EP0664876B1 - Methode pour la creation d'une cible artificielle - Google Patents

Methode pour la creation d'une cible artificielle Download PDF

Info

Publication number
EP0664876B1
EP0664876B1 EP94920388A EP94920388A EP0664876B1 EP 0664876 B1 EP0664876 B1 EP 0664876B1 EP 94920388 A EP94920388 A EP 94920388A EP 94920388 A EP94920388 A EP 94920388A EP 0664876 B1 EP0664876 B1 EP 0664876B1
Authority
EP
European Patent Office
Prior art keywords
component
target
incendiary
radiation density
spectral radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94920388A
Other languages
German (de)
English (en)
Other versions
EP0664876A1 (fr
Inventor
Heinz Bannasch
Martin Wegscheider
Martin Fegg
Horst Büsel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buck Chemisch Technische Werke GmbH and Co
Buck Werke GmbH and Co
Original Assignee
Buck Chemisch Technische Werke GmbH and Co
Buck Werke GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buck Chemisch Technische Werke GmbH and Co, Buck Werke GmbH and Co filed Critical Buck Chemisch Technische Werke GmbH and Co
Publication of EP0664876A1 publication Critical patent/EP0664876A1/fr
Application granted granted Critical
Publication of EP0664876B1 publication Critical patent/EP0664876B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B4/00Fireworks, i.e. pyrotechnic devices for amusement, display, illumination or signal purposes
    • F42B4/26Flares; Torches
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D3/00Generation of smoke or mist (chemical part)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H9/00Equipment for attack or defence by spreading flame, gas or smoke or leurres; Chemical warfare equipment
    • F41H9/06Apparatus for generating artificial fog or smoke screens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J2/00Reflecting targets, e.g. radar-reflector targets; Active targets transmitting electromagnetic or acoustic waves
    • F41J2/02Active targets transmitting infrared radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S149/00Explosive and thermic compositions or charges
    • Y10S149/116Flare contains resin

