 13. Le corps de pompe 4 peut être formé de plusieurs pièces.The
Le dispositif d'entraînement magnétique comporte un rotor 23 et un entraîneur 24. L'entraîneur consiste en une roue d'entraînement 14, qui est munie d'aimants permanents moteurs 3 et qui est fixée à l'arbre 2 d'un moteur.The magnetic drive device comprises a
On distingue au moins deux types d'entraînement magnétique : soit à entraîneur périphérique, soit à entraîneur central. Dans le premier cas, le plus fréquent, la roue d'entraînement 14 entoure le rotor 23, alors que dans le second cas, qui concerne la présente demande, elle se situe à l'intérieur du rotor.There are at least two types of magnetic drive: either peripheral drive or central drive. In the first case, the most frequent, the
Le rotor 23 est fixé à la roue centrifuge 5, le plus souvent par l'intermédiaire d'un arbre commun et par visserie, de manière à former un ensemble roue-rotor solidaire. Le rotor est doté d'éléments suiveurs 6, qui sont soit des aimants permanents, dits aimants suiveurs, soit des pièces en matériau de grande perméabilité magnétique, dites pièces d'entraînement, soit une combinaison des deux. Les aimants moteurs 3 et les éléments suiveurs 6 sont en général disposés en vis-à-vis et espacés de manière à assurer un couple d'entraînement suffisant.The
La stabilité et le centrage des pièces en rotation sont assurés par un ou des palier(s) axial (axiaux) 8, interne(s) ou externe(s), garni(s) ou non de coussinets 9. Un dispositif de lubrification 10 et un lubrifiant particuliers sont souvent nécessaires, mais il est connu de pouvoir assurer la lubrification des paliers à l'aide du fluide véhiculé (pompes auto-lubrifiantes). Comme le décrivent les brevets DE-3413930 et US-5201642 et la demande GB-2263312, l'auto-lubrification est obtenue à l'aide d'un circuit secondaire qui favorise la circulation du fluide véhiculé dans un léger jeu au niveau des paliers et/ou dans des conduits de reflux 25 dans les parties fixes et/ou mobiles.Stability and centering of the rotating parts are ensured by one or more axial (axial)
Le compartiment de pompage 22 occupe un volume fermé intérieurement par une cloche entrefer 7 hermétique. L'entraîneur 24 et le moteur se situent à l'extérieur du compartiment de pompage et sont ainsi isolés du fluide véhiculé, qui ne circule plus que dans le compartiment de pompage 22. La paroi de la cloche entrefer 7 est en général mince et configurée de manière à passer dans l'entrefer du dispositif d'entraînement, à savoir dans l'espace qui sépare les aimants moteurs 3 des éléments suiveurs 6.The
Une des principales préoccupations des fabricants de pompes centrifuges à entraînement magnétique est la tenue au fluide véhiculé, c'est-à-dire la tenue en température et la résistance à l'agressivité chimique des fluides véhiculés.One of the main concerns of manufacturers of centrifugal pumps with magnetic drive is the resistance to the conveyed fluid, that is to say the resistance to temperature and the resistance to chemical aggressiveness of the conveyed fluids.
Pour cela, outre l'introduction d'une cloche entrefer hermétique, il est connu par les brevets DE-3413930 et US-4645433 d'utiliser des matériaux offrant une bonne tenue physico-chimique au fluide véhiculé.For this, in addition to the introduction of a hermetic air-gap bell, it is known from patents DE-3413930 and US-4645433 to use materials offering good physico-chemical resistance to the fluid conveyed.
Or, les pompes destinées notamment aux industries chimique, parachimique et pharmaceutique font le plus souvent partie intégrante de dispositifs complexes. Pour cela, outre l'impératif de la tenue au fluide véhiculé, elles doivent répondre à un certain nombre d'impératifs complémentaires de nature technique et surtout économique, afin notamment de réduire les coûts d'entretien et de limiter les arrêts de production.However, pumps intended in particular for the chemical, parachemical and pharmaceutical industries are most often an integral part of complex devices. For this, in addition to the imperative of resistance to the fluid conveyed, they must meet a certain number of additional imperatives of a technical and above all economic nature, in particular in order to reduce maintenance costs and limit production stoppages.
Ces impératifs complémentaires comprennent notamment :
- une grande stabilité et un équilibrage parfait en rotation ;
- une construction aussi compacte que possible ;
- un nombre de pièces aussi limité que possible ;
- un montage et un démontage très aisé.
- high stability and perfect balance in rotation;
- construction as compact as possible;
- as few pieces as possible;
- very easy assembly and disassembly.
La pompe décrite dans le brevet DE-3413930 résiste certes aux fluides véhiculés, mais il est connu que les pompes avec arbre commun sont d'un entretien difficile à cause de l'emboîtement particulier des pièces.The pump described in patent DE-3413930 certainly resists the fluids conveyed, but it is known that pumps with a common shaft are difficult to maintain because of the particular interlocking of the parts.
De façon générale, il est bien connu que les pompes avec arbre commun peuvent difficilement être compactes.In general, it is well known that pumps with a common shaft can hardly be compact.
Dans certains cas, le rotor est en porte-à-faux par rapport à la roue centrifuge (brevet US-5201642) ou par rapport à un axe dans l'orifice d'entrée de la pompe (brevet US-4645433). Il est connu que ces dispositions permettent un léger débattement radial, source de vibrations et éventuellement de frottements parasites. Ces effets indésirables sont accentués aux températures élevées, notamment per l'effet des dilatations différentielles entre les pièces constitutives.In certain cases, the rotor is cantilevered with respect to the centrifugal wheel (patent US-5201642) or with respect to an axis in the inlet port of the pump (US Pat. No. 4,645,433). It is known that these arrangements allow a slight radial movement, a source of vibrations and possibly parasitic friction. These undesirable effects are accentuated at high temperatures, in particular by the effect of differential expansions between the constituent parts.