Definitions

  • the invention relates to a method for producing false targets for protection against homing missiles which differentiate between radiation strengths in the short-wavelength infrared region and medium-wavelength infrared region.
  • Objects to be protected such as ships, drilling platforms, tanks and the like, have only low surface temperatures of approximately 0 ° C to 20 ° C for a chassis or a boat hull and a max. 80 ° C to 100 ° C for a chimney.
  • this means that the objects to be protected have the coincidence features, that they have low radiation levels in the short-wavelength infrared range (SWIR range: 2 ... 2.5 ⁇ m) and high radiation levels in the medium-wavelength infrared range (MWIR range) : 3 ... 5 ⁇ m) and long-wave infrared range (LWIR range: 8 hereby 14 ⁇ m).
  • SWIR range short-wavelength infrared range
  • MWIR range medium-wavelength infrared range
  • LWIR range long-wave infrared range
  • Target search missiles such as the so-called “two-color infrared target search heads" can differentiate between beam strengths in the SWIR range and those in the MWIR range.
  • the target search body detects beam strengths in the MWIR range, while at the same time they can determine beam strengths in the SWIR range to discriminate against apparent targets.
  • German patent application DE-PS 42 38 038 is already a method for providing a dummy target body is known, which is used to simulate the target signature of an object to be protected for an imaging target search missile, flare masses being spatially or temporally displaced at the location of the dummy target body to be assembled.
  • the flare mass which is composed of a mixture of phosphor granules and small phosphor flares according to DE-PS 42 38 038, has a spectral radiance with a desired high proportion in the MWIR range, but the overall radiance in the SWIR range clearly exceeds that of objects to be protected . This leads to the fact that target search missiles classify false targets, which are produced according to DE-PS 42 38 038, as deception due to the beam density in the SWIR range and therefore do not aim at them.
  • an infrared radiator is disclosed which is generated by a fire set consisting of potassium nitrate and metallic boron or black powder or solid fuels, the burning temperature being in any case higher than an object temperature of approximately 20 ° C.
  • the maximum of the spectral radiance of the dummy target produced according to DE 26 14 196 A1 is at lower wavelengths than the maximum of the spectral radiance of an object to be protected, which enables targeting missiles to do so To distinguish the apparent target from the object to be bombarded.
  • the publication DE 35 15 166 A1 describes a projectile to represent an infrared radiator, the flare mass of which is made up of phosphorus plus the passivation of phosphorus serving aluminum hydroxide to slow down the burning time.
  • the dummy target generated according to DE 35 15 166 A1 has a non-negligible radiation density component in the SWIR range, which enables target seekers to recognize what is the dummy target and what is the object to be tracked.
  • the aluminum hydroxide additive ensures only a slight change in the specific weight of the flare mass, which essentially does not lead to an extension of the effective time of the flare mass or the service life of the apparent target.
  • a flare mass is known from the publication DE 23 59 758, in which the inert component consists of metal carrier foils which are coated with the fire mass component. It is an infrared interference emitter in which the weight or quantity ratio between the fire mass component and the inert component is optimized from the point of view of an increase in the radiation duration by slowing down the burnup, without the spectral density distribution being adapted to that of the target signature to be simulated would be addressed.
  • EP 0 037 515 A2 discloses a method for generating a nebula that absorbs rays in the wavelength range from 3 to 15 ⁇ m in order to hide objects from IR or radar detectors. Red phosphorus is burned to form phosphorus pentoxide, which in turn reacts with the air humidity to form phosphoric and phosphorous acid and thus cause a covering. Furthermore, there are described microballoons that serve to increase the ability to hover and through their size and shape absorption is achieved.
  • a method for producing a pyrotechnic mixture for producing an IR-covering mist is known from the publication DE 34 43 778 A1, the mist generation there being based on the same principle as already disclosed in EP 0 037 515 A2.
  • the pyrotechnic mixture in turn comprises red phosphorus and a binder, for example rubber.
  • US Pat. No. 2,658,874 (closest prior art) also discloses smoke ammunition which comprises red phosphorus and a plasticizer by means of which the rate of combustion can be controlled.
  • the invention has for its object to provide a method for dummy target generation for protection against homing missiles that differentiate between radiation strengths in the short-wavelength infrared range and medium-wavelength infrared range, so that the creation of dummy targets is made possible, which in accordance with the target signature of the objects to be protected in the simulated MWIR range high and in the SWIR range low beam strengths.
  • the flare mass according to the invention is preferably designed in such a way that the MWIR radiation strength of the dummy target produced is greater than that of the object to be protected, so that the dummy target is an over-optimal key stimulus for an infrared target search body represents and thus targeted by this instead of the object to be protected. It is advantageous if the burn rate is also slowed down in the flare mass according to the invention.
  • inert component and fire mass component which have approximately 5% to 99% by weight of pyrotechnic fire mass, the rest of the inert component, are particularly suitable as flare mass.
  • thermal properties of the inert component for example, the specific heat and / or thermal expansion of the inert component, in addition to the density thereof, can be taken into account, the latter also influencing the service life of the apparent target due to its influence on the specific weight of the flare mass.
  • the spectral radiance of the dummy target can also be selectively modified via selective radiation properties of the inert component, namely emissivity, degree of absorption, transmittance and reflectance of the inert component.
  • the spectral radiance of the apparent target can also be adjusted via the material and / or the volume of the particle filling as well as via its density and / or the pressure prevailing in the particle filling.
  • the spectral radiance of the apparent target can also be adjusted via the material of the particle shell, its surface quality and / or its thickness.
  • the fire mass component preferably consists of red phosphorus, which has an ignition temperature of approximately 400 ° C. may have. It is particularly advantageous if the red phosphorus is treated in such a way that it requires an ignition temperature of less than 400 ° C., which can be brought about by adding another substance, for example at least one catalyst, to the red phosphorus to reduce the ignition temperature and / or the red phosphorus particle is coated in particles, for example with paraffin wax.
  • the inert component should be made of a material that is substantially inert from about 0 ° C to about 600 ° C. Silicates, such as diatomaceous earth, have proven themselves as the material for the inert component.
  • the inert component is preferably formed by microballoons, for example from materials such as are known under the trade names Q-Cell® or Extendospheres®.
  • the inert component can be in the form of a binder or carrier material for the fire mass component.
  • the spectral radiance of the apparent target can be set by the choice of material and the thickness and / or the specific thermal properties of the carrier material. It is also within the inventive concept to adjust the spectral radiance of the apparent target by means of the radiation-physical properties of the carrier material, namely spectral emission, absorption and / or transmission capacity.
  • the inert component has particles which have a particle filling and a particle shell
  • a gas or a foam with special Absorption bands must be selected.
  • a glass with an optically filtering property has proven itself for the particle shell.
  • the invention is based on the surprising finding that it is possible, in principle, for a conceivable target generation method for protection against homing missiles which differentiate between radiation strengths in the short-wavelength infrared region and medium-wavelength infrared region, for every conceivable object to be protected, the apparent target being made by a clever choice of Parameters of the pyrotechnic fire mass and the inert additive, especially the weight ratio of the components to one another, have a radiance curve as a function of the wavelength, which is deceptively similar to that of the object to be protected and is more attractive for a target seeker, since the radiation maximum compared to the known flare mass in the longer wavelength infrared range is shifted, and in addition there is the possibility that the radiation strengths in the SWIR range are suppressed by selective radiation and the radiation strengths in the MWIR range can be increased.
  • FIG. 1 shows the spectral radiance calculated according to Planck's law for radiation for an object of the type mentioned above, which is typically to be protected and has surface temperatures of approximately 20 ° C. or 100 ° C.
  • the already mentioned coincidence characteristics of objects to be protected namely low infrared radiation power per area in the range of 2-2.5 ⁇ m and high radiation power per area in the range of 3-5 ⁇ m, can be seen in FIG. 1.
  • dummy targets emit significantly more radiation in the SWIR area and, due to their too small area in the MWIR area, significantly less radiation than the objects for whose protection they are to be provided, as shown in FIG. 2.
  • homing missiles particularly two-color infrared homing heads, can easily distinguish between dummy targets and the objects to be protected by using radiation in the MWIR range to track and track an object, and detecting radiation in the Use the SWIR area in order to be able to distinguish apparent targets from the objects to be actually targeted.
  • the beam density maximum must therefore be shifted to higher wavelengths.
  • a flare mass is used for spectral target adjustment, which is composed of a pyrotechnic fire mass A and an inert additive B (connected with a binder on a carrier material), such as. B. shown in Fig. 3a.
  • the pyrotechnic fire mass is preferably red phosphorus with an ignition temperature of approximately 400 ° C. or red phosphorus to which small amounts of an additional substance, such as a catalyst, are added and / or in particles, for example with paraffin wax, is covered so that it requires a significantly lower ignition temperature.
  • inert substances which are inert in the temperature range from approximately 0 ° C. to approximately 600 ° C. are suitable as an inert additive.
  • Inert substances such as kieselguhr and / or microballoons, which Q-Cell®, Extendospheres® and the like include certain binders and / or specific carrier materials use.
  • the inert additive B, the heat conduction or heat dissipation, the binder and the carrier material are chosen so that they ensure a lowering of the temperature of the dummy target, whereby the spectral radiance of the dummy target is shifted to higher wavelengths in the infrared range, and thus to there are high beam strengths in the MWIR range and, on the other hand, low beam strengths in the SWIR range.
  • This lowering of temperature by means of which the apparent target for a radiation-sensitive target seeker is made more attractive than the object to be protected, is described below with reference to FIGS. 3a, 3b and 3c:
  • a flare mass which consists of units arranged one behind the other with respect to its burn-up path, each comprising a pyrotechnic fire-mass particle A and two particles B made of an inert additive, such that the spatial arrangement "ABBABB" shown in FIG. 3a is formed is ignited at time t 1 .
  • the ignition of the flare mass leads to the fact that the first particle A of the pyrotechnic combustion mass is brought to its combustion temperature in the first combustion step, which is, for example, 500 ° C.
  • the second combustion step characterized by the time t 2 , the second particle arranged along the combustion path, a heat-dissipating additional particle B, ensures that the temperature sinks.