Par ailleurs, le brevet US-4645433 décrit certes une pompe dont le dispositif d'entraînement est de volume réduit, mais la section d'entrée est fortement réduite par la présence de l'axe de rotation, ce qui augmente considérablement la perte de charge et le NPSH (Net Positive Suction Head) requis et qui augmente par conséquent les risques de dégradation de la roue centrifuge par cavitation. De surcroît, cette configuration requiert une lubrification particulière indépendante.Furthermore, US Pat. No. 4,645,433 describes a pump, the drive device of which is of reduced volume, but the inlet section is greatly reduced by the presence of the axis of rotation, which considerably increases the pressure drop. and the NPSH (Net Positive Suction Head) required and which consequently increases the risks of degradation of the centrifugal wheel by cavitation. In addition, this configuration requires specific independent lubrication.
Ayant constaté l'absence de solution connue satisfaisante, la demanderesse a alors cherché à fabriquer une pompe centrifuge à entraînement magnétique qui satisfasse l'ensemble des impératifs industriels énoncés plus haut.Having noted the absence of a known satisfactory solution, the applicant then sought to manufacture a centrifugal pump with magnetic drive which satisfies all of the industrial requirements set out above.
La pompe centrifuge à entraînement magnétique selon l'invention comporte un corps de pompe 4, une roue centrifuge 5, un rotor 23, une cloche entrefer 7 et un entraîneur 24, et des organes d'assemblage et de raccordement, et est caractérisée en ce que l'entraîneur est central, en ce que le corps de pompe 4 est en matériau carboné, notamment en graphite, en ce que la cloche entrefer 7 est en matériau amagnétique et électriquement non-conducteur, en ce que des aimants permanents suiveurs 6 sont solidarisés au rotor 23 et totalement isolés du fluide véhiculé, en ce que le rotor 23 est de forme cylindrique et est fixé directement à la roue centrifuge 5, sans pièce intermédiaire, de manière à former un ensemble roue-rotor compact, en ce que l'ensemble roue-rotor est en matériau carboné de même nature que celui du corps de pompe 4, en ce que l'ensemble roue-rotor repose uniquement sur deux paliers axiaux annulaires externes rigides 16 et 17 situés aux extrémités dudit ensemble dans le sens axial, et en ce que l'ensemble roue-rotor possède un circuit secondaire permettant la circulation d'une partie du fluide véhiculé à l'arrière dudit ensemble et entre celui-ci et la cloche entrefer 7.The centrifugal pump with magnetic drive according to the invention comprises a
La cloche entrefer 7 est de préférence en matériau composite comportant notamment des produits carbonés et/ou des résines polymérisées.The
Le circuit secondaire consiste de préférence en un trou axial 19 dans la roue centrifuge 5 ou en une série de trous 26 dans la roue centrifuge 5 disposés symétriquement autour de l'axe de rotation de l'ensemble roue-rotor.The secondary circuit preferably consists of an
Les aimants suiveurs 6 sont de préférence solidarisés à l'ensemble roue-rotor par collage d'un chapeau 31 comportant une cavité annulaire 32. Selon une variante de l'invention, des pièces complémentaires 28 et/ou 29 sont placées dans la cavité 32 en complément des aimants suiveurs 6. Les pièces 28 et/ou 29, qui peuvent être en matériau magnétique ou amagnétique, permettent un positionnement précis des aimants suiveurs 6 et/ou un confinement des lignes de champ magnétique.The
Un joint de dilatation adapté, qui consiste de préférence en du graphite expansé, peut être placé dans l'espace résiduel de dilatation 33 afin de caler les aimants et d'absorber les dilatations différentielles.A suitable expansion joint, which preferably consists of expanded graphite, can be placed in the
Selon une variante de l'invention, l'ensemble roue-rotor bute contre une butée axiale 18 du côté de l'orifice d'entrée 12.According to a variant of the invention, the wheel-rotor assembly abuts against an
Les paliers 16 et 17 et la butée 18 sont de préférence en matériau carboné, notamment en graphite, ou en graphite-siliciuré ou en carbure de silicium.The
De préférence, l'ensemble roue-rotor repose directement sur les paliers externes 16 et 17, sans l'intermédiaire de coussinets fixés audit ensemble.Preferably, the wheel-rotor assembly rests directly on the
La partie du liquide véhiculé mise en circulation dans le compartiment de pompage par le circuit secondaire permet non seulement l'auto-lubrification du palier arrière, mais évite aussi l'utilisation d'une deuxième butée axiale au niveau du palier arrière grâce à un effet de palier liquide et limite la pression à l'arrière de l'ensemble roue-rotor, ce qui réduit l'usure de la butée avant.The part of the transported liquid circulated in the pumping compartment by the secondary circuit not only allows the self-lubrication of the rear bearing, but also avoids the use of a second axial stop at the rear bearing thanks to an effect liquid bearing and limits the pressure at the rear of the wheel-rotor assembly, which reduces wear on the front stop.
Le fait d'isoler les aimants suiveurs dans la masse du rotor permet non seulement d'éviter que les aimants soient attaqués par le fluide véhiculé, mais permet également de bénéficier des propriétés tribologiques des matériaux carbonés constituant l'ensemble roue-rotor.The fact of isolating the follower magnets in the mass of the rotor not only prevents the magnets from being attacked by the fluid carried, but also makes it possible to benefit from the tribological properties of the carbonaceous materials constituting the wheel-rotor assembly.
Les opérations de montage et de démontage de la pompe selon l'invention s'effectuent par simple empilement et emboîtement des pièces constitutives. Le moteur peut être enlevé sans retirer la pompe du dispositif auquel elle est raccordée, c'est-à-dire que le fluide véhiculé peut rester dans le compartiment de pompage au cours de cette opération.The assembly and disassembly operations of the pump according to the invention are carried out by simple stacking and nesting of the constituent parts. The motor can be removed without removing the pump from the device to which it is connected, that is to say that the fluid carried may remain in the pumping compartment during this operation.
Le nombre de pièces de la pompe selon l'invention est très réduit, ce qui facilite l'entretien et en réduit les coûts.The number of parts of the pump according to the invention is very small, which facilitates maintenance and reduces costs.
La pompe selon l'invention présente aussi l'avantage d'une grande adaptabilité aux conditions très variables d'utilisation, notamment en ce qui concerne la pression et le débit.The pump according to the invention also has the advantage of great adaptability to very variable conditions of use, especially with regard to pressure and flow.
Lors des essais, comme le montrent les exemples, la demanderesse a pu constater que la pompe selon l'invention offre de très bonnes performances, notamment ce qui concerne la courbe des caractéristiques, la tenue à la corrosion, la fiabilité, la tenue mécanique et le centrage de l'ensemble roue-rotor.During the tests, as the examples show, the applicant has been able to observe that the pump according to the invention offers very good performance, in particular as regards the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and centering of the wheel-rotor assembly.
On attribue ces résultats à la combinaison favorable d'un ensemble roue-rotor compact, c'est-à-dire court par rapport à son diamètre, et de paliers externes de grand diamètre aux extrémités. On fait également l'hypothèse que l'effet de palier liquide entre l'ensemble roue-rotor et la cloche entrefer joue un rôle important dans la stabilité mécanique de la pompe.These results are attributed to the favorable combination of a compact wheel-rotor assembly, that is to say short in relation to its diameter, and external bearings of large diameter at the ends. It is also assumed that the liquid bearing effect between the wheel-rotor assembly and the air-gap bell plays an important role in the mechanical stability of the pump.
L'invention sera mieux comprise à l'aide des exemples de réalisation illustrés aux figures 2 à 5.The invention will be better understood with the aid of the exemplary embodiments illustrated in FIGS. 2 to 5.
La figure 1 représente, en coupe axiale, une pompe centrifuge à entraînement magnétique central de l'art antérieur. La roue centrifuge 5 est supportée par un palier axial 8 et est dotée de butées axiales 11a et 11b et d'un dispositif de lubrification 10.Figure 1 shows, in axial section, a centrifugal pump with central magnetic drive of the prior art. The
La figure 2 représente, en coupe axiale, une réalisation de la pompe centrifuge à entraînement magnétique central selon l'invention qui correspond à l'exemple 1.FIG. 2 represents, in axial section, an embodiment of the centrifugal pump with central magnetic drive according to the invention which corresponds to example 1.
La figure 3 illustre une deuxième réalisation de la pompe selon l'invention qui correspond à l'exemple 2.FIG. 3 illustrates a second embodiment of the pump according to the invention which corresponds to Example 2.
La figure 4 représente, en coupe axiale, une réalisation du dispositif de fixation des aimants suiveurs qui permet d'éviter que les aimants soient attaqués par le fluide véhiculé. La fixation étanche est obtenue par collage selon le plan I-I de l'ensemble roue-rotor, qui possède une cavité annulaire 30, avec un chapeau 31 portant une cavité annulaire complémentaire 32.FIG. 4 shows, in axial section, an embodiment of the device for fixing the follower magnets which makes it possible to prevent the magnets from being attacked by the transported fluid. The watertight fixing is obtained by gluing along the plane I-I of the wheel-rotor assembly, which has an
La figure 5 illustre une troisième réalisation de la pompe selon l'invention qui correspond à l'exemple 3.FIG. 5 illustrates a third embodiment of the pump according to the invention which corresponds to Example 3.
On a réalisé une pompe selon l'invention comportant un moteur d'entraînement sur l'arbre 2 duquel était fixée la roue d'entraînement 14 dotée d'aimants moteurs 3, un corps de pompe 4 en graphite, un ensemble roue-rotor dont l'extension cylindrique annulaire comportait des aimants suiveurs 6 situés en face des aimants moteurs 3, une pièce intermédiaire 27 arrière et une cloche entrefer 7.A pump was produced according to the invention comprising a drive motor on the
Une fixation étanche des aimants suiveurs sur l'ensemble roue-rotor a été obtenue par collage avec un ciment à base de graphite, résine phénolique et catalyseur selon le plan I-I du chapeau 31 sur ledit ensemble (figure 4). Une pièce complémentaire 29 consistant en un anneau en acier a été insérée dans la cavité 32. L'espace résiduel 33 a été rempli de graphite expansé de manière à former un joint de dilatation.A tight fixing of the follower magnets on the wheel-rotor assembly was obtained by bonding with a cement based on graphite, phenolic resin and catalyst according to the plane I-I of the
L'ensemble roue-rotor s'appuyait extérieurement d'une part sur le corps de pompe 4 et sur la pièce intermédiaire 27 par l'intermédiaire de deux paliers axiaux annulaires externes rigides 16 et 17 situés aux deux extrémités de l'ensemble roue-rotor dans le sens de l'axe et d'autre part sur une butée axiale 18 située du côté de l'orifice d'entrée 12. Les paliers 16 et 17 et la butée 18 étaient en graphite-siliciuré et en carbure de silicium.The wheel-rotor assembly was supported externally on the one hand on the
L'ensemble roue-rotor comportait un trou axial 19 dans la roue centrifuge 5.The wheel-rotor assembly included an
Le palier 17 reposait sur une pièce intermédiaire 27 munie de deux joints d'étanchéité.The bearing 17 rested on an
La cloche entrefer 7 a été réalisée en un composite résine-fibres de carbone (Rigilor (R) de la société Le Carbone Lorraine).The
Le corps de pompe 4, qui était fait d'une seule pièce possédant un orifice d'entrée 12 et un orifice de sortie 13, était fixé au flasque 1 du moteur par l'intermédiaire d'une plaque d'assemblage 15 sur laquelle était fixée la cloche entrefer 7.The
La pompe comportait une bride d'entrée 20 et une bride de sortie 21.The pump had an
Cette pompe a été mise à l'essai sur plusieurs procédés chimiques et a donné entière satisfaction. En particulier, la courbe des caractéristiques, la tenue à la corrosion et la fiabilité étaient excellentes. Il n'est apparu aucun problème de tenue mécanique ou de centrage de l'ensemble roue-rotor, même dans des conditions de température élevée.This pump has been tested on several chemical processes and has given complete satisfaction. In particular, the characteristic curve, the corrosion resistance and the reliability were excellent. No problem of mechanical strength or centering of the wheel-rotor assembly has appeared, even under high temperature conditions.