  • the third particle which is also a heat-dissipating additional particle B, also serves to lower the temperature, so that after the third combustion step, characterized by the time t 3 , the ignition temperature of the pyrotechnic fire mass is reached, which is, for example, 300 ° C.
  • the fourth particle which is a particle A made of pyrotechnic fire mass, is ignited, as a result of which the temperature is brought back to the combustion temperature of the pyrotechnic fire mass.
  • the situation already existing at time t 1 thus arises again, whereupon the three burn-up steps just described are repeated cyclically, so that the temperature curve against the burn-off path is essentially sawtooth-like, as can be seen in FIG. 3b.
  • the first, burning particle A of the pyrotechnic fire mass at time t 1 radiates the highest spectral radiance with a maximum at the lowest wavelength and the fourth, heated particle A of the pyrotechnic fire mass at time t 4 the lowest spectral radiance with a maximum at the highest wavelength, as can be seen in FIG. 3c.
  • the spectral radiance of the flare mass which is shown in dashed lines in FIG. 3c and which is composed of the temporal mean of the spectral radiant densities that arise from three combustion steps during a cycle, provides a significantly higher total radiance in the MWIR range than in the SWIR range.
  • This shift towards higher wavelengths can be set by the quantitative ratio of pyrotechnic fire mass A and inert additive B and / or by selected thermal properties of the inert additive, such as, for example, specific heat and thermal expansion.
  • the magnitude of the shift in the maximum of the spectral radiance of the dummy target is primarily limited by the ignition temperature of the pyrotechnic fire mass A used.
  • the addition of the inert additive B to the pyrotechnic fire mass A combined by a binder on a carrier material leads not only to the desired shift of the maximum of the spectral radiance in the MWIR range, but also to a slowing down of the burning rate. If the addition B is also selected so that the weight and thus the sinking speed of the flare mass is reduced by its specific weight without changing the buoyancy, the effective time of the flare mass or the service life of the apparent target built up by the flare mass is also advantageously extended.
  • the beam densities of the dummy target in the complete SWIR range still exceed the beam densities of an object to be protected.
  • the ratio of the beam strength in the SWIR range to the beam strength in the MWIR range which according to Planck's law of radiation is exclusively a function of temperature, can be used for further spectral adjustment of the apparent target can be adjusted even better according to the invention by utilizing selective radiation properties of the inert additive.
  • the selective radiation properties of the inert additive B are determined by its selective emissivity, selective absorption, selective transmission and / or selective reflectance, which is described below with reference to FIGS. 5a and 5b:
  • FIG. 5a shows a small selection of possible radiation paths, determined by the selective radiation properties, on the surface 12 of a flare mass 10 with arrows, the flare mass 10 comprising both particles A made of pyrotechnic fire mass and particles B made of inert additive.
  • the most important beam paths in the region of a particle B from the inert additive, which has a particle filling 16 surrounded by a particle shell 14, are illustrated in FIG. 5b.
  • the middle beam path S 1 represents the selective emission of the temperature radiation of the additional particle B itself
  • the right beam path S 2 the selective reflection of external radiation, which can result from the infrared radiation of the pyrotechnic substance B as well as the infrared radiation of neighboring additional particles
  • the left beam path S 3 represents the selective absorption and / or transmission of said external radiation at the particle shell 14 and the particle filling 16.
  • the radiation characteristic of the flare mass can be determined via the material of the particle shell 14, which, for. B. includes a special type of filter glass; the surface quality of the particle shell 14; the thickness of the particle shell 14; the material of the particle filling 16, the z. B. comprises a gas or a foam with special absorption bands; the volume of particle fill 16; the density of the particle filling 16; the pressure prevailing in the particle filling 16; and / or adjust the mixing ratio of pyrotechnic fire mass A and additive B.
  • the material of the particle shell 14 which, for. B. includes a special type of filter glass; the surface quality of the particle shell 14; the thickness of the particle shell 14; the material of the particle filling 16, the z. B. comprises a gas or a foam with special absorption bands; the volume of particle fill 16; the density of the particle filling 16; the pressure prevailing in the particle filling 16; and / or adjust the mixing ratio of pyrotechnic fire mass A and additive B.
  • FIGS. 6a and 6b show two MWIR flare masses according to the invention in each case in comparison to a standard flare mass. 6a from 90% by weight Q-Cell® and 10% by weight red phosphorus and the MWIR flare mass from FIG. 6b from 90% by weight diatomaceous earth and 10% by weight. red phosphorus formed. However in principle, all mixtures with a phosphorus content of 5% to 99% by weight are possible.
  • Fig. 6a is clear from a comparison of the MWIR flare mass with the standard flare mass, the shift of the spectral radiation maximum to about 5 microns and thus to the largest wavelengths in the MWIR range and the drop in radiance up to about 2.6 microns and thus in complete SWIR area recognizable due to the selective radiation properties of Q-Cell®.
  • the spectral characteristic shown in Fig. 6b is very similar to that shown in Fig. 6a. It has its radiation maximum in the MWIR range, namely approximately at 4.5 ⁇ m, and suppresses the radiation power up to approximately 2.6 ⁇ m, so that essentially a negligible spectral radiance is present in the SWIR range.
  • a MWIR flare mass according to the invention ensures the protection of an object itself from projectiles that are equipped with two-color infrared target heads.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Glass Compositions (AREA)
  • Building Environments (AREA)