Une deuxième pompe selon l'invention a été réalisée selon l'exemple 1, à l'exception du palier 17 qui reposait directement sur le corps de la pompe 4, ce qui a permis d'éliminer la pièce intermédiaire 27 et un des joints correspondants.A second pump according to the invention was produced according to Example 1, with the exception of the
Cette pompe a été mise à l'essai sur plusieurs procédés chimiques et a donné entière satisfaction, notamment en ce qui concernait la courbe des caractéristiques, la tenue à la corrosion, la fiabilité, la tenue mécanique et le centrage de l'ensemble roue-rotor, même dans des conditions de température élevée.This pump has been tested on several chemical processes and has given complete satisfaction, in particular with regard to the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and the centering of the wheel assembly. rotor, even in high temperature conditions.
Une troisième pompe selon l'invention a été réalisée selon l'exemple 1, à l'exception du circuit secondaire, qui comportait une série de trous 26 disposés symétriquement autour de l'axe de rotation au niveau de la roue centrifuge, et du chapeau 31 contenant les aimants suiveurs qui s'insérait dans une cavité annulaire 34 dans la roue centrifuge. Un seconde pièce complémentaire 28 en graphite et de forme annulaire a été placée dans la cavité annulaire 32 du chapeau 31.A third pump according to the invention was produced according to Example 1, with the exception of the secondary circuit, which included a series of
Cette pompe a été mise à l'essai sur plusieurs procédés chimiques et a donné entière satisfaction, notamment en ce qui concernait la courbe des caractéristiques, la tenue à la corrosion, la fiabilité, la tenue mécanique et le centrage de l'ensemble roue-rotor, même dans des conditions de température élevée.This pump has been tested on several chemical processes and has given complete satisfaction, in particular with regard to the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and the centering of the wheel assembly. rotor, even in high temperature conditions.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9401104 | 1994-01-26 | ||
FR9401104A FR2715442B1 (en) | 1994-01-26 | 1994-01-26 | Centrifugal pump with magnetic drive. |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0665378A1 true EP0665378A1 (en) | 1995-08-02 |
Family
ID=9459644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95420014A Withdrawn EP0665378A1 (en) | 1994-01-26 | 1995-01-23 | Centrifugal pump with magnetic drive |
Country Status (4)
Country | Link |
---|---|
US (1) | US5501582A (en) |
EP (1) | EP0665378A1 (en) |
JP (1) | JPH07224785A (en) |
FR (1) | FR2715442B1 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000009889A1 (en) * | 1998-08-11 | 2000-02-24 | Cooper Paul V | Molten metal pump with monolithic rotor |
US6303074B1 (en) | 1999-05-14 | 2001-10-16 | Paul V. Cooper | Mixed flow rotor for molten metal pumping device |
US6345964B1 (en) | 1996-12-03 | 2002-02-12 | Paul V. Cooper | Molten metal pump with metal-transfer conduit molten metal pump |
US6689310B1 (en) | 2000-05-12 | 2004-02-10 | Paul V. Cooper | Molten metal degassing device and impellers therefor |
US6723276B1 (en) | 2000-08-28 | 2004-04-20 | Paul V. Cooper | Scrap melter and impeller |
US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
US8075837B2 (en) | 2003-07-14 | 2011-12-13 | Cooper Paul V | Pump with rotating inlet |
US8178037B2 (en) | 2002-07-12 | 2012-05-15 | Cooper Paul V | System for releasing gas into molten metal |
US8333666B2 (en) | 2004-12-10 | 2012-12-18 | Sundyne Corporation | Inner drive for magnetic drive pump |
US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
US8529828B2 (en) | 2002-07-12 | 2013-09-10 | Paul V. Cooper | Molten metal pump components |
US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11358217B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | Method for melting solid metal |
US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4443844A1 (en) * | 1994-12-09 | 1996-06-13 | Philips Patentverwaltung | Blower unit for generating gas flows |
GB2307947B (en) * | 1995-12-08 | 1999-08-18 | Aisan Ind | Magnetically coupled pump |
SE508445C2 (en) * | 1997-01-28 | 1998-10-05 | Magnetal Ab | High speed vacuum pump |
DE19718981A1 (en) * | 1997-05-05 | 1998-11-12 | Proair Geraetebau Gmbh | Conveying device for liquid and gaseous media, such as suction devices, in particular wet vacuum cleaners, pumps and the like |
US6129704A (en) | 1997-06-12 | 2000-10-10 | Schneider (Usa) Inc. | Perfusion balloon catheter having a magnetically driven impeller |
GB9717866D0 (en) * | 1997-08-23 | 1997-10-29 | Concentric Pumps Ltd | Improvements to rotary pumps |
US5915931A (en) * | 1997-11-13 | 1999-06-29 | The Gorman-Rupp Company | Magnetic drive unit having molded plastic magnetic driver |
EP0954087A1 (en) * | 1998-04-30 | 1999-11-03 | Sulzer Innotec Ag | Dynamoelectrical transmission and centrifugal pump with such transmission |
DE29822717U1 (en) | 1998-12-21 | 1999-03-18 | Feodor Burgmann Dichtungswerke GmbH & Co, 82515 Wolfratshausen | Centrifugal pump, in particular for pumping a coolant in a coolant circuit |
US6254361B1 (en) * | 1999-07-29 | 2001-07-03 | Itt Manufacturing Enterprises, Inc. | Shaftless canned rotor inline pipe pump |
EP1120569B1 (en) * | 1999-08-10 | 2015-07-29 | Iwaki Co., Ltd. | Magnet pump |
FR2798169B1 (en) * | 1999-09-06 | 2001-11-16 | Siebec Sa | MAGNETIC DRIVE PUMP |
CH710862B1 (en) | 1999-11-26 | 2016-09-15 | Imerys Graphite & Carbon Switzerland Sa | Process for the production of graphite powders with increased bulk density. |
CN1278439C (en) * | 2001-10-08 | 2006-10-04 | 蒂米卡尔股份公司 | Electrochemical cell |
ATE296958T1 (en) * | 2001-12-04 | 2005-06-15 | Levitronix Llc | DISPENSING DEVICE FOR A FLUID |
US6863124B2 (en) * | 2001-12-21 | 2005-03-08 | Schlumberger Technology Corporation | Sealed ESP motor system |
US7572115B2 (en) * | 2002-07-19 | 2009-08-11 | Innovative Mag-Drive, Llc | Corrosion-resistant rotor for a magnetic-drive centrifugal pump |
US6908291B2 (en) * | 2002-07-19 | 2005-06-21 | Innovative Mag-Drive, Llc | Corrosion-resistant impeller for a magnetic-drive centrifugal pump |
CN1746468A (en) * | 2004-06-09 | 2006-03-15 | 鸿富锦精密工业(深圳)有限公司 | The liquid-cooled radiating system micropump |
JP2007071147A (en) * | 2005-09-08 | 2007-03-22 | Kr & D:Kk | Pump driving device |
NO325341B1 (en) * | 2005-12-05 | 2008-03-31 | Norsk Hydro Produksjon As | Dressing system for an electric motor, and a drive system for operating a impeller |
DE202006005189U1 (en) * | 2006-03-31 | 2007-08-16 | H. Wernert & Co. Ohg | Centrifugal pump with coaxial magnetic coupling |
US20070224059A1 (en) * | 2006-03-23 | 2007-09-27 | Cheng-Tien Lai | Miniature pump for liquid cooling system |
CN101852216A (en) * | 2010-05-08 | 2010-10-06 | 白银鸿浩化工机械制造有限公司 | Production process of inner magnetic rotor of magnetic drive pump |
US20120177511A1 (en) * | 2011-01-10 | 2012-07-12 | Peopleflo Manufacturing, Inc. | Modular Pump Rotor Assemblies |
US8905728B2 (en) | 2011-12-30 | 2014-12-09 | Peopleflo Manufacturing, Inc. | Rotodynamic pump with permanent magnet coupling inside the impeller |
US8905729B2 (en) | 2011-12-30 | 2014-12-09 | Peopleflo Manufacturing, Inc. | Rotodynamic pump with electro-magnet coupling inside the impeller |
US9551091B2 (en) * | 2013-12-26 | 2017-01-24 | Hexa Nano Carbon LLC | Process and equipment for the production of micro-carbonfibers |
CN104776033B (en) * | 2014-01-14 | 2017-09-15 | 高涵文 | A kind of magnetic drive pump of corrosion-resistant anti-dry grinding |
US9771938B2 (en) * | 2014-03-11 | 2017-09-26 | Peopleflo Manufacturing, Inc. | Rotary device having a radial magnetic coupling |
EP3247480B1 (en) * | 2015-01-21 | 2018-11-07 | Basf Se | Column for purification by distillation of carboxylic acid anhydrides |
CN105042181A (en) * | 2015-06-30 | 2015-11-11 | 志远科技有限公司 | Control valve suitable for high-temperature concentrated sulfuric acid |
US9920764B2 (en) | 2015-09-30 | 2018-03-20 | Peopleflo Manufacturing, Inc. | Pump devices |
DE202015106097U1 (en) * | 2015-11-11 | 2016-02-01 | Holger Blum | Conveyor for a vacuum distillation plant |
US20180245596A1 (en) * | 2016-07-26 | 2018-08-30 | RELIAX MOTORES SA de CV | Integrated electric motor and pump assembly |
CN110249135B (en) * | 2016-11-01 | 2021-09-21 | Psg全球公司 | Magnetic coupling seal-free centrifugal pump |
DE102017204947A1 (en) * | 2017-03-23 | 2018-09-27 | Volkswagen Aktiengesellschaft | External rotor rotor of a pump and pump with such external rotor rotor |
RU2681045C1 (en) | 2018-05-21 | 2019-03-01 | Акционерное общество "Новомет-Пермь" | Installation of submersible pump with sealed motor |
RU2681051C1 (en) * | 2018-05-21 | 2019-03-01 | Акционерное общество "Новомет-Пермь" | Torque transmission node for submersible installation (options) |
CN111002764B (en) * | 2018-10-06 | 2022-06-10 | 河南天基轮胎有限公司 | Magnetic fluid rigidity-adjustable tire |
WO2020100690A1 (en) * | 2018-11-13 | 2020-05-22 | パナソニックIpマネジメント株式会社 | Electric pump |
GB2581339A (en) * | 2019-02-08 | 2020-08-19 | Hmd Seal/Less Pumps Ltd | Containment shell for a magnetic pump |
DE102019122042A1 (en) * | 2019-08-16 | 2021-02-18 | HELLA GmbH & Co. KGaA | Pumping device |
DE202020101750U1 (en) * | 2020-03-31 | 2020-04-15 | Speck Pumpen Verkaufsgesellschaft Gmbh | Counter current swimming system |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1453760A1 (en) * | 1962-01-08 | 1969-01-09 | Fuss Und Stahl Veredlung Gmbh | Pump with a rapidly rotating impeller, in particular a centrifugal pump |
DE3413930A1 (en) * | 1984-04-13 | 1985-10-31 | Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim | Centrifugal pump |
US4645433A (en) * | 1984-07-16 | 1987-02-24 | Cp Pumpen Ag | Sealing shroud centrifugal pump |
EP0250856A1 (en) * | 1986-06-04 | 1988-01-07 | GebràDer Sulzer Aktiengesellschaft | Centrifugal pump with magnetic coupling |
US4775291A (en) * | 1987-07-27 | 1988-10-04 | Binks Manufacturing Company | Magnetic clutch drive and thrust balancing mechanism for rotary pumps |