Abstract

Composition éclairante pour la génération d'un leurre, comportant un constituant incendiaire et un constituant inerte, caractérisée par le fait que le rapport des poids du constituant incendiaire et du constituant inerte est réglé de telle sorte que la luminance énergétique spectrale maximale de la composition éclairante est décalée vers des longueurs d'onde plus grandes pour s'adapter à la répartition spectrale relative d'énergie de la signature d'objectif à simuler, par comparaison avec la répartition spectrale relative d'énergie du constituant incendiaire seul.

Claims (14)

  1. Méthode pour la création d'une cible artificielle destinée à fournir une protection contre les autodirecteurs capables de différencier les intensités du rayonnement dans le domaine de l'infrarouge à ondes courtes et dans le domaine de l'infrarouge à ondes moyennes, selon laquelle
    - on fait brûler une masse éclairante de leurre comprenant un composant de masse incendiaire et un composant inerte, de sorte que
    -- le composant de masse incendiaire lors d'une unique combustion présente une luminance énergétique spectrale dont le maximum se trouve sur des longueurs d'onde plus courtes que la luminance énergétique spectrale de l'empreinte de cible à simuler, et
    -- la température d'ignition du composant de masse incendiaire par rapport à la température de combustion définit globalement l'ordre de grandeur d'un déplacement de ce maximum de la luminance énergétique par rapport à la longueur d'onde ; et
    - le rapport de masse entre le composant de masse incendiaire et le composant inerte destiné à réduire la conduction thermique interne dans la masse éclairante de leurre est établi de telle sorte que la luminance énergétique spectrale de la masse éclairante de leurre est adaptée à la luminance énergétique spectrale de l'empreinte de cible à simuler par déplacement sur les longueurs d'onde plus longues.
  2. Méthode selon la Revendication 1, caractérisée en ce que la luminance énergétique spectrale de la cible artificielle est mise au point en fonction de la forme spatiale influençant la conduction thermique intérieure de la masse éclairante de leurre du composant de masse incendiaire et/ou du composant inerte.
  3. Méthode selon la Revendication 1 ou 2, caractérisée en ce que la luminance énergétique spectrale de la cible artificielle est mise au point en fonction de la disposition spatiale influençant la conduction thermique interne de la masse éclairante de leurre du composant de masse incendiaire par rapport au composant inerte.
  4. Méthode selon l'une quelconque des Revendications précédentes, caractérisée en ce que la luminance énergétique de la masse éclairante de leurre est modulée en fonction des caractéristiques du composant inerte qui influencent le rayonnement, tels qu'un certain taux d'émission, un certain taux d'absorption, un certain taux de transmission et/ou un certain taux de réflexion.
  5. Méthode selon l'une quelconque des Revendications précédentes, caractérisée en ce que la luminance énergétique spectrale de la cible artificielle est mise au point en fonction de la densité du composant inerte.
  6. Méthode selon l'une quelconque des Revendications précédentes, caractérisée en ce que la luminance énergétique spectrale de la cible artificielle est mise au point en fonction des caractéristiques thermiques du composant inerte.
  7. Méthode selon l'une quelconque des Revendications précédentes, caractérisée en ce que des particules discrètes constituent le composant de masse incendiaire et/ou le composant inerte.
  8. Méthode selon la Revendication 7, caractérisée en ce que le composant inerte présente des particules qui se composent d'une enveloppe de particules (14) et d'une charge de particules (16).
  9. Méthode selon la Revendication 8, caractérisée en ce que la luminance énergétique spectrale de la cible artificielle est mise au point en fonction du choix du matériau de l'enveloppe de particules et/ou de la charge de particules.
  10. Méthode selon la Revendication 8 ou 9, caractérisée en ce que l'enveloppe de particules est constituée de verre.
  11. Méthode selon la Revendication 10, caractérisée en ce que l'enveloppe de particules est constituée de verre filtrant optiquement sélectif.
  12. Méthode selon l'une des Revendications 8 à 11, caractérisée en ce que la charge de particules est constituée d'un gaz présentant des bandes d'absorption sélectives.
  13. Méthode selon l'une quelconque des Revendications précédentes, caractérisée en ce que le composant de masse incendiaire est constitué de phosphore rouge.
  14. Méthode selon la Revendication 13, caractérisée en ce que la température d'inflammation du phosphore est réduite.
EP94920388A 1993-08-19 1994-07-04 Methode pour la creation d'une cible artificielle Expired - Lifetime EP0664876B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4327976A DE4327976C1 (de) 1993-08-19 1993-08-19 Flaremasse zur Scheinzielerzeugung
DE4327976 1993-08-19
PCT/DE1994/000783 WO1995005572A1 (fr) 1993-08-19 1994-07-04 Adaptation de la signature infrarouge d'un leurre, et composition eclairante utilisee a cette fin