EP0291780A1 (en) * | 1987-05-12 | 1988-11-23 | Comadur SA | Pump with a magnetic drive |
DE3922426A1 (en) * | 1988-09-19 | 1990-03-22 | Sulzer Ag | Magnetic coupling for rotary process pumps - has isolating bush contacting process medium and other side contacting atmos., and impeller and rotor |
US5017103A (en) * | 1989-03-06 | 1991-05-21 | St. Jude Medical, Inc. | Centrifugal blood pump and magnetic coupling |
FR2672344A1 (en) * | 1991-02-05 | 1992-08-07 | Lorraine Carbone | Pump with magnetic drive equipped with a monobloc separation component made of composite material |
US5201642A (en) * | 1991-11-27 | 1993-04-13 | Warren Pumps, Inc. | Magnetic drive pump |
GB2263312A (en) * | 1992-01-17 | 1993-07-21 | Stork Pompen | Vertical pump with magnetic coupling. |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4806080A (en) * | 1983-07-06 | 1989-02-21 | Ebara Corporation | Pump with shaftless impeller |
CH672820A5 (en) * | 1986-03-21 | 1989-12-29 | Ernst Hauenstein | |
US5324177A (en) * | 1989-05-08 | 1994-06-28 | The Cleveland Clinic Foundation | Sealless rotodynamic pump with radially offset rotor |
US5405251A (en) * | 1992-09-11 | 1995-04-11 | Sipin; Anatole J. | Oscillating centrifugal pump |
US5248245A (en) * | 1992-11-02 | 1993-09-28 | Ingersoll-Dresser Pump Company | Magnetically coupled centrifugal pump with improved casting and lubrication |
-
1994
- 1994-01-26 FR FR9401104A patent/FR2715442B1/en not_active Expired - Fee Related
-
1995
- 1995-01-23 EP EP95420014A patent/EP0665378A1/en not_active Withdrawn
- 1995-01-24 US US08/377,435 patent/US5501582A/en not_active Expired - Lifetime
- 1995-01-26 JP JP7010952A patent/JPH07224785A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1453760A1 (en) * | 1962-01-08 | 1969-01-09 | Fuss Und Stahl Veredlung Gmbh | Pump with a rapidly rotating impeller, in particular a centrifugal pump |
DE3413930A1 (en) * | 1984-04-13 | 1985-10-31 | Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim | Centrifugal pump |
US4645433A (en) * | 1984-07-16 | 1987-02-24 | Cp Pumpen Ag | Sealing shroud centrifugal pump |
EP0250856A1 (en) * | 1986-06-04 | 1988-01-07 | GebràDer Sulzer Aktiengesellschaft | Centrifugal pump with magnetic coupling |
EP0291780A1 (en) * | 1987-05-12 | 1988-11-23 | Comadur SA | Pump with a magnetic drive |
US4775291A (en) * | 1987-07-27 | 1988-10-04 | Binks Manufacturing Company | Magnetic clutch drive and thrust balancing mechanism for rotary pumps |
DE3922426A1 (en) * | 1988-09-19 | 1990-03-22 | Sulzer Ag | Magnetic coupling for rotary process pumps - has isolating bush contacting process medium and other side contacting atmos., and impeller and rotor |
US5017103A (en) * | 1989-03-06 | 1991-05-21 | St. Jude Medical, Inc. | Centrifugal blood pump and magnetic coupling |
FR2672344A1 (en) * | 1991-02-05 | 1992-08-07 | Lorraine Carbone | Pump with magnetic drive equipped with a monobloc separation component made of composite material |
US5201642A (en) * | 1991-11-27 | 1993-04-13 | Warren Pumps, Inc. | Magnetic drive pump |
GB2263312A (en) * | 1992-01-17 | 1993-07-21 | Stork Pompen | Vertical pump with magnetic coupling. |
Non-Patent Citations (1)
Title |
---|
MERSCH A: "MAGNETIC DRIVE CHEMICAL PUMPS OF TOMORROW", WORLD PUMPS, no. 5, pages 146/147, XP000084072 * |
Cited By (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6345964B1 (en) | 1996-12-03 | 2002-02-12 | Paul V. Cooper | Molten metal pump with metal-transfer conduit molten metal pump |
WO2000009889A1 (en) * | 1998-08-11 | 2000-02-24 | Cooper Paul V | Molten metal pump with monolithic rotor |
US6093000A (en) * | 1998-08-11 | 2000-07-25 | Cooper; Paul V | Molten metal pump with monolithic rotor |
US6398525B1 (en) | 1998-08-11 | 2002-06-04 | Paul V. Cooper | Monolithic rotor and rigid coupling |
US6303074B1 (en) | 1999-05-14 | 2001-10-16 | Paul V. Cooper | Mixed flow rotor for molten metal pumping device |
US6689310B1 (en) | 2000-05-12 | 2004-02-10 | Paul V. Cooper | Molten metal degassing device and impellers therefor |
US6723276B1 (en) | 2000-08-28 | 2004-04-20 | Paul V. Cooper | Scrap melter and impeller |
US8110141B2 (en) | 2002-07-12 | 2012-02-07 | Cooper Paul V | Pump with rotating inlet |
US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
US9034244B2 (en) | 2002-07-12 | 2015-05-19 | Paul V. Cooper | Gas-transfer foot |
US8529828B2 (en) | 2002-07-12 | 2013-09-10 | Paul V. Cooper | Molten metal pump components |
US8178037B2 (en) | 2002-07-12 | 2012-05-15 | Cooper Paul V | System for releasing gas into molten metal |
US8440135B2 (en) | 2002-07-12 | 2013-05-14 | Paul V. Cooper | System for releasing gas into molten metal |
US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
US8409495B2 (en) | 2002-07-12 | 2013-04-02 | Paul V. Cooper | Rotor with inlet perimeters |
US9435343B2 (en) | 2002-07-12 | 2016-09-06 | Molten Meal Equipment Innovations, LLC | Gas-transfer foot |
US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