Publications (2)

Publication Number Publication Date
EP0664876A1 EP0664876A1 (fr) 1995-08-02
EP0664876B1 true EP0664876B1 (fr) 1997-10-15

Family

ID=6495600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94920388A Expired - Lifetime EP0664876B1 (fr) 1993-08-19 1994-07-04 Methode pour la creation d'une cible artificielle

Country Status (9)

Country Link
US (1) US5635666A (fr)
EP (1) EP0664876B1 (fr)
AU (1) AU671034B2 (fr)
CA (1) CA2146015A1 (fr)
DE (2) DE4327976C1 (fr)
DK (1) DK0664876T3 (fr)
ES (1) ES2108469T3 (fr)
TW (1) TW324058B (fr)
WO (1) WO1995005572A1 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511825A1 (de) * 1995-03-30 1996-10-02 Georg Mainas Verfahren zur Stealth- (Heimlichkeits- bzw. "Tarnkappen"-) Sicherheits-Systemherstellung für schnelle (Offshore-) Strömungskörper bei Katastrophen- und Umwelt-Aktivitäten, desgleichen in (Offshore-) Erdöl- bzw. Erdgaserschließungsstätten sowie für Einsätze gegen Drogen-Schmuggel und/oder Piraterie, Raubfischerei, ebenfalls zur Abwehr von Flugkörper oder endphasengelenkter Munition und Vorrichtung sowie Einrichtung zur Durchführung desselben
DE19604745C1 (de) 1996-02-09 1999-11-18 Rheinmetall Ind Ag Verfahren und Anordnung zur Täuschung einer endphasengelenkten Munition
DE19605337C2 (de) * 1996-02-14 1998-12-03 Daimler Benz Aerospace Ag Verfahren zur Veränderung der Infrarot-Signatur eines Flugzeuges
DE19617701C2 (de) * 1996-05-03 2000-01-13 Buck Werke Gmbh & Co I K Verfahren zum Bereitstellen eines Scheinziels
US5801321A (en) * 1997-06-24 1998-09-01 The United States Of America As Represented By The Secretary Of The Navy Low cost environmentally friendly flare
DE19914097A1 (de) * 1999-03-27 2000-09-28 Piepenbrock Pyrotechnik Gmbh Pyrotechnische Wirkmasse zur Erzeugung eines im Infraroten stark emissiven und im Visuellen undurchdringlichen Aerosols
DE19951767C2 (de) * 1999-10-27 2002-06-27 Buck Neue Technologien Gmbh Dual-Mode-Täuschkörper
WO2002048641A1 (fr) * 2000-12-13 2002-06-20 The Secretary Of State For Defence Fusee-leurre a emission infrarouge
DE10119970B4 (de) * 2001-04-24 2005-06-30 Blohm + Voss Gmbh Verfahren zur Erfassung einer Schiffssignatur
FR2840977B1 (fr) 2002-06-12 2004-09-03 Giat Ind Sa Dispositif et munition de protection d'un vehicule ou d'une plate-forme fixe contre une menace
FR2840978B1 (fr) 2002-06-12 2004-09-03 Giat Ind Sa Munition de masquage
US6679174B1 (en) 2002-09-26 2004-01-20 The United States Of America As Represented By The Secretary Of The Navy Flare igniter with a slurry groove
DE10346001B4 (de) 2003-10-02 2006-01-26 Buck Neue Technologien Gmbh Vorrichtung zum Schützen von Schiffen vor endphasengelenkten Flugkörpern
DE102004018862A1 (de) 2004-04-19 2005-11-03 Diehl Bgt Defence Gmbh & Co. Kg Verfahren und Vorrichtung zur Erzeugung eines Infrarot-Flächenstrahlers
DE102004043991C5 (de) * 2004-09-11 2015-11-05 Diehl Bgt Defence Gmbh & Co. Kg Infrarot-Täuschkörper und seine Verwendung
DE102004047231B4 (de) * 2004-09-28 2008-08-21 Rheinmetall Waffe Munition Gmbh Wirkkörper
DE102005020159B4 (de) * 2005-04-29 2007-10-04 Rheinmetall Waffe Munition Gmbh Tarn- und Täuschmunition zum Schutz von Objekten gegen Lenkflugkörper
US7343861B1 (en) * 2005-05-31 2008-03-18 The United States Of America As Represented By The Secretary Of The Navy Device and method for producing an infrared emission at a given wavelength
DE102007040529B4 (de) 2007-08-28 2013-08-01 Diehl Bgt Defence Gmbh & Co. Kg Suchkopf