US8075837B2 (en) | 2003-07-14 | 2011-12-13 | Cooper Paul V | Pump with rotating inlet |
US8475708B2 (en) | 2003-07-14 | 2013-07-02 | Paul V. Cooper | Support post clamps for molten metal pumps |
US8501084B2 (en) | 2003-07-14 | 2013-08-06 | Paul V. Cooper | Support posts for molten metal pumps |
US8333666B2 (en) | 2004-12-10 | 2012-12-18 | Sundyne Corporation | Inner drive for magnetic drive pump |
US9362050B2 (en) | 2004-12-10 | 2016-06-07 | Sundyne, Llc | Inner drive for magnetic drive pump |
US9855600B2 (en) | 2007-06-21 | 2018-01-02 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US11167345B2 (en) | 2007-06-21 | 2021-11-09 | Molten Metal Equipment Innovations, Llc | Transfer system with dual-flow rotor |
US11759854B2 (en) | 2007-06-21 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer structure and method |
US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
US11185916B2 (en) | 2007-06-21 | 2021-11-30 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel with pump |
US8753563B2 (en) | 2007-06-21 | 2014-06-17 | Paul V. Cooper | System and method for degassing molten metal |
US11130173B2 (en) | 2007-06-21 | 2021-09-28 | Molten Metal Equipment Innovations, LLC. | Transfer vessel with dividing wall |
US9017597B2 (en) | 2007-06-21 | 2015-04-28 | Paul V. Cooper | Transferring molten metal using non-gravity assist launder |
US11103920B2 (en) | 2007-06-21 | 2021-08-31 | Molten Metal Equipment Innovations, Llc | Transfer structure with molten metal pump support |
US11020798B2 (en) | 2007-06-21 | 2021-06-01 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal |
US10562097B2 (en) | 2007-06-21 | 2020-02-18 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
US10458708B2 (en) | 2007-06-21 | 2019-10-29 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US10352620B2 (en) | 2007-06-21 | 2019-07-16 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US10345045B2 (en) | 2007-06-21 | 2019-07-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9383140B2 (en) | 2007-06-21 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US10274256B2 (en) | 2007-06-21 | 2019-04-30 | Molten Metal Equipment Innovations, Llc | Vessel transfer systems and devices |
US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US10195664B2 (en) | 2007-06-21 | 2019-02-05 | Molten Metal Equipment Innovations, Llc | Multi-stage impeller for molten metal |
US10072891B2 (en) | 2007-06-21 | 2018-09-11 | Molten Metal Equipment Innovations, Llc | Transferring molten metal using non-gravity assist launder |
US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
US9982945B2 (en) | 2007-06-21 | 2018-05-29 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US9925587B2 (en) | 2007-06-21 | 2018-03-27 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal from a vessel |
US9909808B2 (en) | 2007-06-21 | 2018-03-06 | Molten Metal Equipment Innovations, Llc | System and method for degassing molten metal |
US9862026B2 (en) | 2007-06-21 | 2018-01-09 | Molten Metal Equipment Innovations, Llc | Method of forming transfer well |
US9566645B2 (en) | 2007-06-21 | 2017-02-14 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9581388B2 (en) | 2007-06-21 | 2017-02-28 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
US9080577B2 (en) | 2009-08-07 | 2015-07-14 | Paul V. Cooper | Shaft and post tensioning device |
US10570745B2 (en) | 2009-08-07 | 2020-02-25 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US9506129B2 (en) | 2009-08-07 | 2016-11-29 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
US9422942B2 (en) | 2009-08-07 | 2016-08-23 | Molten Metal Equipment Innovations, Llc | Tension device with internal passage |
US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US9470239B2 (en) | 2009-08-07 | 2016-10-18 | Molten Metal Equipment Innovations, Llc | Threaded tensioning device |
US9464636B2 (en) | 2009-08-07 | 2016-10-11 | Molten Metal Equipment Innovations, Llc | Tension device graphite component used in molten metal |
US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
US9377028B2 (en) | 2009-08-07 | 2016-06-28 | Molten Metal Equipment Innovations, Llc | Tensioning device extending beyond component |
US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
US9657578B2 (en) | 2009-08-07 | 2017-05-23 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US9328615B2 (en) | 2009-08-07 | 2016-05-03 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
US9382599B2 (en) | 2009-08-07 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
US10309725B2 (en) | 2009-09-09 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Immersion heater for molten metal |
US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9482469B2 (en) | 2010-05-12 | 2016-11-01 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US10641279B2 (en) | 2013-03-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened tip |
US11391293B2 (en) | 2013-03-13 | 2022-07-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US10126059B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Controlled molten metal flow from transfer vessel |