DE102009020558A1 (de) 2009-05-08 2010-11-18 Rheinmetall Waffe Munition Gmbh Aktivierungseinheit für munitionsfreie Scheinziele
DE102008064638A1 (de) * 2008-06-16 2009-12-17 Rheinmetall Waffe Munition Gmbh Flare mit Flareanzündung sowie Ausstoßsystem dafür
US8355536B2 (en) * 2009-02-25 2013-01-15 Light Prescriptions Innovators Llc Passive electro-optical tracker
WO2010127762A1 (fr) 2009-05-08 2010-11-11 Rheinmetall Waffe Munition Gmbh Unité d'activation pour masses actives ou corps actifs
DE102009030870A1 (de) * 2009-06-26 2010-12-30 Rheinmetall Waffe Munition Gmbh Wirkkörper
DE102009030869A1 (de) 2009-06-26 2011-02-10 Rheinmetall Waffe Munition Gmbh Wirkkörper
DE102010053694A1 (de) 2010-12-08 2012-06-14 Diehl Bgt Defence Gmbh & Co. Kg Pyrotechnische Scheinzielwirkmasse für Infrarotscheinziele
DE102010053812A1 (de) 2010-12-08 2012-06-14 Diehl Bgt Defence Gmbh & Co. Kg Pyrotechnische Scheinzielwirkmasse für Infrarotscheinziele
DE102011120454A1 (de) * 2011-12-07 2013-06-13 Diehl Bgt Defence Gmbh & Co. Kg Wirkmasse für ein beim Abbrand im Wesentlichen spektral strahlendes Infrarotscheinziel mit Raumwirkung
DE102013010266A1 (de) 2013-06-18 2014-12-18 Diehl Bgt Defence Gmbh & Co. Kg Scheinzielwirkkörper mit einer pyrotechnischen Wirkmasse
DE102014001866B3 (de) * 2014-02-06 2015-07-02 Martin Rybol Aus der Kartusche eines Infrarot-Täuschkörpers ausstoßbarer Wirkkörper
DE102015110061A1 (de) * 2015-06-23 2016-12-29 Rheinmetall Waffe Munition Gmbh Nebelsprenggranate
CN106529078B (zh) * 2016-11-28 2019-04-09 西安天圆光电科技有限公司 一种适用于实时仿真的快速面源红外诱饵的粒子建模方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658874A (en) * 1944-11-07 1953-11-10 John P Clay Smoke agent
US3888177A (en) * 1971-11-04 1975-06-10 Us Army Flare system
DE2359758C1 (de) * 1973-11-30 1988-07-28 Buck Chemisch-Technische Werke GmbH & Co, 7347 Bad Überkingen Infrarot-Störstrahler
DE2614196A1 (de) * 1976-04-02 1977-10-13 Dynamit Nobel Ag Infrarotstrahler
DE2811016C1 (de) * 1978-03-14 1986-07-17 Buck Chemisch-Technische Werke Gmbh & Co, 8230 Bad Reichenhall Wurfkoerper
DE3012405A1 (de) * 1980-03-29 1981-10-01 Pyrotechnische Fabrik F. Feistel GmbH + Co KG, 6719 Göllheim Kombinationsnebel
DE3037053A1 (de) * 1980-10-01 1982-05-06 Dynamit Nobel Ag, 5210 Troisdorf Raucherzeugender koerper
GB2191477B (en) * 1981-04-01 1988-08-10 Pains Wessex Ltd Pyrotechnic device
US4659089A (en) * 1981-09-18 1987-04-21 Tvi Energy Corporation Multi-spectral target
DE3238444C2 (de) * 1982-10-16 1986-10-30 Pyrotechnische Fabrik F. Feistel GmbH + Co KG, 6719 Göllheim Pyrotechnische Nebelsätze
DE3443778A1 (de) * 1983-04-05 1988-05-19 Haley & Weller Ltd Pyrotechnisches gemisch zur erzeugung eines strahlungs-sperrschirmes, verfahren zu seiner herstellung und vorrichtung zum austragen eines pyrotechnischen gemisches
GB2188921B (en) * 1983-04-05 1988-03-09 Haley & Weller Ltd Pyrotechnic composition for producing radiation-blocking screen
DE3515166A1 (de) * 1985-04-26 1986-10-30 Buck Chemisch-Technische Werke GmbH & Co, 7347 Bad Überkingen Wurfkoerper zur darstellung eines infrarot-flaechenstrahlers
DE3617888A1 (de) * 1986-05-28 1987-12-03 Dynamit Nobel Ag Patrone oder wurfkoerper
DE3905748A1 (de) * 1989-02-24 1993-06-03 Dornier Gmbh Scheinziel
US5317163A (en) * 1990-02-26 1994-05-31 Dornier Gmbh Flying decoy
DE4238038C1 (de) * 1992-11-11 1994-06-16 Buck Chem Tech Werke Verfahren zum Bereitstellen eines Scheinzielkörpers
US5531930A (en) * 1994-04-12 1996-07-02 Israel Institute For Biological Research Aluminum metal composition flake having reduced coating

Also Published As

Publication number Publication date
WO1995005572A1 (fr) 1995-02-23
DK0664876T3 (da) 1998-06-02
ES2108469T3 (es) 1997-12-16
CA2146015A1 (fr) 1995-02-23
EP0664876A1 (fr) 1995-08-02
TW324058B (en) 1998-01-01
AU7120494A (en) 1995-03-14
AU671034B2 (en) 1996-08-08
DE59404339D1 (de) 1997-11-20
US5635666A (en) 1997-06-03
DE4327976C1 (de) 1995-01-05

Similar Documents

Publication Publication Date Title
EP0664876B1 (fr) Methode pour la creation d'une cible artificielle
DE4244682B4 (de) Hochintensive pyrotechnische Infrarot-Leuchtdrohne
DE60026180T2 (de) Infrarotstrahlung emittierende Täuschungsfackel
EP1026473B1 (fr) Méthode pour la création d'une cible artificielle
EP1173394B1 (fr) Masse active pyrotechnique destinee a produire un aerosol fortement emetteur dans la plage spectrale des infrarouges et impenetrable dans la plage spectrale visible
EP1794537B1 (fr) Corps actif
DE3232825A1 (de) Geschoss fuer handfeuerwaffen und gewehre sowie mit einem solchen geschoss versehene patrone
DE19548436C1 (de) Schnellnebelhandgranate
EP1173395B1 (fr) Composition nebuleuse pyrotechnique destinee a produire un aerosol impenetrable dans la plage spectrale visible, des infrarouges et des ondes millimetriques
DE19758421B4 (de) Pyrotechnische Leuchtvorrichtung
EP2468700B1 (fr) Masse active à cible pyrotechnique pour cibles à rayonnement infrarouge
DE3238444A1 (de) Pyrotechnische nebelsaetze
DE2606966C2 (de) Rauchmunition
DE3240310A1 (de) Panzerbrechendes brandgeschoss
DE19964172B4 (de) Pyrotechnischer Satz zur Erzeugung von IR-Strahlung
DE4131096C2 (de) Verfahren und Vorrichtung zum Schutz eines Schiffes vor Flugkörpern mit Zweifarben-IR-Zielsuchköpfen
DE69310238T2 (de) Verfahren und Vorrichtung zum Unschädlichmachen einer Bedrohung durch Freigabe eines Neutralisationsmittels
EP2770294B1 (fr) Masse active d'explosif pour une munition de combat
DE19753661C1 (de) Submunitionskörper zur Nebelerzeugung
DE3037053C2 (fr)
DE102010053812A1 (de) Pyrotechnische Scheinzielwirkmasse für Infrarotscheinziele
DE69225579T2 (de) Verfahren zum Verwenden einer Hohlladung zum Durchschlagen einer mit einer reaktiven Vorpanzerung versehenen Panzerplatte
DD299752A7 (de) Element zur scheinzieldarstellung
DE19507709A1 (de) Verfahren und Geschoß zum Schutz gegen feindliche Bedrohung
DE1703731A1 (de) Infrarotleuchtspur fuer Fernlenkgeschosse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES GB GR IT NL PT

17Q First examination report despatched

Effective date: 19951109

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUESEL, HORST

Inventor name: FEGG, MARTIN

Inventor name: WEGSCHEIDER, MARTIN

Inventor name: BANNASCH, HEINZ

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES GB GR IT NL PT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19971015

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971017

REF Corresponds to:

Ref document number: 59404339

Country of ref document: DE

Date of ref document: 19971120

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2108469

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19980107

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991231

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000104

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20000105

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20000111

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000127

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000704

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010201

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20010131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010713

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050704