US9587883B2 (en) | 2013-03-14 | 2017-03-07 | Molten Metal Equipment Innovations, Llc | Ladle with transfer conduit |
US10302361B2 (en) | 2013-03-14 | 2019-05-28 | Molten Metal Equipment Innovations, Llc | Transfer vessel for molten metal pumping device |
US10126058B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Molten metal transferring vessel |
US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
US10307821B2 (en) | 2013-03-15 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10322451B2 (en) | 2013-03-15 | 2019-06-18 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US11286939B2 (en) | 2014-07-02 | 2022-03-29 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10465688B2 (en) | 2014-07-02 | 2019-11-05 | Molten Metal Equipment Innovations, Llc | Coupling and rotor shaft for molten metal devices |
US11939994B2 (en) | 2014-07-02 | 2024-03-26 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US11933324B2 (en) | 2015-02-02 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US11519414B2 (en) | 2016-01-13 | 2022-12-06 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US11098719B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US11098720B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
US10641270B2 (en) | 2016-01-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US12031550B2 (en) | 2017-11-17 | 2024-07-09 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11976672B2 (en) | 2017-11-17 | 2024-05-07 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11858036B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | System and method to feed mold with molten metal |
US11358217B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | Method for melting solid metal |
US11858037B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US11850657B2 (en) | 2019-05-17 | 2023-12-26 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11931803B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and method |
US11931802B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal controlled flow launder |
US11759853B2 (en) | 2019-05-17 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Melting metal on a raised surface |
US11471938B2 (en) | 2019-05-17 | 2022-10-18 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US11358216B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
Also Published As
Publication number | Publication date |
---|---|
FR2715442B1 (en) | 1996-03-01 |
FR2715442A1 (en) | 1995-07-28 |
JPH07224785A (en) | 1995-08-22 |
US5501582A (en) | 1996-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0665378A1 (en) | Centrifugal pump with magnetic drive | |
FR2944838A1 (en) | STRUCTURAL IMPROVEMENT OF A NOYE ROTOR PUMP | |
FR2588323A1 (en) | MAGNETICALLY DRIVEN CENTRIFUGAL PUMP | |
EP1210520B1 (en) | Magnetically driven pump | |
EP3464903B1 (en) | Stator, rotating shaft, dry type vacuum pump and associated production methods | |
FR3037110B1 (en) | CENTRIFUGAL REFRIGERATING COMPRESSOR | |
CN101892990B (en) | Horizontal split multi-stage pump | |
FR2867229A1 (en) | TURBOMACHINE BEARING BEARING WITH REDUCED SIZE | |
FR2594185A1 (en) | Radial pump | |
FR3094051A1 (en) | Squirrel-type cage ring made of composite bi-material and metal, and rolling element bearing assembly equipped with such a ring | |
CA2915106C (en) | Trunnion for high-pressure turbine, and turbojet engine including such a trunnion | |
FR3134435A1 (en) | Vacuum pump | |
FR2845735A1 (en) | NOZZLE VACUUM PUMP | |
EP0697524A1 (en) | Turbomolecular vacuum pump | |
FR2672344A1 (en) | Pump with magnetic drive equipped with a monobloc separation component made of composite material | |
FR3112172A1 (en) | Dry vacuum pump | |
FR2514079A1 (en) | RADIAL PISTON MACHINE, IN PARTICULAR A BALLPOINT PISTON PUMP | |
FR2911166A1 (en) | Magnetic drive pump for conveying e.g. corrosive liquid, has sliding sealing device inserted between front wall and rotor with interposition of supports for compensating misalignment between wall and rotor | |
EP1552158A1 (en) | Pump unit for circulating a corrosive fluid | |
FR2599092A1 (en) | Centrifugal pump with wear rings for rotors | |
FR2912797A1 (en) | Magnetic sealing joint for use in helicopter, has grooves arranged between joint parts during rotation of one part with respect to another, and magnetic units arranged such that parts are attracted towards each other | |
EP0554803B1 (en) | Multistage centrifugal pump | |
EP0823027B1 (en) | Magnetic drive centrifugal pump | |
BE1000978A5 (en) | Integrated electric motor and pump unit - uses lateral inlet and outlet pipes and has motor unit formed around rotating sleeve which has internal pumping elements | |
EP0612135A1 (en) | Rotating device for a canned motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19950902 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LE CARBONE LORRAINE |
|
17Q | First examination report despatched |
Effective date: 19960708 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19980117 |